

Modeling of General 1-D Periodic Leaky-Wave Antennas in Layered Media using EIGER™

W. A. Johnson¹, S. Paulotto², D. R. Jackson²,
D. R. Wilton², W. L. Langston¹, L. I. Basilio¹,
P. Baccarelli³, G. Valerio³, and F. T. Celepcikay²

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1152

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Introduction

LWA Geometry: Printed circuit lines with 1D periodic modulation or waveguides with a 1D array of periodic slots both with fully 3D currents over a grounded layered medium.

Goals:

- Evaluate the dispersion diagrams for all the propagating modes: **bound (non-radiating) and leaky modes** to aid in leaky-wave antenna design.
- Direct calculation of corresponding radiation patterns.

Michalski formulation for layered media:

$$E(\mathbf{r}) = -j\omega \int_s \underline{\mathbf{G}}_A^p(\mathbf{r}, \mathbf{r}') \cdot \mathbf{J}(\mathbf{r}') ds' - \nabla \int_s K_\Phi^p(\mathbf{r}, \mathbf{r}') \nabla' \cdot \mathbf{J}(\mathbf{r}') ds'$$
$$- \nabla \int_s P_z^p(\mathbf{r}, \mathbf{r}') \mathbf{z}_0 \cdot \mathbf{J}(\mathbf{r}') ds' - \frac{1}{\epsilon} PV \int_s \nabla \times \underline{\mathbf{G}}_F^p(\mathbf{r}, \mathbf{r}') \cdot \mathbf{M}(\mathbf{r}') ds' \pm \frac{\mathbf{M}(\mathbf{r}')}{2} \delta_{\mathbf{r}, \mathbf{r}'}$$

$$H(\mathbf{r}) = \pm \frac{\mathbf{J}(\mathbf{r}')}{2} \delta_{\mathbf{r}, \mathbf{r}'} + \frac{1}{\mu} PV \int_s \nabla \times \underline{\mathbf{G}}_A^p(\mathbf{r}, \mathbf{r}') \cdot \mathbf{J}(\mathbf{r}') ds' - j\omega \int_s \underline{\mathbf{G}}_F^p(\mathbf{r}, \mathbf{r}') \cdot \mathbf{M}(\mathbf{r}') ds'$$
$$- \nabla \int_s Q_z^p(\mathbf{r}, \mathbf{r}') \mathbf{z}_0 \cdot \mathbf{M}(\mathbf{r}') ds' - \nabla \int_s K_\Psi^p(\mathbf{r}, \mathbf{r}') \nabla' \cdot \mathbf{M}(\mathbf{r}') ds'$$

K. A. Michalski and
D. Zheng,
“Electromagnetic
scattering by sources
of arbitrary shape in
layered media, Part I:
Theory,” *IEEE Trans.
Antennas Propag.*,
vol. 38, no. 3,
pp.335-344, Mar.
1990.

The Complex Wave Numbers are Found from the Eigenvalues of the Integral Equation.

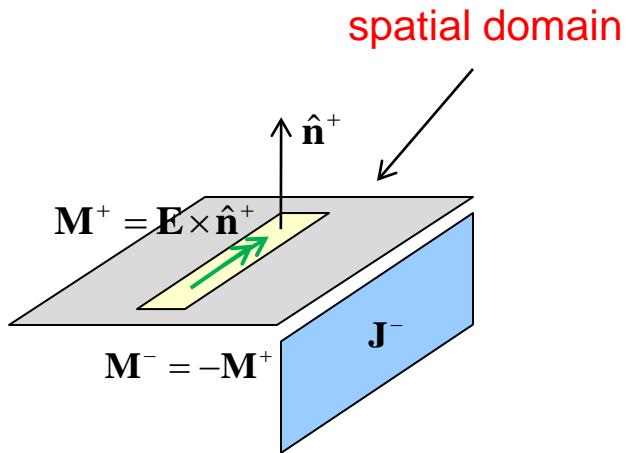
$$\mathbf{JA} = \sum_n I_n \quad \mathbf{MA} = \sum_n I_n^M$$

Metallic conductors (EFIE):

$$\mathbf{E}_{\tan}^{\alpha}(\mathbf{J}^{\alpha}, \mathbf{M}^{\alpha}) = 0, \alpha = \pm$$

Slots in pec ground planes:

$$[\hat{\mathbf{n}} \times \mathbf{H}^{\alpha}(\mathbf{J}^{\alpha}, \mathbf{M}^{\alpha})]_{\alpha=-}^{\alpha=+} = 0$$

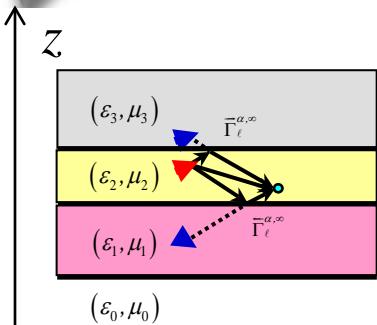


These equations can be effectively solved by means of the MoM in the spatial domain:

$$[\mathbf{Z}(k_{x0})][I_n] = [0] \quad \rightarrow \quad \det[\mathbf{Z}(k_{x0})] = 0$$

$$k_{x0} = \beta - j\alpha \quad \rightarrow \quad k_{xn} = k_{x0} + \frac{2\pi n}{p}$$

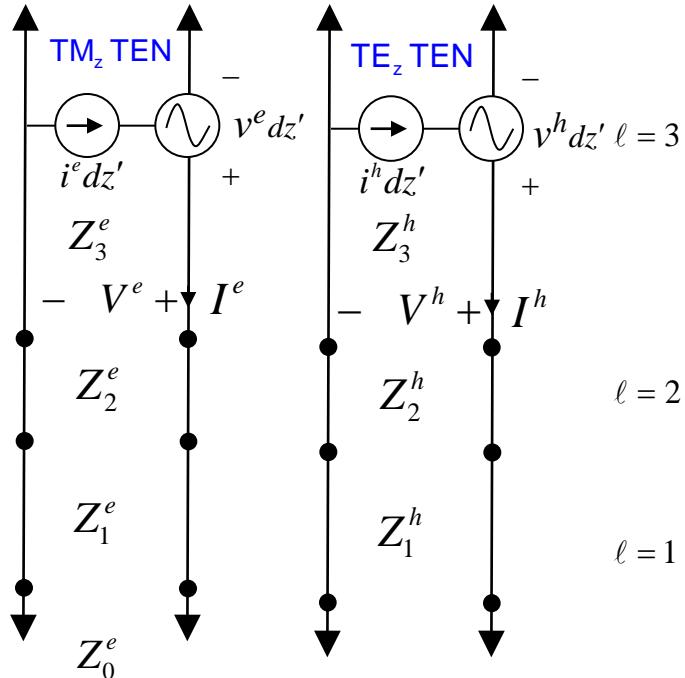
Spectral Representation of Green's Functions



From the periodicity, the Green's functions

$$\begin{array}{lll} \mathbf{G}_A^p & K_\Phi^p & P_z^p \\ \mathbf{G}_F^p & K_\Psi^p & Q_z^p \end{array} \rightarrow G^p = \frac{1}{2\pi p} \sum_{n=-\infty}^{+\infty} e^{-jk_{x_n}\Delta x} \int_{-\infty}^{+\infty} \tilde{G}(k_{t_n}, z, z') e^{-jk_y\Delta y} dk_y$$

$$k_{t_n}^2 = k_{x_n}^2 + k_{y_n}^2$$



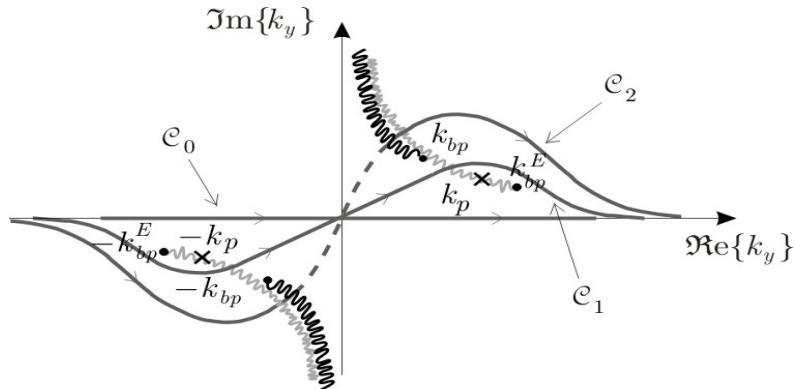
$$\tilde{K}_\Phi = \frac{V_I^h - V_I^e}{k_t^2}, \quad \tilde{P}_z = \frac{j\omega\mu_0\mu_r}{k_t} \frac{V_V^h - V_V^e}{k_t}$$

$$\mathbf{G}_A = \begin{pmatrix} \frac{V_I^h}{j\omega} & 0 & 0 \\ 0 & \frac{V_I^h}{j\omega} & 0 \\ \frac{j\omega\mu_0\mu_r(I_I^e - I_I^h)k_x}{k_t^2} & \frac{j\omega\mu_0\mu_r(I_I^e - I_I^h)k_y}{k_t^2} & \frac{\mu_0\mu_r I_V^e}{j\omega\epsilon_0\epsilon_r} \end{pmatrix}$$

Integration Paths

$$G^p = \frac{1}{2\pi p} \sum_{n=-\infty}^{+\infty} e^{-jk_{x_n}\Delta x} \int_{-\infty}^{+\infty} \tilde{G}(k_{t_n}, z, z') e^{-jk_y\Delta y} dk_y$$

The **singularities of the integrand** are
the singularities of the multilayered Green's functions
plus the singularities of the extracted terms (homogeneous-medium problem).



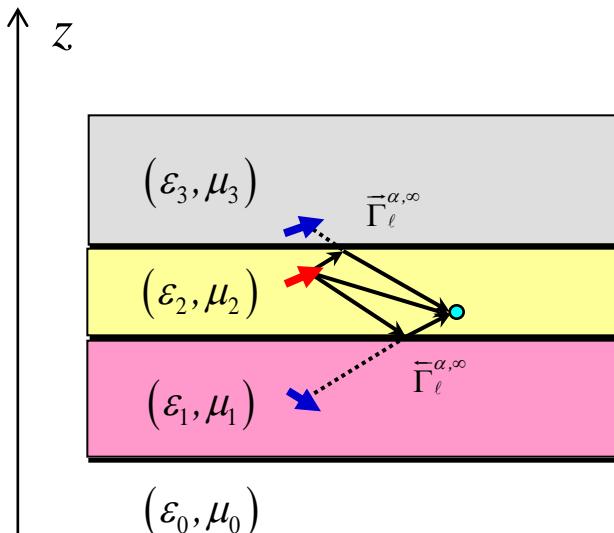
Asymptotic Extractions

Depending on the component, different asymptotic behaviors are extracted.

$$G_{A,xx}^p \quad G_{A,yy}^p \quad K_{\Phi}^p \quad G_{A,zz}^p$$

$$G^p = \frac{1}{2\pi p} \sum_{n=-\infty}^{+\infty} \left\{ e^{-jk_{t_n}\Delta x} \int_{-\infty}^{+\infty} \left[\tilde{G}(k_{t_n}, z, z') - \sum_{i=-1}^{+1} C_i \tilde{g}(k_{t_n}, \Delta z_i) \right] e^{-jk_y \Delta y} dk_y \right\} + \sum_{i=-1}^{+1} C_i g^p(\Delta \mathbf{r}_i)$$

Kummer extraction



Accelerated through Ewald

$$\tilde{g}(k_{t_n}, \Delta z) = \frac{e^{-jk_{z_n} |\Delta z|}}{2jk_{z_n}} \quad k_{z_n} = (k_s^2 - k_{t_n}^2)^{1/2}$$

$k_s = k$ of source layer

$$g^p(\Delta \mathbf{r}) = \sum_{n=-\infty}^{\infty} \frac{e^{-jk_s R_n}}{4\pi R_n} e^{-jnk_{x_0} p} \quad R_n = |\Delta \mathbf{r} - np\hat{\mathbf{x}}|$$

Vertical Currents (1)

Different terms need to be extracted from the series for vertical currents

$$P_z^p = \frac{1}{2\pi p} \sum_{n=-\infty}^{+\infty} \left\{ e^{-jk_{x_n}\Delta x} \int_{-\infty}^{+\infty} \left[\tilde{P}_z(k_{t_n}, z, z') - \sum_{i=-1}^{+1} \frac{C_i^z}{jk_z} \tilde{g}(k_{t_n}, \Delta z_i) \right] e^{-jk_y \Delta y} dk_y \right\} + \sum_{i=-1}^{+1} C_i^z g^{z,p}(\Delta \mathbf{r}_i)$$

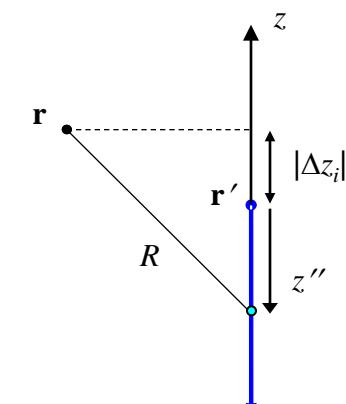
The extracted terms contain the extra factor

$$1/k_z$$

$$g^{z,p}(\Delta \mathbf{r}_i) = \int_{|\Delta z_i|}^{+\infty} g^p(\Delta x \hat{\mathbf{x}} + \Delta y \hat{\mathbf{y}} + z'' \hat{\mathbf{z}}) dz''$$

Accordingly, in the space domain a different homogeneous-medium Green's function must be used, that is of the form

This is the potential produced by a periodic “half-line source” that starts at a vertical distance $|\Delta z_i|$ from the observation point and extends vertically to infinity.



Vertical Currents (2)

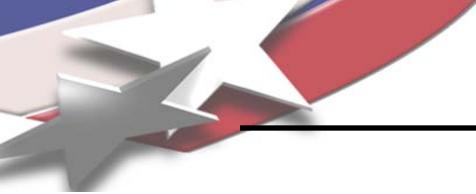
Similar expressions can be obtained for the **nondiagonal** dyadic elements

$$G_{A,zx}^p \text{ and } G_{A,zy}^p$$

$$\boxed{G_{A,zv}^p} = \frac{1}{2\pi p} \sum_{n=-\infty}^{+\infty} \left\{ e^{-jk_{x_n}\Delta x} \int_{-\infty}^{+\infty} \left[\tilde{G}_{A,zv}(k_{t_n}, z, z') - \sum_{i=-1}^{+1} C_i^{zv} \frac{k_v}{jk_z} \tilde{g}(k_{t_n}, \Delta z_i) \right] e^{-jk_y \Delta y} dk_y \right\} \\ + j \hat{\mathbf{v}} \cdot \sum_{i=-1}^{+1} \boxed{C_i^{zv} \nabla g^{z,p}(\Delta \mathbf{r}_i)}$$

where $v = x, y, \hat{\mathbf{v}} = \hat{\mathbf{x}}, \hat{\mathbf{y}}$

The factors k_x and k_y appearing above the term k_z correspond to a differentiation with respect to x and to y , respectively, in the spatial domain, leading to the **gradient of the half-line source potential.**



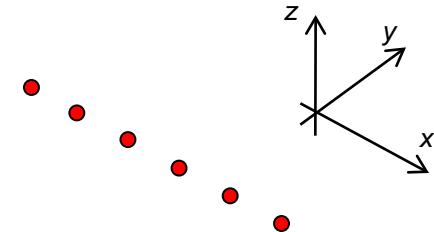
Free-space Acceleration with Ewald

The terms extracted from the “**planar**” components are Green’s functions for a **1-D array of point sources in free-space**. They are summed back with the Ewald approach:

$$g^p(\Delta\mathbf{r}) = \sum_{n=-\infty}^{\infty} \frac{e^{-jk_s R_n}}{4\pi R_n} e^{-jnk_{x0} p} = g_{\text{spectral}}^E(\Delta\mathbf{r}) + g_{\text{spatial}}^E(\Delta\mathbf{r})$$

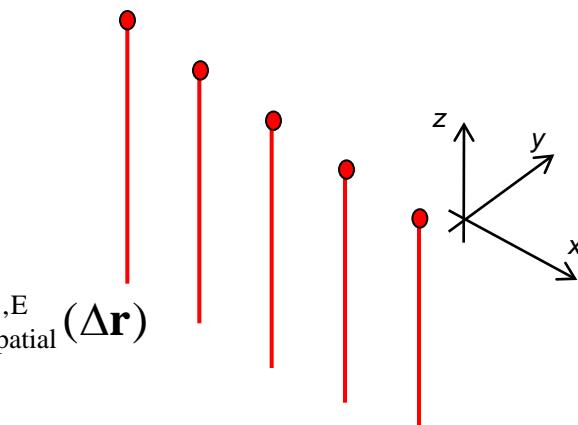
↓ ↓ ↓

Algebraic convergence Gaussian convergence

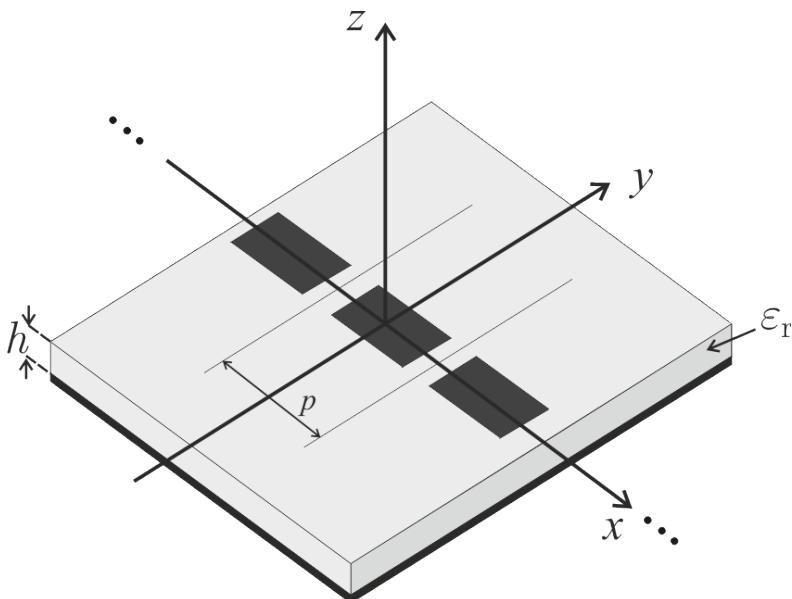


The terms extracted from the **vertical** components are Green’s functions for a **1-D array of half-line sources in free-space**. A modified Ewald approach has been developed to accelerate these series:

$$g^{z,p}(\Delta\mathbf{r}) = \int_{|\Delta z_i|}^{+\infty} g_{\text{spectral}}^E(\Delta\mathbf{r}) dz'' + \int_{|\Delta z_i|}^{+\infty} g_{\text{spatial}}^E(\Delta\mathbf{r}) dz'' = g_{\text{spectral}}^{z,E}(\Delta\mathbf{r}) + g_{\text{spatial}}^{z,E}(\Delta\mathbf{r})$$



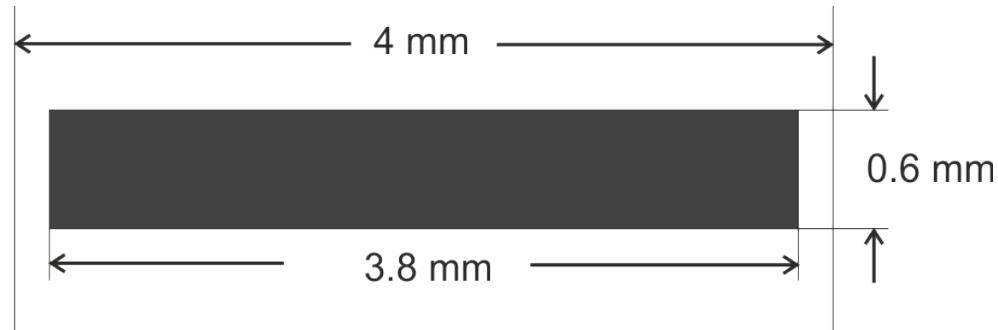
Gap-Coupled Periodic Microstrip line



$$\epsilon_r = 10.2$$

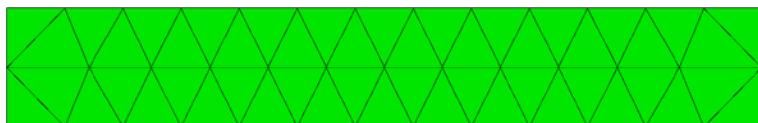
$$h = 0.762 \text{ mm (30 mil)}$$

$$p = 4 \text{ mm}$$



$$L = 3.8 \text{ mm} \quad w = 0.6 \text{ mm}$$

PPS mesh

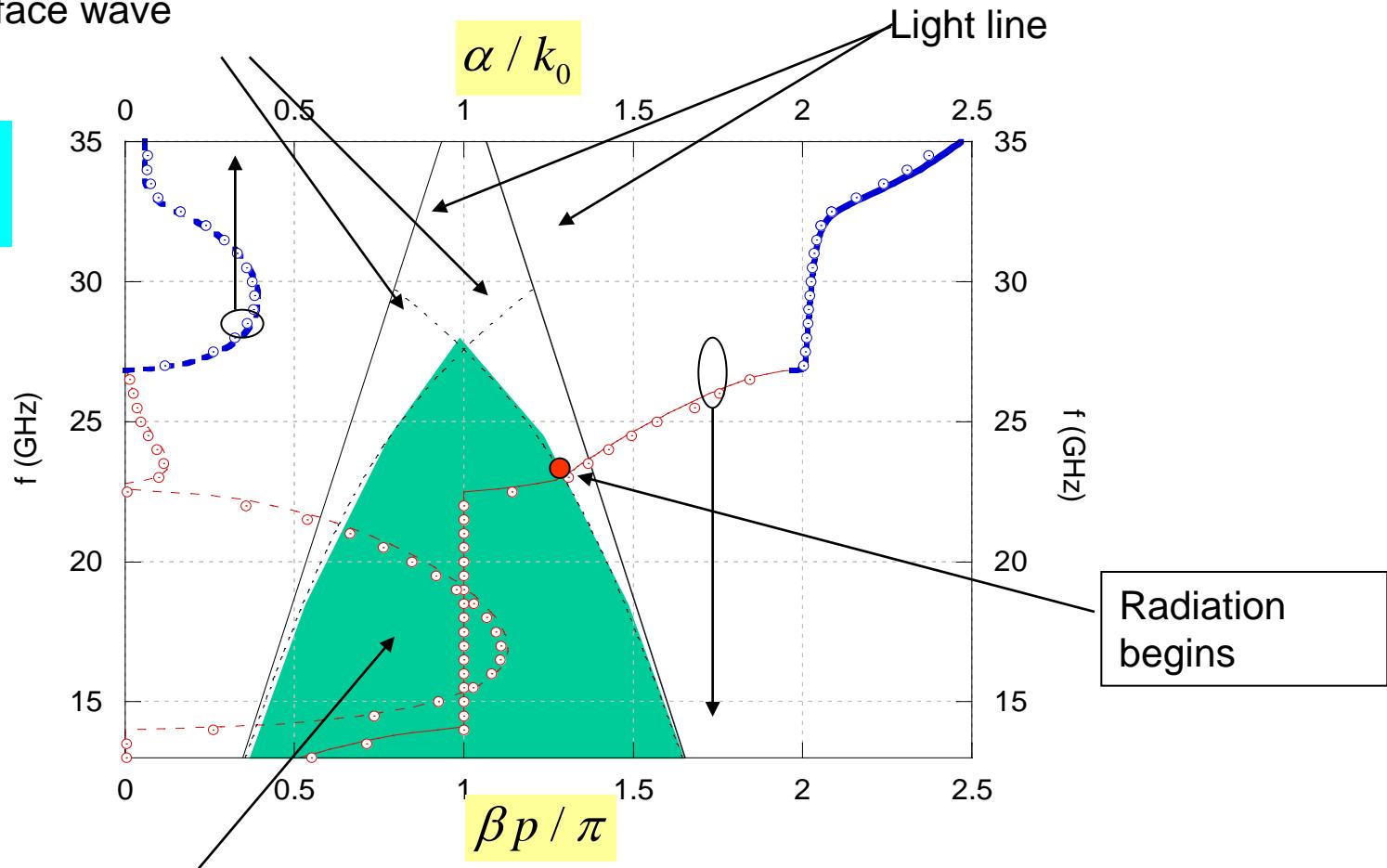


Validation for Gap-Coupled Periodic Microstrip line

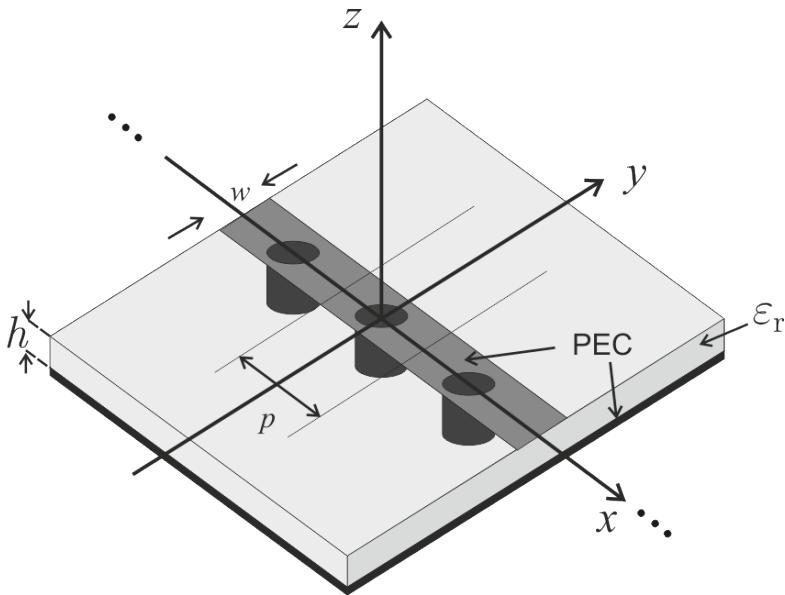
TM₀ Surface wave

Results for
 $n = 0$ harmonic

Dots: Eiger
Lines: PPS

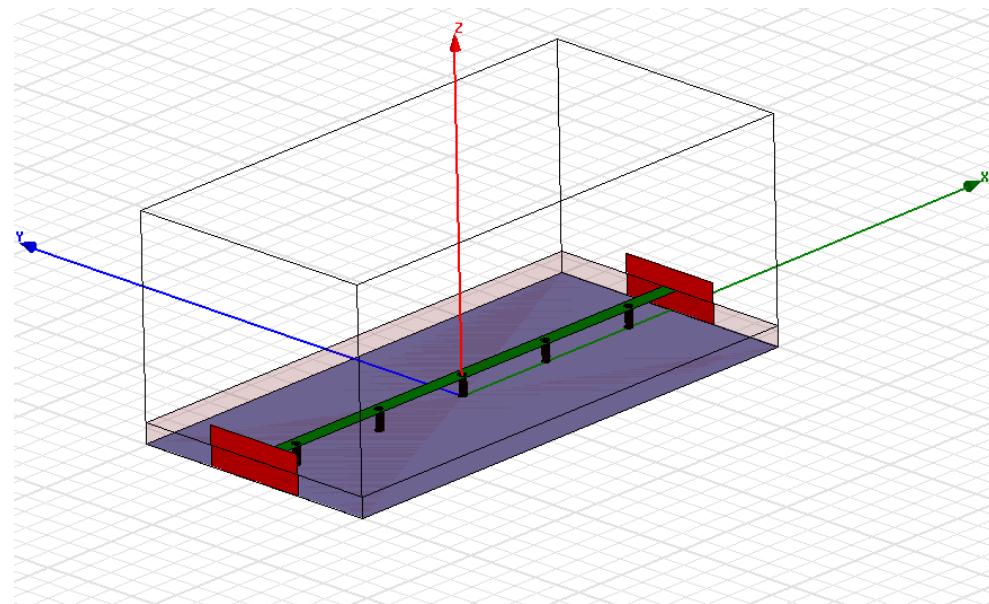


Microstrip Periodically Loaded with Vertical Strips



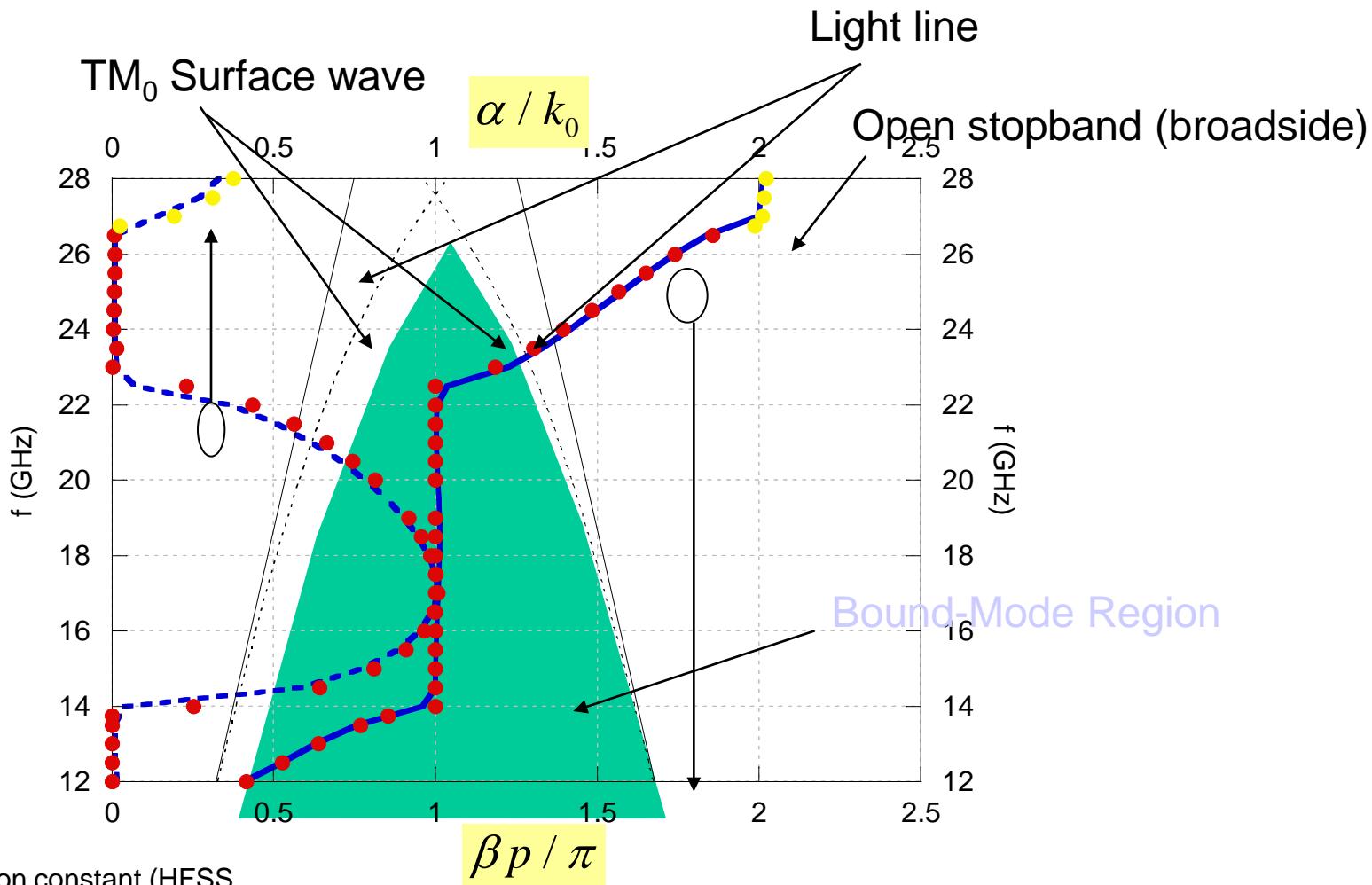
Approximate method:

G. Valerio, S. Paulotto, P. Baccarelli, P. Burghignoli, A. Galli, 'Sapienza' University of Rome, Italy, **'Improving Modal Analysis of 1D-Periodic Lines Based on the Simulation of Finite Structures,"** in Proceedings of IEEE AP-S/URSI 2010/



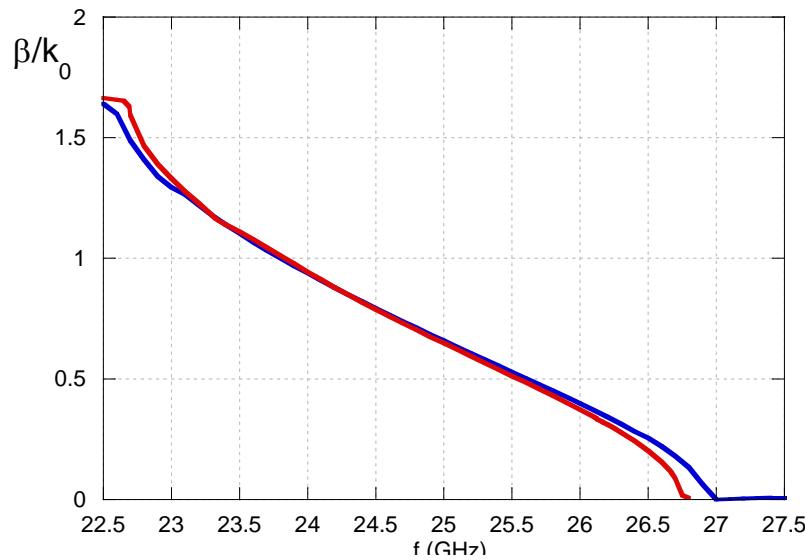
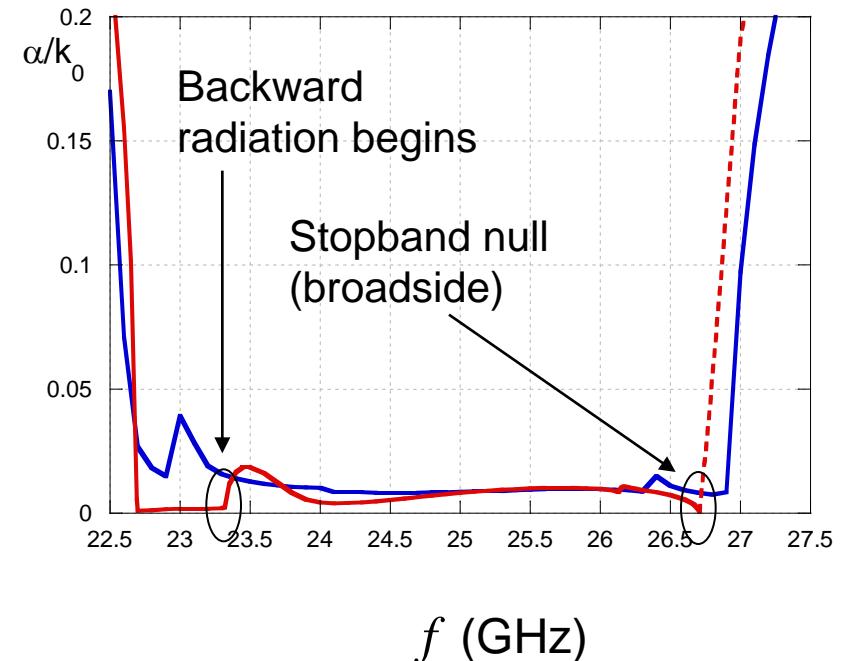
The 5-cell structure analyzed with HFSS, with vertical PEC posts of radius $a = w/4$, where w is the width of the strip.

Microstrip Periodically Loaded with Vertical Strips



Microstrip Periodically Loaded with Vertical Strips

Zoom into the radiation region

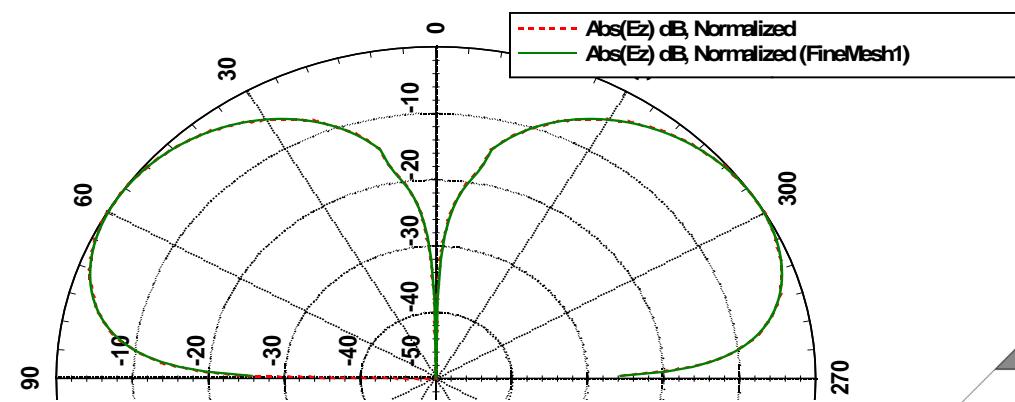
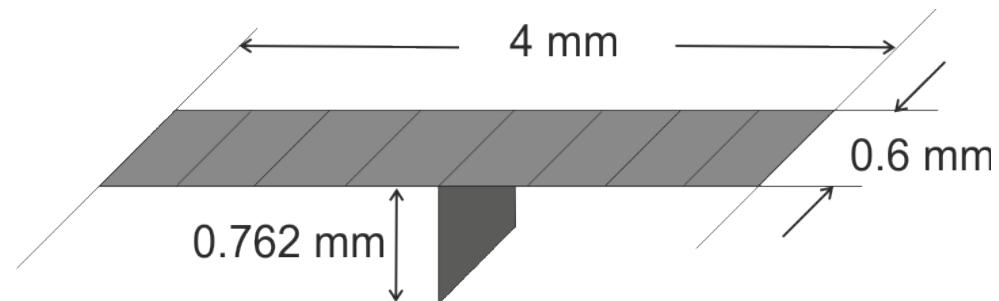


HFSS + Approximate
Method

EIGER proper solution

EIGER improper solution

TeeStrip Rev1: Eplane



Picture of source needed

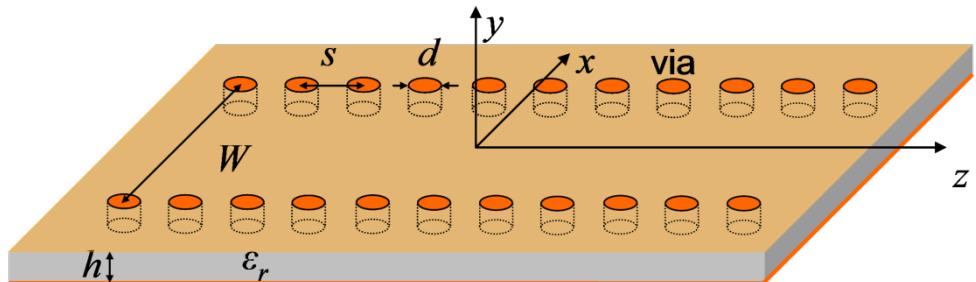
Dipole source failed to excite the leaky wave mode

Goal: Model Substrate Integrate Waveguide

- Substrate integrated waveguide (SIW) has been recently investigated for its significant advantages such as **low cost**, **low loss**, and **easy integration with planar circuits**.
- The SIW consists of a wide microstrip line that is shorted at the edges with conductive vias, acting as a **rectangular waveguide** [†].

$$k_z = \sqrt{k_0^2 \epsilon_r \mu_r - \left(\frac{m\pi}{W_e} \right)^2}$$

$$W_e = W - 1.08 \left(\frac{d^2}{s} \right) + 0.1 \left(\frac{d^2}{W} \right)$$



[†] F. Xu and K. Wu, IEEE T-MTT, vol. 53, no. 1, pp. 66-73, Jan. 2005

A First Step is to Model a Closed Waveguide

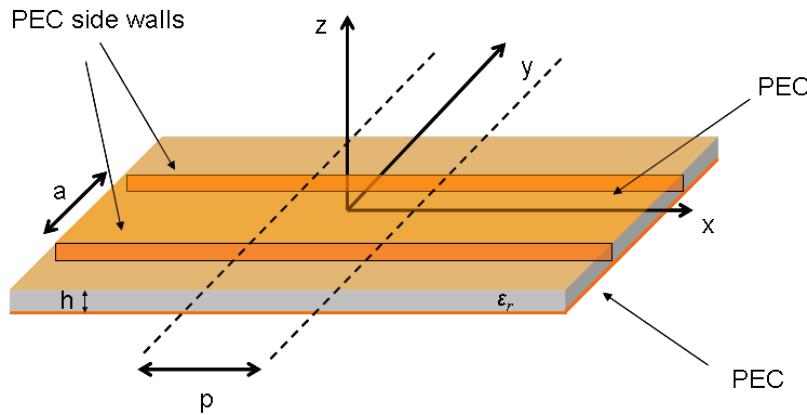
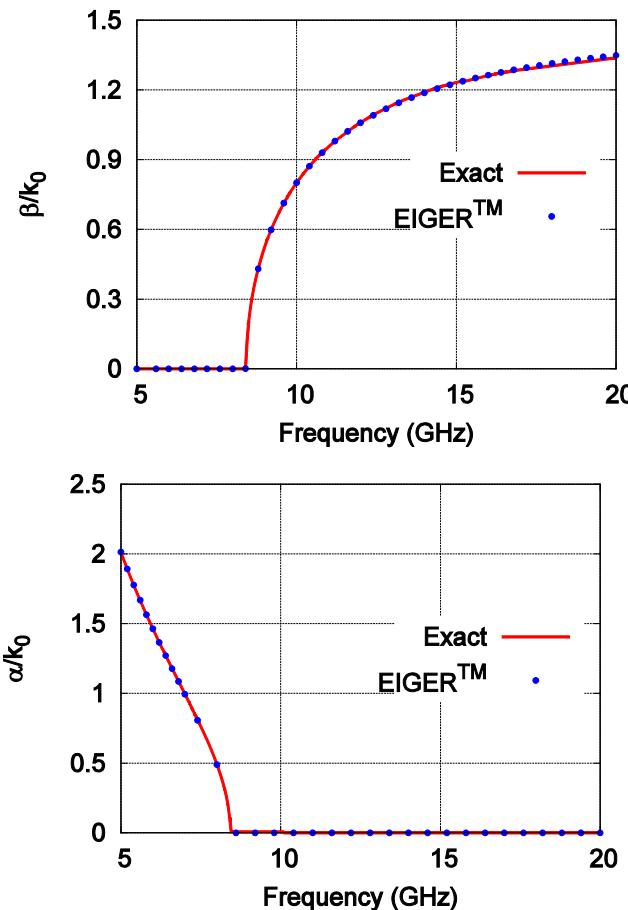
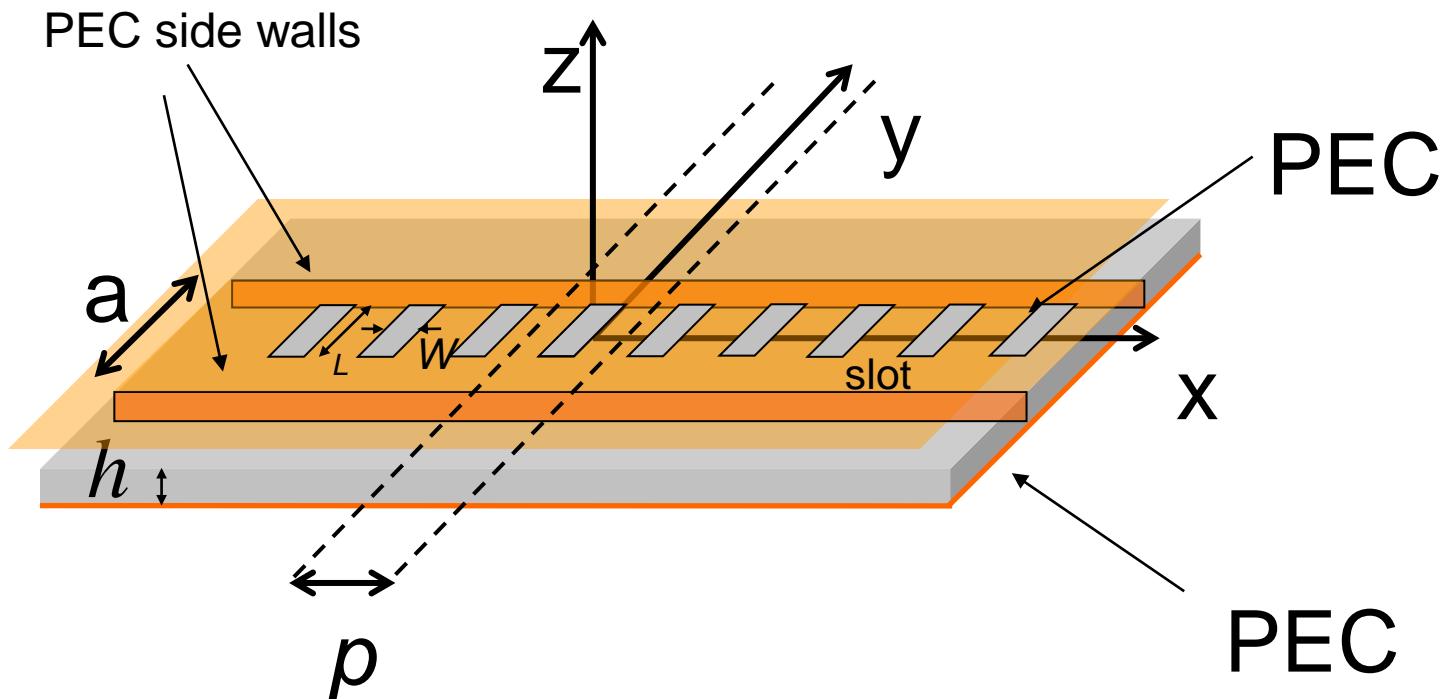


Figure 3: A dielectric-filled rectangular waveguide test case with dimensions a and h equal to 12 mm and 1.524 mm, respectively. The waveguide is filled with a dielectric having $\epsilon_r = 2.2$. An artificial 1-D periodic spacing of 3 mm has been used for the periodic Green's function.



A Next Step is to Model a Periodically Slotted Waveguide



1959

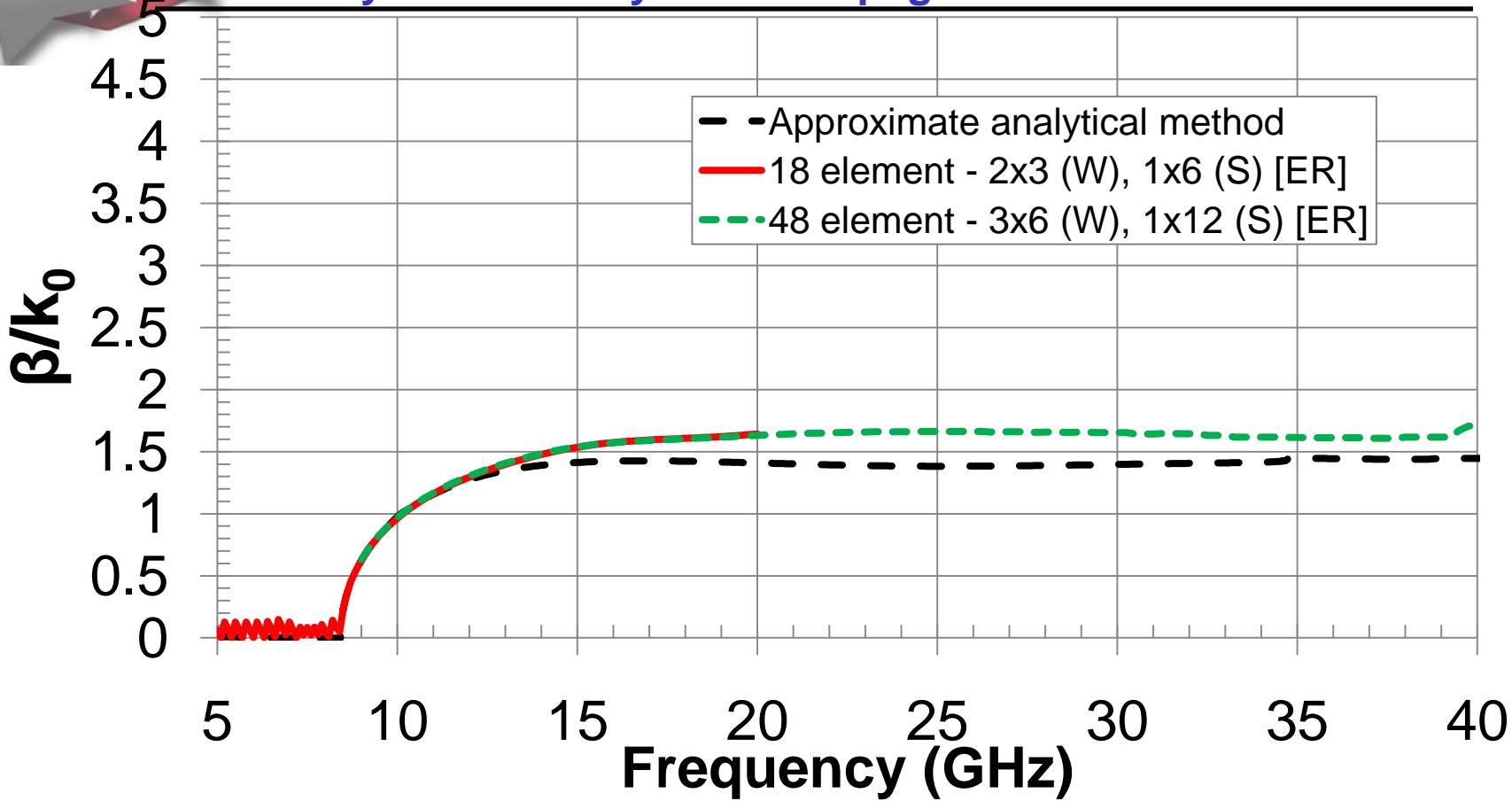
IRE TRANSACTIONS ON ANTENNAS AND PROPAGATION

335

Closely-Spaced Transverse Slots in Rectangular Waveguide*

RICHARD F. HYNEMAN†

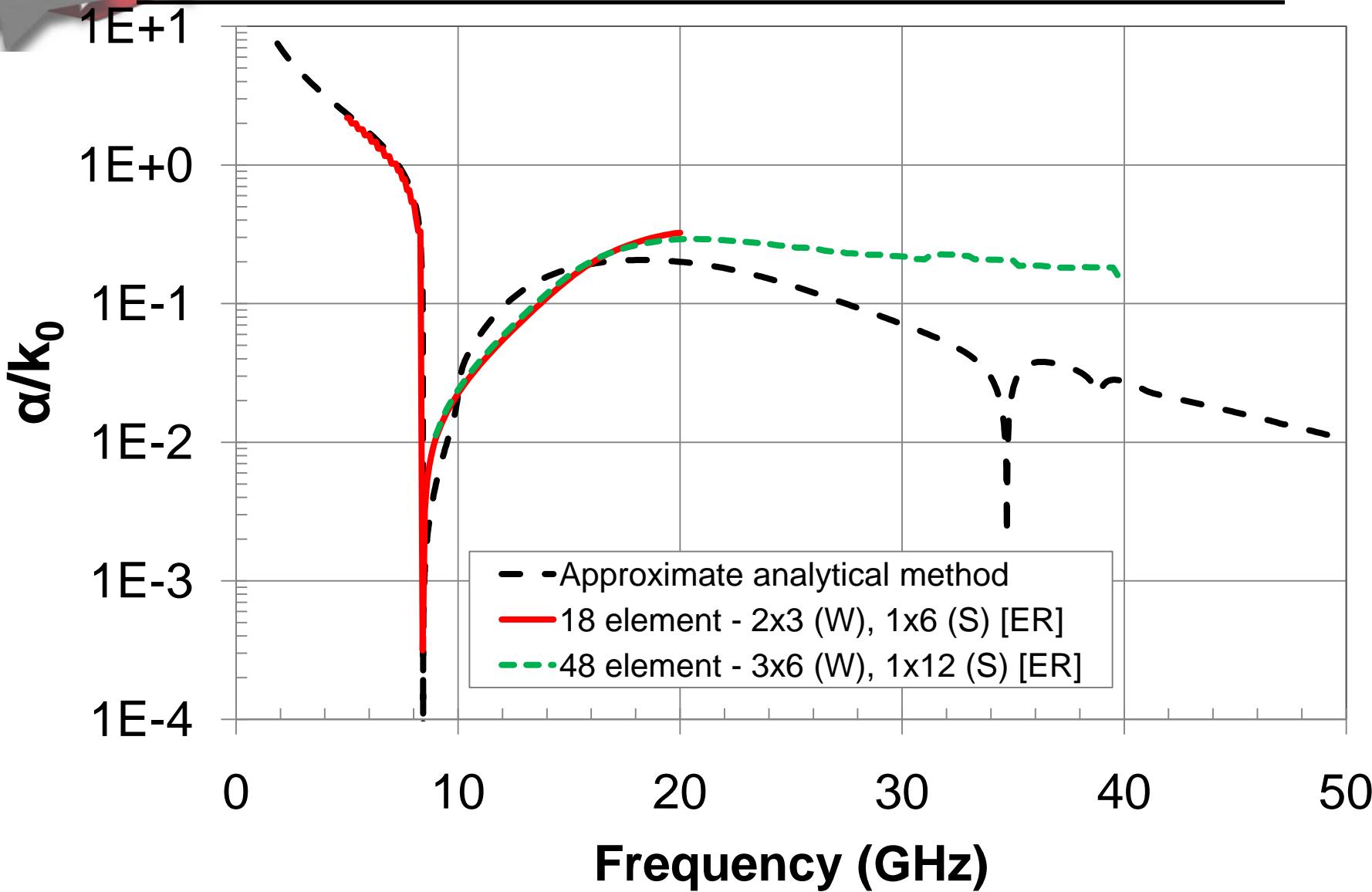
Hyneman Leaky Wave Propagation Constant



Approximate analytical method

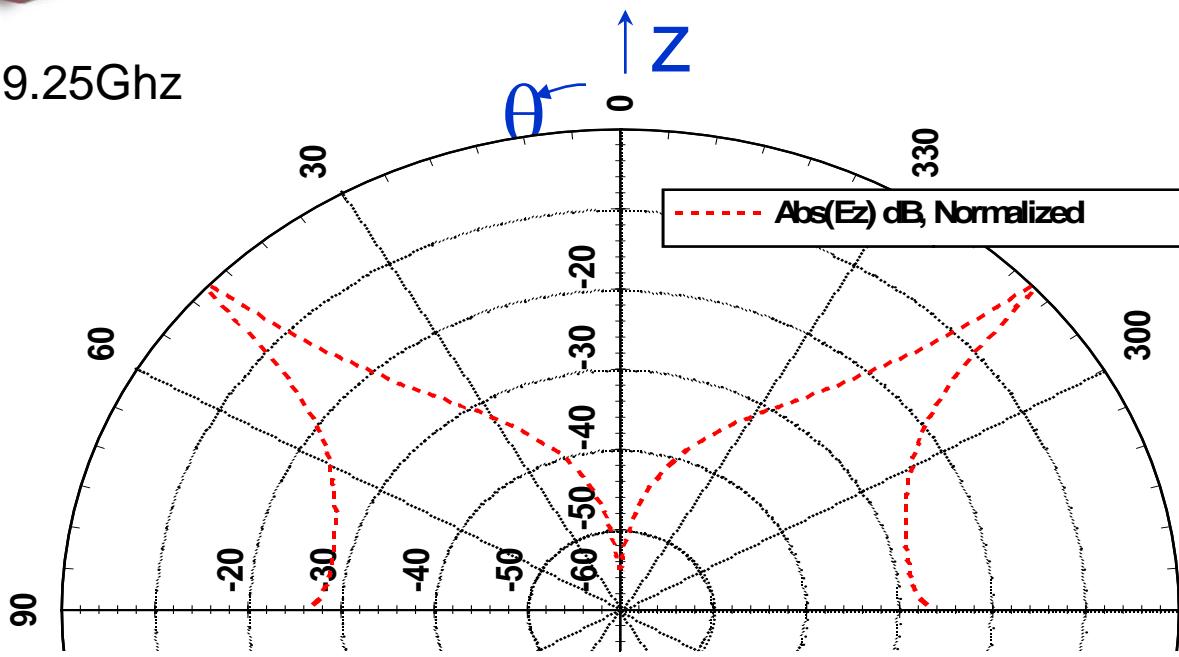
Investigation of Leaky-Wave Antenna Based on Dielectric-Filled Rectangular Waveguide with Transverse Slots," J. Liu, D. R. Jackson, and Y. Long, IEEE AP-S Intl. Symp., July 11-17, 2010, Toronto, Ontario, Canada (Symp. Digest)

Hyneman Leaky Wave Attenuation Constant



Slotted Waveguide: Phi=0 Plane (□ to Slot)

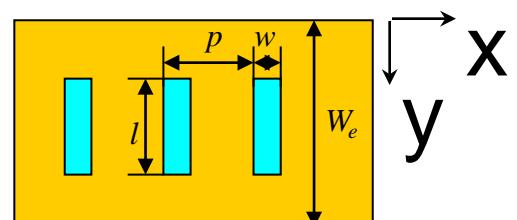
F = 9.25Ghz



$$\cos \theta_0 = \beta_x / k_0 = 0.672$$

$$\Delta\theta = 2 \frac{\alpha_x / k_0}{\cos \theta_0} \Rightarrow \alpha_x / k_0 = 0.0082$$

RWG



$$\varepsilon_r = 2.2, h = 1.524 \text{ mm}$$

$l = 6 \text{ mm}, w = 0.56 \text{ mm}, p = 3 \text{ mm}$

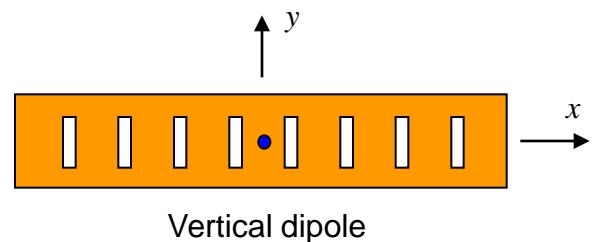
$$W_e = 12 \text{ mm}$$

University of Houston

Sandia
National
Lahoratories

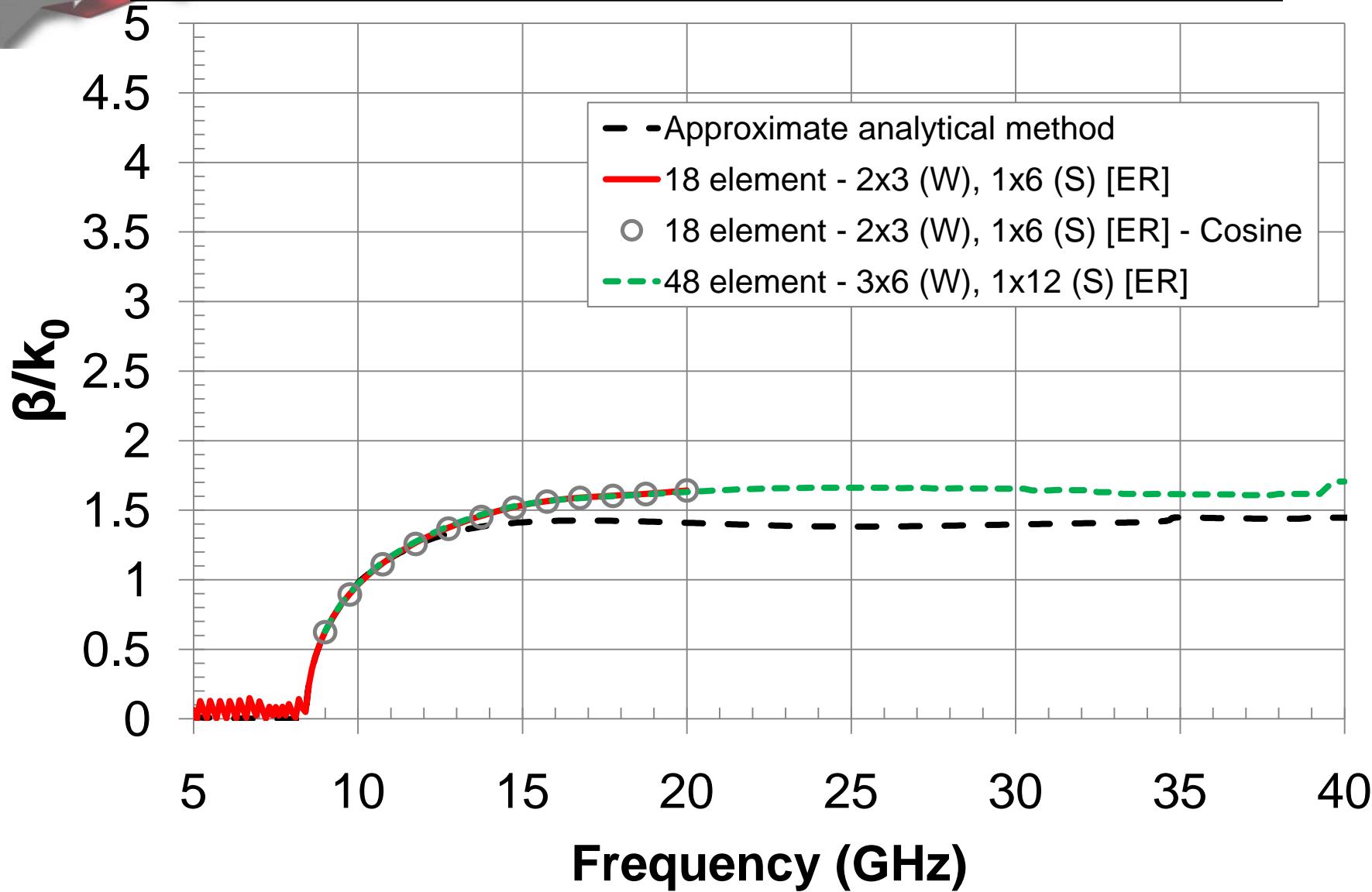
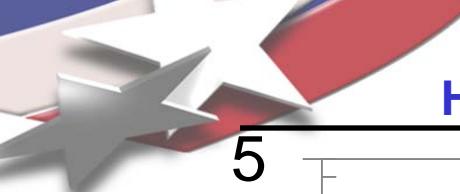
SAPIENZA
UNIVERSITÀ DI ROMA

Comparing Simulated Pattern to Theoretical LW Pattern



Theoretical LW Pattern

Hyneman Leaky Wave Propagation Constant



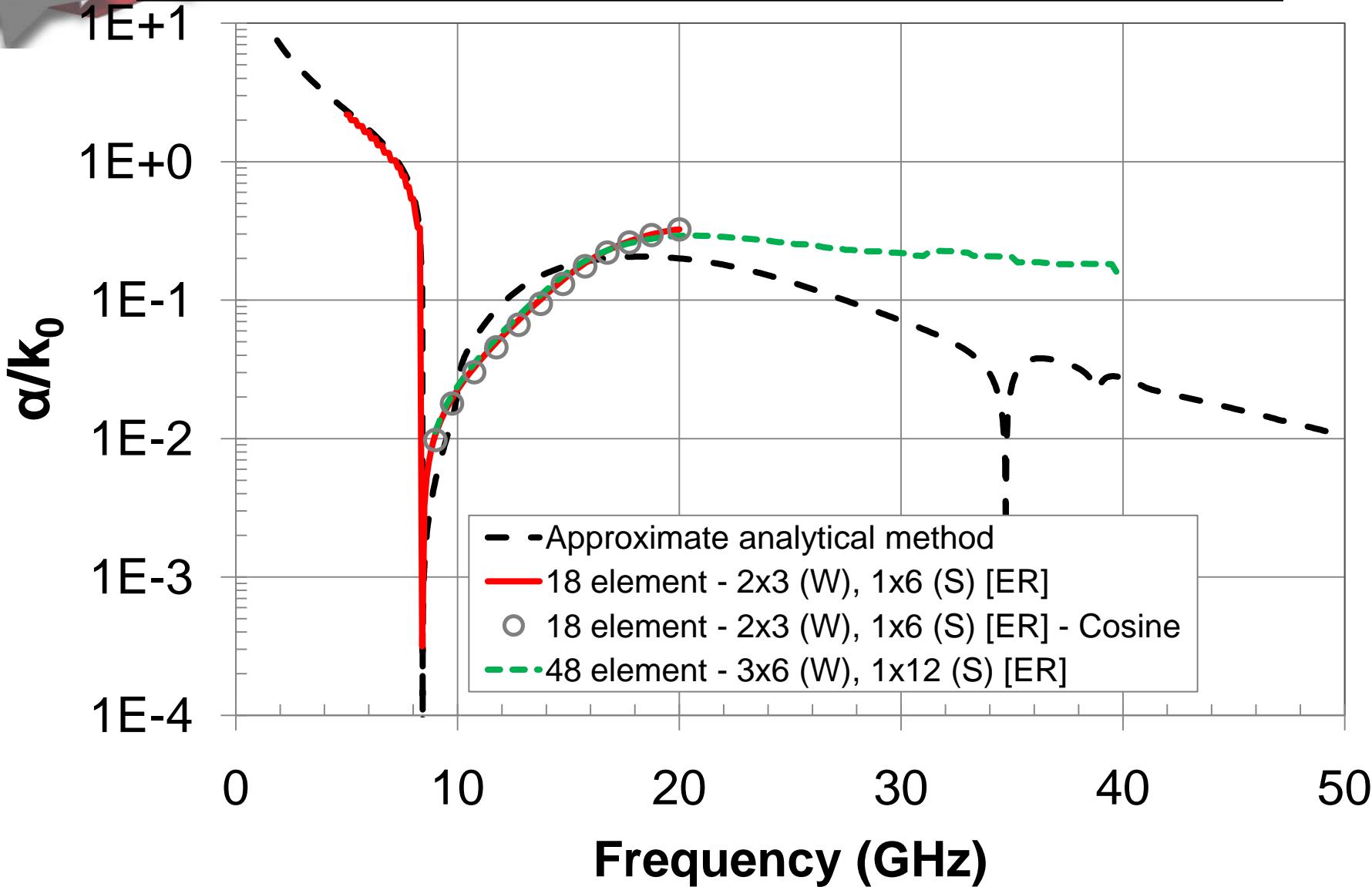
University
of Houston

Sandia
National
Laboratories

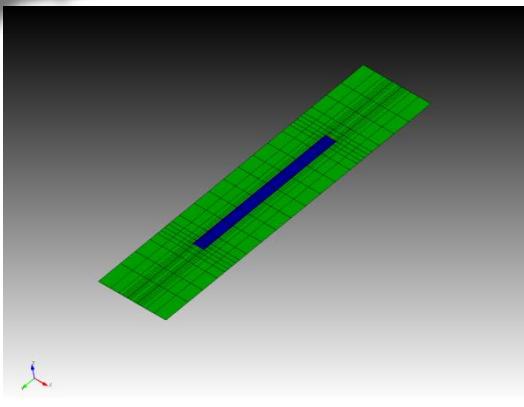
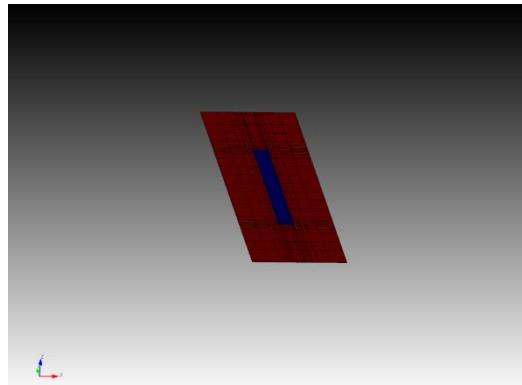
23

SAPIENZA
UNIVERSITÀ DI ROMA

Hyneman Leaky Wave Attenuation Constant



A two dimensionally periodic test case



Field below .5 mm below center of slot

$Ex = (0.13875E-01, -0.72604E+00)$ slot only

$Ex = (-0.11165E+00, -0.51954E+00)$ metal and aperture

Note : We are running this now and hope to get a better answer

Summary

- **Validated EIGER™ for modeling dispersion diagrams for planar, 1D periodic, leaky wave antennas**
 - PPS (Periodic Planar Simulator) code from Sapienza Universita di Roma
- **Added the capability to model dispersion diagrams for fully 3D leaky wave antennas with**
- **Resolve the discrepancy between the approximate analytical method and EIGER™**



ThankYou!

University
of Houston

Sandia
National
Laboratories

27

SAPIENZA
UNIVERSITÀ DI ROMA