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LWA Geometry: Printed circuit lines with 1D periodic modulation or 
waveguides with a 1D array of periodic slots both with fully 3D currents over a 
grounded layered medium. 

Goals:
• Evaluate the dispersion diagrams for all the propagating modes: 

bound (non-radiating) and leaky modes to aid in leaky-wave antenna design.
• Direct calculation of corresponding radiation patterns.
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Michalski formulation for layered media:

K. A. Michalski and 
D. Zheng, 
“Electromagnetic 
scattering by sources 
of arbitrary shape in 
layered media, Part I: 
Theory,” IEEE Trans. 
Antennas Propag., 
vol. 38, no. 3, 
pp.335-344, Mar. 
1990.
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The Complex Wave Numbers are Found from 
the Eigenvalues of the Integral Equation.
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Metallic conductors (EFIE):

Slots in pec ground planes:

These equations can be effectively solved by means of the MoM in the spatial domain:
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Spectral Representation of Green’s Functions

From the periodicity, the Green's functions
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Integration Paths 

The singularities of the integrand are
the singularities of the multilayered Green's functions

plus the singularities of the extracted terms (homogeneous-medium problem).
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• Xxx

Kummer extraction

Accelerated through Ewald

Depending on the component, different asymptotic behaviors are extracted.
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Vertical Currents (1)
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Different terms need to be extracted from the series 
for vertical currents 

The extracted terms contain the extra factor

Accordingly, in the space domain a different homogeneous-medium 
Green's function must be used, that is of the form
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This is the potential produced by a periodic “half-line source” 
that starts at a vertical distance |∆zi| from the observation 
point and extends vertically to infinity.
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Similar expressions can be obtained for the nondiagonal dyadic elements
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The factors kx and ky appearing above the term kz correspond to a differentiation 
with respect to x and to y, respectively, in the spatial domain, leading to the 

gradient of the half-line source potential.

Vertical Currents (2)
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Free-space Acceleration with Ewald

Algebraic
convergence

Gaussian
convergence
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The terms extracted from the “planar” components are Green’s functions for 

a 1-D array of point sources in free-space. They are summed back
with the Ewald approach:

The terms extracted from the vertical components are 
Green’s functions for a 1-D array of half-line sources in 
free-space.  A modified Ewald approach has been 
developed to accelerate these series:
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Gap-Coupled Periodic Microstrip line

PPS meshEiger Mesh

10.2rε =

4 mmp =
0.762mm (30 mil)h =

3.8mmL = 0.6mmw =
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G. Valerio, S. Paulotto, P. Baccarelli, P. 
Burghignoli, A. Galli, ‘Sapienza’ University 
of Rome, Italy, “Improving Modal 
Analysis of 1D-Periodic Lines Based on 
the Simulation of Finite Structures,” in 
Proceedings of IEEE AP-S/URSI 2010/

Microstrip Periodically Loaded with Vertical Strips

The 5-cell structure analyzed 
with HFSS, with vertical PEC 
posts of radius a = w/4, where w
is the width of the strip.

Approximate method:
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HFSS + Approximate 
Method

EIGER proper solution
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Dipole source failed to excite the leaky wave mode
Picture of source needed 
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• Substrate integrated waveguide (SIW) has been recently investigated 
for its significant advantages such as low cost, low loss, and easy 
integration with planar circuits. 

• The SIW consists of a wide microstrip line that is shorted at the edges 

with conductive vias, acting as a rectangular waveguide † . 

† F. Xu and K. Wu, IEEE T-MTT, vol. 53, no. 1, pp. 66-73, Jan. 2005 

Goal: Model  Substrate Integrate Waveguide
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A First Step is to Model a Closed Waveguide

Figure 3: A dielectric-filled rectangular
waveguide test case with dimensions a and
h equal to 12 mm and 1.524 mm,
respectively. The waveguide is filled with a
dielectric having εr = 2.2. An artificial 1-D
periodic spacing of 3 mm has been used for the
periodic Green’s function.
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A Next Step is to Model a Periodically Slotted Waveguide 
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Investigation of Leaky-Wave Antenna Based on Dielectric-Filled Rectangular Waveguide with 
Transverse Slots,” J. Liu, D. R. Jackson, and Y. Long, IEEE AP-S Intl. Symp., July 11-17, 2010, 
Toronto, Ontario, Canada (Symp. Digest)

Approximate analytical method 
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A two dimensionally periodic test case 

Field below .5 mm below center of slot 

Ex = ( 0.13875E-01,-0.72604E+00) slot only

Ex = (-0.11165E+00,-0.51954E+00) metal and aperture 

Note : We are runing this now and hope to get a better answer
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Summary

Validated EIGERTM  for modeling dispersion diagrams for 
planar, 1D periodic, leaky wave antennas  

PPS (Periodic Planar Simulator) code from Sapienza 
Universita di Roma

Added the capability to model dispersion diagrams for fully 
3D leaky wave antennas with

Resolve the discrepancy between the approximate 
analytical method and EIGERTM 
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