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What is a Memristor?

►Leon Chua proposed§ the 4th passive circuit element in 1971

►Device resistance changes as the integral of charge passed; hence, it “remembers” and 
retains the last resistance value () of energized (i > 0) circuit

►i-v behavior is hysteretic and reversible
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►M is memristance
►What if M=M(q)?
►M(q)  1/d2



Memristor Applications

►Non-volatile Memory (NVM):  Memristor implementations known as resistive RAM 
(RRAM).  NVM market currently dominated by Si-based Flash.  Experimental RRAM 
devices meet/exceed Flash metrics:

 Density/scalability§– crossbar architecture, feasible in 3-D. This is a path to Pbit/cm3

densities. (10s of Gbits possible in 25nm flash)

 Frequency§ǂ - < 10ns switch times (10s in flash)

 Endurance§ -1012 cycles  (105 in flash)

 Retention§ – 10 years @ 85C observed (std. test)

 Low read/write voltages and energiesǂ – 1 pJ switching

 Radiation hardness#

►Neuromorphic Design&%:  Non-linear, analog circuit designs mimicking biological 
systems (i.e. artificial brains, AI) enabled.  Possible to implement synaptic behavior 
coupling axons and neurons in hardware.  Synapses are essentially variable 
resistors.

►Supercomputing%:  High-density memories are predicted enablers of massively-
parallel, multi-core CPU architectures.
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Memristor Physics
►In 2008, HP announced& a memristor implemented in Pt/TiO2/Pt.  Behavior has since 

been generalized for many transition metal oxides and CMOS integration demonstrated.ǂ

►Mechanism believed to be driven by electrochemical redox reactions enabled by charged 
O vacancy (VO

2+) migration; VO
2+ are immobile without electrical bias

►Phase change (stoichiometric and structural) dynamics at nanoscale remain elusive to 
experiment
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ǂXia, Nano Lett.  9, 3640 (2009).

RH/RL ~ 102 – 103    #

#Strachan, Adv. Mat. 22, 3573 (2010).



Memristor Modeling: Challenges
►Intrinsic Defects:  Are VO the only critical contributors?  Exact structure and charge states are 

essential.  TiO2 is relatively well-studied, but other MOx (M = Ni, Nb, Ta, Cu, etc…) systems 
are poorly understood.

►Reliable Interatomic Potential:  Potentials must be developed capable of capturing essential 
defect dynamics.  TiO2 potentials are inadequate, while published force fields do not existǂ for 
other systems like Ta2O5.

►Material System:  TiO2 has best knowledgebase, but phase diagram is complex.  There are 
various polymorphs (rutile, anatase) plus thermodynamically-stable reduced Magnéli phases 
(TinO2n-1).

§ Ta-O phase diagram is simple; however, crystal structure is under debate, which will 
inhibit defect investigation.#ǂ Amorphous and nanocrystalline phases are likely relevant.

►Computational Feasibility:  Large system size (>106 atoms) and timescales (~10ns) will be 
essential to capture switching dynamics.
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Memristor Modeling: Strategy
►Determine/confirm structure and preferred oxidation state of dominant intrinsic defects in 

relevant phases with density-functional theory (DFT)

►Assess phase transition simulation feasibility in MOx systems (TiOx ,TaOx , etc…)

►Develop & evaluate fidelity of potentials against DFT/experimental results.  Interatomic potential 
classes include ReaxFF and Gaussian approx. potential (GAP).

►Characterize defect behavior in LAMMPS under suspected driving conditions:  electrical bias, 
temperature, and/or pressure/strain 

►Atomistic LAMMPS simulation of relevant phase transition(s) (103 to 104 atoms)

►Atomistic LAMMPS simulation of memristor switching mechanism (105 to 106 atoms for ~ 10ns)
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