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What is a Memristor?

» Leon Chua proposeds$ the 4th passive circuit element in 1971

» Device resistance changes as the integral of charge passed; hence, it “remembers” and
retains the last resistance value (QQ) of energized (i > 0) circuit

» i-v behavior is hysteretic and reversible

*Strukov, Nature 453, 80 (2008).
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SChua, IEEE Trans. Circuit Th. 18, 507 (1971).
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j;ﬁi Memristor Applications

» Non-volatile Memory (NVM): Memristor implementations known as resistive RAM
(RRAM). NVM market currently dominated by Si-based Flash. Experimental RRAM
devices meet/exceed Flash metrics:

= Density/scalability’ST™— crossbar architecture, feasible in 3-D. This is a path to Pbit/cm3
densities. (10s of Gbits possible in 25nm flash)

= FrequencyS™ - < 10ns switch times (10pus in flash)

= EnduranceS™ -10"2 cycles (10° in flash)

= Retentions — 10 years @ 85C observed (std. test)

= [ ow read/write voltages and energies* — 1 pJ switching
= Radiation hardness”

» Neuromorphic Design®”: Non-linear, analog circuit designs mimicking biological
systems (i.e. artificial brains, Al) enabled. Possible to implement synaptic behavior
coupling axons and neurons in hardware. Synapses are essentially variable
resistors.

» Supercomputing”: High-density memories are predicted enablers of massively-
parallel, multi-core CPU architectures.

%»Snider, Computer 44,21 (2011).
AWaser, Adv. Mat. 21, 2632 (2009). #Tong, IEEE Trans. Nuc. Sci. 57, 1640 (2010) . &Williams, IEEE Spectrum 45, 28 (2008).
tGerardin, IEEE Trans. Nuc. Sci. 57, 3016 (2010)  SLee, Nature Mat. 10, 625 (2011). *Yang, Appl. Phys. Lett. 97, 232102 (2010).
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Memristor Physics

» In 2008, HP announced®® a memristor implemented in Pt/TiO,/Pt. Behavior has since
been generalized for many transition metal oxides and CMOS integration demonstrated.*

» Mechanism believed to be driven by electrochemical redox reactions enabled by charged
O vacancy (V4?*) migration; V42" are immobile without electrical bias

» Phase change (stoichiometric and structural) dynamics at nanoscale remain elusive to
experiment

R/R, ~102— 103 *

#Strachan, Adv. Mat. 22, 3573 (2010).
TStrukov, Nature 453, 80 (2008).  &Williams, IEEE Spectrum 45, 28 (2008). *Xia, Nano Lett. 9, 3640 (2009).
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i Memristor Modeling: Challenges

» Intrinsic Defects: Are Vj the only critical contributors? Exact structure and charge states are
essential. TiO, is relatively well-studied, but other MO, (M = Ni, Nb, Ta, Cu, etc...)* systems
are poorly understood.

» Reliable Interatomic Potential: Potentials must be developed capable of capturing essential
defect dynamics. TiO, potentials are inadequate,” while published force fields do not exist* for
other systems like Ta,Os.

» Material System: TiO, has best knowledgebase, but phase diagram is complex. There are
various polymorphs (rutile, anatase) plus thermodynamically-stable reduced Magnéli phases
(Ti O,..4).5 Ta-O phase diagram is simple; however, crystal structure is under debate, which will
inhibit defect investigation.”* Amorphous and nanocrystalline phases are likely relevant.

» Computational Feasibility: Large system size (>10° atoms) and timescales (~10ns) will be
essential to capture switching dynamics.
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i-...# Memristor Modeling: Strategy

» Determine/confirm structure and preferred oxidation state of dominant intrinsic defects in
relevant phases with density-functional theory (DFT)

» Assess phase transition simulation feasibility in MO, systems (TiO, ,TaO,, etc...)

» Develop & evaluate fidelity of potentials against DF T/experimental results. Interatomic potential
classes include ReaxFF and Gaussian approx. potential (GAP).*

» Characterize defect behavior in LAMMPS under suspected driving conditions: electrical bias,
temperature, and/or pressure/strain

» Atomistic LAMMPS simulation of relevant phase transition(s) (103 to 10* atoms)
» Atomistic LAMMPS simulation of memristor switching mechanism (10° to 106 atoms for ~ 10ns)

10 nm

ABartok, Phys. Rev. Lett. 104, 136403 (2009).
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