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Background and Objectives

• Operating conditions for future H2 pipelines may involve 
more extensive pressure cycling

– Current H2 pipelines operate under static pressure

• Enable pipeline structural integrity management that 
accommodates/mitigates H2-assisted fatigue crack growth

– Optimize fatigue crack growth test methods referenced 
in H2 pipeline design code ASME B31.12

– Identify pipeline steel microstructures most vulnerable 
to H2-assisted fatigue crack growth, e.g., welds

– Explore mechanisms for retarding H2-assisted fatigue 
crack growth, e.g., trace additives to H2 gas



Structural integrity assessment framework in 
ASME B31.12 requires fracture data in H2

•Two fracture properties in H2

needed
– Fatigue crack growth law

– Fracture threshold

•Integrity management 
framework accommodates H2
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Measured fracture properties of technologically 
relevant steel: API 5L X52 (PSL 2)

•X52 steel from ERW linepipe

– 12.75 in OD x 0.5 in WT (324 mm x 12.7 mm)

•Tensile properties

– Yield strength: 62 ksi (428 MPa)

– Ultimate tensile strength: 70 ksi (483 MPa)

•Alloy composition

C Mn P S Si Cu Ni Cr V Nb Al CE

0.06 0.87 0.011 0.006 0.12 0.03 0.02 0.03 0.002 0.03 0.034 0.11



X52 base metal has ferrite/pearlite microstructure

ERW seam

Compact tension 
specimens extracted from 
7 to 9 o’clock locations



Fatigue crack growth relationships (da/dN vs. K) 
measured in high-pressure H2

• Instrumentation
– Internal load cell in feedback loop

– Crack-opening displacement measured 
internally using LVDT

– Crack length calculated from compliance

• Mechanical loading
– Triangular load-cycle waveform

– Constant load amplitude (increasing K)

• Environment
– Primary supply gas: 99.9999% H2

– Other supply gases: H2 with 10-1000 ppm O2

– Pressure = 3,000 psi (21 MPa)

– Room temperature
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Fatigue crack growth relationships for pipeline 
steels in H2 expected to be complex

• KT
max < KTH

• Fatigue crack growth relationships must be 
measured over wide range of K

Suresh and Ritchie, Metal Science, 1982
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Measured baseline fatigue crack growth relationships 
for X52 base metal in 21 MPa H2

• Results reveal transitions in da/dN vs K trend 
that must be captured for measurements in H2
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Measurement of fatigue crack growth relationships 
must consider effects of frequency

•Tests at low frequency are conservative, but capturing 
all transitions is time consuming

•Measuring relationship only at high da/dN may lead to 
overly conservative extrapolation at low K

•Correcting da/dN relationship with constant-K points 
may balance test efficiency and data reliability
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Fatigue crack growth data for X52 in H2 compare 
favorably with results from literature

• Elevated da/dN for X42 steel may be due to 
severely banded ferrite/pearlite microstructure
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Fatigue crack growth relationships measured 
for ERW at bond line 

ERW seam

1 mm

4.5 mm

base metal



H2-assisted fatigue crack growth rates 
similar in ERW and base metal

• Notable variability in data from replicate tests for 
both ERW and base metal in H2
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Trace O2 additions to H2 gas affect onset of 
hydrogen-accelerated fatigue crack growth

• Onset of accelerated fatigue crack growth 
affected by load-cycle frequency
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Hydrogen-assisted fracture mode evolves 
as a function of K

• Hydrogen-assisted fatigue crack growth transitions 
from intergranular to transgranular mode
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ERW exhibits differences in fracture characteristics 
compared to base metal

• Mixed intergranular/transgranular fracture 
for ERW in H2 at low K

• ERW in air (R=0.5) exhibits unstable fracture 
at Kmax~40 MPa m1/2 → cleavage
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Summary

• Fatigue crack growth relationships (da/dN vs. K) for X52 
steel exhibit transition points in H2

– Need efficient test method that captures transitions 
without compromising data reliability

• Fatigue crack growth relationships for X52 base metal and 
ERW are similar in H2

• Trace O2 additions to H2 gas retard hydrogen-accelerated 
fatigue crack growth

• Results enable accommodation/mitigation of H2-assisted 
fatigue crack growth in hydrogen pipelines


