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Background and Objectives

« Operating conditions for future H, pipelines may involve
more extensive pressure cycling

- Current H, pipelines operate under static pressure

e Enable pipeline structural integrity management that
accommodates/mitigates H,-assisted fatigue crack growth

- Optimize fatigue crack growth test methods referenced
in H, pipeline design code ASME B31.12

- ldentify pipeline steel microstructures most vulnerable
to H,-assisted fatigue crack growth, e.g., welds

- Explore mechanisms for retarding H,-assisted fatigue
crack growth, e.g., trace additives to H, gas
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Structural integrity assessment framework in
ASME B31.12 requires fracture data in H,
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« Two fracture properties in H,
needed

- Fatigue crack growth law
- Fracture threshold

e Integrity management
framework accommodates H,
embrittlement



Measured fracture properties of technologically
relevant steel: API 5L X52 (PSL 2)

e X52 steel from ERW linepipe
- 12.75in OD x 0.5 in WT (324 mm x 12.7 mm)

e Tensile properties
- Yield strength: 62 ksi (428 MPa)
- Ultimate tensile strength: 70 ksi (483 MPa)

e Alloy composition
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X52 base metal has ferrite/pearlite microstructure

A,2nd Etch,Big Island Pearlite 1000X

Compact tension
specimens extracted from
7 to 9 o’clock locations
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Fatigue crack growth relationships (da/dN vs. AK)
measured in high-pressure H,

505@ e Instrumentation

L . - Internal load cell in feedback loop

e M F>——— 4 ] ]

a = - Crack-opening displacement measured
? internally using LVDT

- Crack length calculated from compliance

e Mechanical loading
- Triangular load-cycle waveform
- Constant load amplitude (increasing AK)

e Environment
- Primary supply gas: 99.9999% H,
- Other supply gases: H, with 10-1000 ppm O,
- Pressure = 3,000 psi (21 MPa)
- Room temperature
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Fatigue crack growth relationships for pipeline
steels in H, expected to be complex

Suresh and Ritchie, Metal Science, 1982
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» Fatigue crack growth relationships must be
@ Sandia measured over wide range of AK

National _
Laboratories



Measured baseline fatigue crack growth relationships
for X52 base metal in 21 MPa H,
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e Results reveal transitions in da/dN vs AK trend
@ Sandia that must be captured for measurements in H,
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Measurement of fatigue crack growth relationships
must consider effects of frequency
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e Tests at low frequency are conservative, but capturing
all transitions is time consuming

e Measuring relationship only at high da/dN may lead to
overly conservative extrapolation at low AK

e Correcting da/dN relationship with constant-AK points

may balance test efficiency and data reliability




Fatigue crack growth data for X52 in H, compare
favorably with results from literature

X42 data: H.J. Cialone and J.H. Holbrook, Met. Trans. A, 1985
A516 data: H.F. Wachob and H.G. Nelson, Hydrogen Effects in Metals, 1981
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 Elevated da/dN for X42 steel may be due to
@ Mot severely banded ferrite/pearlite microstructure
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Fatigue crack growth relationships measured
for ERW at bond line
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H,-assisted fatigue crack growth rates
similar in ERW and base metal
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e Notable variability in data from replicate tests for
both ERW and base metal in H,
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Trace O, additions to H, gas affect onset of
hydrogen-accelerated fatigue crack growth
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e Onset of accelerated fatigue crack growth
@ Sandia affected by load-cycle frequency
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Hydrogen-assisted fracture mode evolves
as a function of AK
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| » Hydrogen-assisted fatigue crack growth transitions
@ Mot from intergranular to transgranular mode
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ERW exhibits differences in fracture characteristics
compared to base metal
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e Mixed intergranular/transgranular fracture
for ERW in H, at low AK

« ERW in air (R=0.5) exhibits unstable fracture
at K._..~40 MPa m'/2 — cleavage
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Summary

 Fatigue crack growth relationships (da/dN vs. AK) for X52
steel exhibit transition points in H,

- Need efficient test method that captures transitions
without compromising data reliability

« Fatigue crack growth relationships for X52 base metal and
ERW are similar in H,

 Trace O, additions to H, gas retard hydrogen-accelerated
fatigue crack growth

 Results enable accommodation/mitigation of H,-assisted
fatigue crack growth in hydrogen pipelines
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