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Abstract— Tunneling measurements are reported
for superconductor-insulator-superconductor (S1S)
break junctions on underdoped, optimally-doped, and
overdoped single crystals of Bi2Sr2CaCu208+d (Bi-
2212). The junction 1- V characteristics exhibit well-
deflned quasiparticle current jumps at eV = 2A as
well as hysteretic Josephson currents. The quasipar-
ticle branch has been analyzed in the framework of
d=Z_9Z (&wave) superconductivity and indicates that
there is preferential tunneling along the lobe direc-
tions of the d-wave gap. For overdoped Bi-2212 with
TC=62 K, the Josephson current is measured as a func-
tion of junction resistance, &, which varied by two
orders of magnitude (1 kfl to 100 kf2). 1=& product
is proportional to the 0.47 power of I= and displays
a maximum of 7.0 mV. When the hole doping is de-
creased from overdopecl (TC=62 K) to the underdopecl
regime (T. =7o K), the average 1.& product increases
as does the quasiparticle gap. The maximum
z 40% of the A/e at each doping level, with
as high as 25 mV in underdoped Bi-2212.

I. INTRODUCTION

1.% is
a value

The wide energy gap, high critical current density, and
high transition temperature are advantages of high T.
superconductors (HTS) that make them attractive can-
didates for superconducting electronics. [1] In the past
decade, there haa been a world-wide effort toward the
fabrication of Josephson tunnel junctions, based on HTS.
The major difficulty in tunneling junction fabrication is
due to the short coherence lengths and anieotropic nature
of the superconducting gap in HTS. [2] Two HTS com-
pounds, YBaaCu30T_. and BiaSraCaCu208+6 (Bi-2212)
have been extensively studied to produce high-quality
thin film planar junctions. Furthermore intrinsic Joseph-
son tunnel junctions have been fabricated in Bi-2212 and
T12Ba2CaCu20= single crystals. [3] These are considered
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as c-axis tunnel junctions between CU02 planes where
other layers act az insulating or semiconducting spacers.
Additionally, the anisotropic feature of the HTS cuprates
has been used for fabricating grain boundary junctions. [4]
Misorientation angle of grains behaves as a barrier be-
cause of impedance mismatch. However, grain boundary
junctions act se weak links between two superconductors
and their properties can be explained by resistive shunted
junction model. In our caee, superconductor-insulator-
superconductor (S1S) tunnel junctions are formed by
break junction method on Bi-2212, producing tunnel-
ing spectroscopes with clear indication of Josephson and
qussiparticle tunnel currents simultaneously. In this pa-
per, we will present the S1S break junction tunneling re-
sults on overdoped, optimally-doped, and underdoped Bi-
2212 superconductors.

II. EXPERIMENT

Two sets of single crystal Bi-2212 were obtained to per-
form break junction tunneling. The first set of samples
of Bi-2212 were grown in a 20% oxygen atmosphere by a
floating zone technique. [5] The second set were grown by a
self flux technique in a strong thermal gradient to stabilize
the direction of solidification. Both sets of crystals were
well characterized and no significant differences were ob-
tained, in spite of the growth methods that are completely
different. Overdoping of single crystal Bi-2212 haa been
conducted using stainlesa steel cells sealed with samples
immersed in liquid oxygen, as described elsewhere. [6] Un-
derdoped crystals have been obtained by vacuum anneal-
ing. [5], [7] The crystals in which tunneling measurements
were performed have a TC=62 K and 82 K for overdoped,
95 K for optimally-doped, and 70 K for underdoped. Tun-
neling measurements were done with the apparatus de
scribed in [8].

S1S break junctions are obtained in an unconventional
manner. After the sample ia placed in a measurement
system and cooled down to 4.2 K, the contact force be-
tween the gold tip and sample is adjusted using a differ-
ential micrometer. In the ordinary way, a tip pushes onto
the surface of the crystal and a superconductor-insulator-
normal metal (SIN) junction is formed between the tip
and crystal. While the tip is pushed against the crystal,
the 1 – V curve is continuously monitored until an SIN
junction is obtained. Here the insulating barrier ie the
native surface layer of the crystal. Increasing the force
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of the tip punctures the native layer and establishes an
ohmic contact (z 1 ohm) between the tip and crystal. For
Bi-2212, a piece of the crystal dislodges and mechanically
binds to the tip. Relieving pressure separates neighboring
Bi-O planes in Bi-2212, because they are weakly bounded
when compared to CU-O and Sr-O layers. Consequently,
a S1S tunneling break junction can be formed easily with
this HTS cuprate. Furthermore, since this tunnel junc-
tion is formed in-situ at 4.2 K and unexposed to air, the
barrier interface is clean and impurity free.

III. RESULTS AND DISCUSSION

A representative I – V curve of a S1S break junction
between two pieces of overdoped Bi-2212 single crystal
is shown in Fig. 1. The data is taken at 4.2 K and the
junction exhibits sharp current onsets at eV~ &40 meV
which corresponds to *2A aa well as a Josephson current
at zero bias. The inset in the Fig. 1 is an expanded sub
gap region near zero bisa to clearly show the switching
nature of the underdamped Josephson junction. Notice
that the sweep direction is from negative to positive bhs.
The optimally-doped and underdoped single crystals of
Bi-2212 also show same qualitative characteristics. [5], [7]

The tunneling conductance ia proportional to the DOS
of a superconductor and for a S1Sjunction, the tunneling
conductance can be expressed as [9]

dI d

F“cw I
lT12N,(E)N,(E+eV) [F(E) -F(E+eV)]dE

(1)
where F(E) = [1+ ezp(E/kBT)]- 1 is the Fermi function,
IT12is the tunneling matrix element, E is the quasiparticle
energy relative to the Fermi level, N, (E) is the DOS of the
superconductor, and c is a proportionality constant. ]Tlz
is taken as a constant to simplify the calculation which is
acceptable near the Fermi level. In this work, the DOS of
the superconductor is expressed ss

“(E)=~d4f(’)m{/‘-’r } ‘2)(E - d7)2 - A(q$)2

Here the addition of smearing parameter I’ accounts for
lifetime effects. This phenomenological model takea into
account two factors. Firat, results from recent tunnel-
ing[lO], angle resolved photoemiaaion (ARPES)[ll], and
tricrystal ring[12] experiments on HTS cuprates suggest a
strong case for d=a_y. (d-wave) pairing symmetry. In our
simple model, this ia included by using an angular depen-
dent gap function given by A(+)= AOcos(2#)[13] where 4
is the polar angle in k-space measured with respect to the
(T,O) direction. The resulting D(X shows cusplike feature
in the subgap region. However, several tunneling experi-
ments have shown a slight rounding of the subgap region.
ARPES results have also suggested that certain particular
regions of momentum space are more heavily weighted[l 1]
than others in the contribution to the tunneling current
due directly to the band structure. In addition, there
may be a certain degree of selectivity in tunneling mea-
surements coming from the tunneling matrix element.[14]
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Fig. 1. Current-Voltage characteristic of an overdoped B1-2212
(T.=62 K) S1S breakjunction at 4.2 K. The inset shows the Joseph-
son current in a more sensitive scale.

For these reasons we have included the second factor in
our model which is a weighting function ~(~) to the DOS
model, as is in [10]. Here ~(~) = 1 + acos(4#) where a is
a directionalityy strength. Although (2) is a phenomen~
logical expression, it will be shown that this weighting
function will qualitatively reproduce some of the conduc-
tance features observed in the experiment, especially in
some SIN junctions. This weighting would also explain
the large peak height to background (PHB) ratios ob-
served in S1S junctions aa presented in [10].

Fig. 2 shows four representative normalized S1S tunnel-
ing conductance for four different doping levels of Bi-2212
(solid lin~). Here the Josephson currents have been re
moved for clarity. The data have been normalized with a
third order polynomial. In the figure the dashed lines cor-
respond to numerical fits using our DOS model for N, (E)
in (1). There is a good agreement with the experimental
data in the subgap region. This means that the experi-
mental results are consistent with the d-wave pairing DOS
and the suggestion that there is a preferential tunneling
along the lobe directions of Bi-2212. It is also observed
that the size of the superconducting gap decreases with
increasing oxygen doping. However, above the gap region
(eV > 2A) there are significant deviations from experi-
mental results. There are dip and hump featurea outside
the gap region that are also observed in SIN tunneling con-
ductance. These featurea, which have been suggested to
be due to strong coupling effects, [5] cannot be reproduced
by our simple model. Fig. 2 also shows that quaaiparti-
cle PHB ratio increases with increasing oxygen doping. It
has been suggested by Halbritter[15] that this maybe due
to the creation of localized states in the barrier region.
However, the presence of localized statea should mani-
fest itself as additional peaks in the gap region. SIN and
S1S tunneling data on overdoped, optimally-doped, and
underdoped Bi-2212 do not show these additional peaks.
Furthermore, the gap structure disappears at Tc pointing
to its superconducting origin. This observation seems to
rule out resonant tunneling as the source of the change in
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Fig. 2. Norma&ed conductance of B1-2212 S1S break junctions for
various doping levels. Daahed lines correspond to S1S conductance
obtained using the DOS model of (2) with correapondlng param-
eters. For clarity, the data of overdoped (TC=62 K), overdoped
(T.=82 K) and optimally-doped (TC=95 K) have been shifted by
7.5, 5, 2.5 units respectively.
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Fig. 3. I.Rn versus1. for overdoped B1-2212 with TC=62 K. The
solid line corresponds to a power fit.

TABLE I
DOPING DEPENDENCEOF I.R. AND ENeRciY GAP

average Zcl&(mV) Max. I.R. A(meV)
(#of June.) (mV)

overdoped 2.4 (10) 7.0 15-20
(TC=62 K)
optimally-doped 2.9 (14) 7.8 30-40
(Tc=92-95 K)
underdoped - (3) 25 4445
(Tc=83 K)
underdoped - (3) 9.1 53-56
(Tc=74 K)
underdoped - (6) 14.0 55-60
(TC=70 K)

PHB ratio with increasing doping. In addition, as clearly
seen in Fig. 2, all S1S tunneling conductance show low
subgap conductance as well as sharp quasiparticle peaks.
These results suggest that Bi-2212 could be one of the
appealing candidates for superconducting devices e.g, S1S
mixer.[16]

Most of our S1S junctions exhibited a Josephson cur-
rent. The Ambegaokar-Baratoff (A-B) theory[17] for BCS
superconductor predicts the relation

(3)

where Ic is the Josephson current, ~ ia the resistance of
the junction, and A(O) is the energy gap at O K. Table I
shows that as A(0) increases in the underdoped phase, the
maximum 1=Z& increases also. This links the quasiparti-
cle gap to a superconducting energy scale. Furthermore,
for overdoped Bi-2212[18] with TC=62 K, our data show
an additional relationship between the Josephson current
I= and the junction rmistance &, where & rangea from
1 k$l to 100 kfl. There is a scaling behavior that JC&
is proportional to (IC)P where p=O.47 as shown in Fig. 3.
This scaling behavior (p N 0.5) has also been observed in
tunneling in the a – b plane for planar, ramp-edge, bicrys-
tal grain boundary (GB), blepitaxial GB, and stepedge

GB junctions. [4] The universality of l=& vs. 1=allows us
to estimate tunnel junction area in our break junctions,
because the areas in grain boundary junctions are known.
When we compare Fig. 3 with Fig. 1 of Ref.[4], the results
lead to a junction area z500 A on edge.

There is an ongoing debate about the origin of the gap
in tunneling measurements of HTS. Are the energy gaps
seen in the tunneling data of Fig. 2 superconducting gapa,
or are they of other origin? Markiewicz et al. [19] have
proposed the idea that the gapa seen in tunneling mea-
surement are charge density wave (CDW) gapa, or a mixed
state of superconducting-CDW gap. To address this issue,
we note that the Josephson current is observed simultan-
oualy with the gap in the S1S conductance data. As shown
in Table I, the average lc& and the maximum Ic& W&
ues increase with increasing gap size. The maximum I=.&
value is .-J40% of A/e at each doping level, with a value se
high sa 25 mV in underdoped case. The table shows only
junctions with smaller than 30 k~ junction resistances.
The fact that the I.& valuea increaaea with increasing
A(0) presents a strong case that the gapa observed in our
tunneling data are superconducting energy gaps.

In summary, we investigated break junction tunneling
measurements on Bi-2212 with various doping levels. Si-
multaneous quasiparticle and Josephson tunneling current



were observed, with I=& valuea as high aa 25 mV in one of
the underdoped samples. It is observed that as the doping
level decreasea from overdoped to underdoped, the size of
the superconducting energy gap increases. Moreover, as
the size of the superconducting gap increase, the value of
I.& also increases.
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