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Solution deposition of PZT films

• Solution 
deposition is cheap, 
simple, and 
versatile (deposit 
on foil, platinized 
Si, etc.) 

• PZT films are 
commonly 
deposited on 
platinized silicon 
substrates

Solution Preparation

Spin Coating

Pyrolysis (300 °C-400 °C)

Crystallization (~700 °C)
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Phase evolution during processing

2K. Nittala et al, Journal of Materials Science 2011.

• Ensure complete 
conversion of 
fluorite type 
phase to 
perovskite phase

• Avoid formation 
of Pb deficient 
fluorite type 
phase

• Minimize reaction 
between film and 
the electrode

Phase evolution during 
crystallization2

aPbTiO3, 500°C = 3.96 A

aPt, 500°C = 3.94 A

G. L. Brennecka et al. J. Am. Ceram. Soc. 93 (2010) 3935.
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Phase evolution: influence on texture

• Heating rate: (111) texture 
is caused due to 
nucleation of perovskite 
on PtxPb.3

• Fluorite crystallinity: 
degree of crystallinity
controls the final film 
texture.4

• Pt3Ti 6 and TiO2 
7 seeds at 

the film-Pt interface.

3S. Y. Chen and I. W. Chen, J. Am. Ceram. Soc. 81 (1998) 97.
4G. J. Norga et al, J. Mater. Res. 18 (2003) 1232.
5 Z. Huang et al, J. Appl. Phys. 85 (1999) 7355.

PtxPb phase forms at the interface of 
the Pt electrode and the thin film.5

Pyrolysis: 350°C, 10s
(111) texture4

Pyrolysis: 450°C, 2 min
(100) texture

6 T. Tani, PhD Thesis (UIUC, Urbana - Champaign, 1993).
7 P. Muralt, J. Appl. Phys. 100 (2006) 051605.
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Isothermal heating

Quenching

XRD 
characterization
Rapid heating

Repeated until the thin film 
completely crystallizes

Typical experimental 
methodologies

Actual processing
conditions

Typical approaches for characterization
of texture and phase
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Objective of present investigation

• in situ characterization of 
phase and texture evolution 
during crystallization to 
understand the factors 
affecting final film texture in 
PZT thin films

• Two different types of in situ 
experiments were 
performed:

– Laboratory X-ray (UF)

– Synchrotron X-ray (APS)

Actual processing
conditions
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Solution preparation and Film deposition

G. L. Brennecka et al. J. Am. Ceram. Soc. 93 (2010) 3935.

R. A. Assink and R. W. Schwartz, Chem. Mater. 5 (1993) 511.

• Inverted Mixing Order (IMO) 
process was used for preparation 
of solutions

• Films deposited on platinized
silicon substrates (Pt/Ti/SiO2/Si 
170 nm/40nm/300nm/Si)

• Films were spin coated for 30s  
at 3000 rpm

• Films were pyrolyzed at 300 °C 
after each deposition step 
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Laboratory XRD 

• Inel diffractometer with 
furnace attachment at UF

• 1-D detector allows for rapid 
acquisition of diffraction data

Nittala et al., Journal of Materials Science 2011, 46, 2148-2154.

• Diffraction data measured is 
represented as a contour plot

• Plot shows the evolution of 
phases during crystallization



11

Effect of Nb content

• PZT is routinely doped 
with Nb and La

• Effect of dopants on 
phase evolution in 
solution deposited films 
is not well understood

• Films were heated       
5 °C/min while 
continuous diffraction 
patterns were taken
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Nb doping: influence on phase evolution

• Temperature at which the PtxPb
peaks is observed is increased

• Fluorite phase forms (Tstart, F) at 
higher temperature in Nb-doped 
PNZT compared to undoped
PZT thin films

• PNZT: Perovskite formation is 
complete at 624 °C

Tstart,PtxPb Tmax,PtxPb Tend,PtxPb Tstart, F Tmax,F Tend,F Tstart,P Tmax,P

PNZT 4/52/48 350.8 446.5 474.7 446.3 481.3 596.2 539.5 624.0

PZT 52/48 339.4 442.0 475.1 433.5 472.1 585.5 543.3 590.4

Difference 11 4.5 ~0 13 9 11 -4 34
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Summary: Nb doping

• Nb doping observed to effect stability of 
the PtxPb metastable phase 

• Effect on Fluorite and perovskite formation 
is consistent with report by Klissurska et 
al.

R. D. Klissurska,et al., J. Am. Ceram. Soc. 78 (1995) 1513.
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Effect of Pb content on phase evolution
• Pb content was observed 

to influence phase 
evolution for solution 
derived powders

• Presence of substrate 
introduces additional 
factors of influence

• Phase evolution of PLZT 
(6/52/48) 20% Pb films 
was investigated

c

Experimental conditions
Heating rate: 5 C/min
Acquisition time: 60 s

A. D. Polli, F. F. Lange, C. G. Levi, Journal of the American Ceramic Society 2000, 83, 873.
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Phase evolution: Pb excess

• PtxPb is the first phase 
to form
• Fluorite phase (F) is 
observed as PtxPb starts 
to disappear

• Fluorite finally disappears and 
Perovskite (P) appears
• Result agrees with previous 
studies
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Phase evolution: Pb deficient

•Fluorite(F) and 
Perovskite(P1) phase 
observed to form 
together at 515°C
• A secondary perovskite 
phase(P2) is observed to 
form on holding at 600°C

Pt(111)

P1(112)

Pt(002)

F(111)

P1(110)

P2(110)

P1(111)
P2(111)

P2(112)

F: Flourite
P1: Perovskite 1
P2: Perovskite 2Composition Lattice parameter (Å)

Pb-excess;
Perovksite

4.08

Perovskite 1 4.08
Perovskite 2 4.02
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Formation of secondary perovskite phase

• Secondary Perovskite could possibly form from Fluorite 
phase

200 nm

GIXRD of Pb-deficient film
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Summary: Effect of Pb content

• No PtxPb was observed in Pb-deficient 
thin films

• Reaction between the thin film and 
electrode is reduced

• Temperatures of formation of the fluorite 
phase is increased for Pb-deficient films

• Perovskite formation is observed at the 
same temperature for both Pb-excess and 
Pb-deficient films



20

Outline

1. Introduction

– Motivation

– Methodology

2. Phase evolution (UF)

– Effect of Nb doping

– Pb content in solution

3. Phase and Texture evolution (APS)

– Effect of heating rate

– Cation segregation in thin film

4. Ongoing and Future work

5. Conclusions



21

Setup at APS

• Synchrotron X-ray source (APS)
• Heating rates: ~100 °C/s to 1°C/s
• 2-D detector captures texture and 

phase information
• 1s acquisition time, continuous 

acquisition

2D - detector

Sample
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Diffraction angles



22

■ ■ ■ ■ ■
●

PtxPb

▼ ~1°C/s

▼ Pt ■ Perovskite ● Fluorite

■ ■ ■

● ● ● ●

▼

PtxPb

~5°C/s

■ ■ ■ ■ ■ ■

● ● ● ●

PtxPb

▼
~100°C/s

Heating rate influences phase evolution

■ ■ ■ ■ ■ ■
● ● ● ●

▼
~0.5°C/s

•Sequence of phase 
evolution: (1)PtxPb, 
(2)Fluorite, 
(3)Perovskite

•No overlap in PtxPb 
and perovskite 
phases

•Amount of PtxPb 
formed decreases 
with decreasing 
heating rate

•Crystallinity of 
fluorite phase 
changes with 
heating rate
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Variation of texture with heating rate

��ℎ����=
��ℎ����

��100 + ��111 + ��������������

*S. Y. Chen and I. W. Chen, J. Am. Ceram. Soc. 81 (1998) 97.

• (100) texture decreases with increasing heating 
rate

• In fast heating rates, homogenous nucleation 
may dominate over heterogeneous nucleation

(100) Pole intensity
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PtxPb might not seed (111) texture

• Maximum intensity of PtxPb increases 
with heating rate

• Observed stability of PtxPb is consistent 
with ex situ observations*

• No overlap is observed between the PtxPb 
and perovskite

• Weak (111) or random texture obtained for 
samples with intense PtxPb formation

*S. Y. Chen and I. W. Chen, J. Am. Ceram. Soc. 77 (1994) 2332.

Phase 
evolution 
for 
100°C/s
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Fluorite: evolution and texture

100 °C/s

• During crystallization, the fluorite 
phase is observed to always 
precede the perovskite phase

• The broad peak characteristic of 
the amorphous phase 
continuously transforms into the 
(111) - fluorite peak

Fluorite

Amorphous

Perovskite

• Trend is observed to be 
consistent for all the heating 
rates investigated

• No preferred orientation was 
observed in the fluorite phase • Fluorite phase may not seed the 

(111) orientation in these films
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Summary: Phase and texture evolution

• The observed phase evolution sequence 
is: 1. PtxPb, 2. fluorite, and 3. perovskite

• No evidence for seeding of texture by 
PtxPb or fluorite phase is observed
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Microstructural characterization

• Rosette type grain 
structure in 100 °C/s  

• Film crystallized in 
two layers

• Porosity observed in 
the middle

• Homogenous 
nucleation

• Columnar type grains 
observed for 5 °C/s, 
1°C/s and 0.5 °C/s 

• Nucleation at the film 
– electrode interface

• Grain size observed 
to increase with 
decreasing heating 
rate

~100°C/s ~100°C/s

~0.5°C/s ~0.5°C/s
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Chemical mapping along thickness

~100°C/s

~1°C/s ~0.5°C/s

~5°C/s

Pt 
electrode air

Pt 
electrode air

Ti cation 
maps

• Preferential Ti 
segregation near 
interface

• Zr/Ti segregation 
through thickness

• No preferential Ti 
near interface

• Some Zr/Ti 
segregation 
through 
thickness, but 
less than faster 
ramp rates.
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PZT

Pt
Ti

SiO2

Si

O2

Ti

Ti segregation at interface: influence of kinetics

Toshi Tani PhD thesis, UIUC 1992

100°C/s

1°C/s

• Pt allows for diffusion of both Oxygen and Titanium

• Diffusion of Titanium species decreases with oxidation

• Considerable Oxygen deficiency in the film allows for 
diffusion of Titanium to the top of the Platinum electrode 
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Zr/Ti variation across thickness of film

• Calame and Muralt reported 
Zr/Ti segregation across the 
thickness of the film due to 
preferential nucleation of Ti-
rich composition

• Zr/Ti segregation similar to 
that observed for in this study

• Intense Ti segregation 
observed in this study is not 
reported

• Could be limited by resolution 
of the probing technique

~5°C/s

F. Calame and P. Muralt, Applied Physics Letters 90 (2007).
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Conclusions: Cation segregation 

• Intense Ti segregation is observed at the 
thin film – electrode interface for fast 
heating rates

• Zr/Ti segregation is observed to decrease 
with decrease in heating rate

• Ti segregation could be due to preferential 
nucleation of Ti-rich composition or 
diffusion of Ti from the adhesion layer
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Ongoing and Future work

The effect of the following factors on phase 
and texture evolution is being investigated

• Adhesion layer

• Solution chemistry (IMO vs Sol-gel)

• Aging in the gel state

• Heating geometry
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Aging of pre-crystallized thin films 
Surface -OHDay 0

Day 30, 98% RH

Degradation of electrical properties is observed for films 
aged in high RH conditions
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Conclusions

• Nb doping influences the stability of PtxPb, 
fluorite and perovskite phases

• Pb deficiency in the starting solution leads to 
decreased reaction between film and electrode

• No evidence for seeding of orientation of the 
PZT phase by the intermediate phases was 
observed

• Ti segregation was observed to be more intense 
for faster heating rates
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