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Thermal Contact Resistance
 For interfaces in contact, the real area of contact is typically 2 

to 6 orders of magnitude less than the apparent area of 
contact

 In vacuum, thermal contact resistance (TCR) of a Gaussian 
surface is given by

 For systems with multiple interfaces, TCR can consume a 
significant part of the thermal budget
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Thermal Interface Materials

 Thermal interface materials (TIMs) provide a means of 
decreasing TCR by filling the gaps between asperity contacts
 Thermal greases

 Metallic foils

 Carbon nanotube (CNT) materials

 Elastomeric materials
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TIMs in Satellite Systems

 Special considerations are 
required for TIMs used in 
satellites
 Vacuum compatible

 Electrically insulating

 Space systems are exposed 
to a wide array of radiation 
sources
 UV

 X-ray

 Charged particles

 γ-ray
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 Common TIMs
 Thermal greases

 Metallic foils

 CNT materials

 Elastomeric 
materials

Absorbed and reflected by outer materials

Vacuum compatible

Electrically insulating

Vacuum compatible

Experience little attenuation
Easily reach and pass through all components
Doses as high as 10 Mrad /yr [1]
Interactions with TIMs are important

[1] R. Akau et al., 2012, Nexus Test Report for Thermal and Mechanical Study of Silver-Teflon Tape for Space Applications, SNL, Albuquerque.



TIMS used in this Study
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Two different materials were 
investigated

 Cho-Therm 1671
 Silicone elastomer filled with boron 

nitride particles

 Reinforced with a fiberglass cloth

 ThermaCool R10404
 Closed cell silicone sponge rubber

Property Cho-Therm ThermaCool

Color White Light green

Thickness (mm) 0.4 3.2

Thermal conductivity (W/mK) 2.6 0.36-0.86*

Thermal resistance (mm
2
K/W) 150 3400-8600*

Hardness (Shore 'A') 90 13

Density (kg/m
3
) 1550 1105

*Highly sensitive to compression of the TIM
Image from ThermaCool R10404 Data Sheet, 
Saint-Gobain Performance Plastics

Image http://products.robertmckeown.com

Cho-Therm

ThermaCool



Filter Wheel Controller (FWC) Board
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2 in

Power converters 
4 W dissipated

TIMs



Fiber Interface Board (FIB)
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5 W dissipated

TIMs



1-D Steady State Experimental System
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 Minimum chamber pressure: 2 x 10-6 torr
 Can also look at N2, Ar, He, air and other gas environments up to 630 torr

 Maximum interface pressure: 10,000 psi

 Temperature range: 0 to 80 °

 12 thermocouples (6 per bar)
Contact interface

C



Metallic Samples

 Common metals used in satellite systems were chosen
 Aluminum

 Alodined aluminum

 Titanium

 Anodized titanium
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Sample Material

Surface 

treatment

Surface 

finish

Sample 

name Ra (nm) Rq (nm) Rt (μm) Rsk Rku

1 Aluminum none N7 Al_N7_N 119 162 2.5 -1.5 7.9

2 Aluminum alodine N7 Al_N7_T 271 440 3.9 19.0 -3.0

3 Titanium none N7 Ti_N7_N 168 219 1.1 4.6 -1.0

4 Titanium anodize N7 Ti_N7_T 582 750 3.8 3.7 -0.6

5 Titanium anodize N6 Ti_N6_T 643 822 2.5 3.9 -0.3

6 Titanium anodize N4 Ti_N4_T 540 692 2.5 3.7 -0.7
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Al N7

Alodyned Al N7

Ti N7

Ti anodized N7

Ti anodized N6

Ti anodized N4

Run # Metal pillar a b

1 Al_N7_N 2.11E+04 -1.02

2 Al_N7_T 1.30E+05 -1.14

3 Ti_N7_N 2.12E+05 -0.86

4 Ti_N7_T 3.50E+04 -0.43

5 Ti_N6_T 1.41E+06 -1.22

6 Ti_N4_T 1.76E+05 -0.77

All Ti samples 8.14E+04 -0.64

baPR 



Total Thermal Interface Resistance 

 The total thermal resistance at the interface when a TIM is 
used is the sum of contact resistance between the TIM and 
each metallic pillar and the bulk resistance of the TIM
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Thermal Contact Resistance: TIMS

 TCR increased when TIM 
was inserted between Al 
contacts

 Al has a low TCR due to 
high k and low H values

 TCR decreased when TIM 
was inserted between Ti 
contacts

 Ti has a high TCR due to 
low k and high H values

 Cho-Therm out performs 
ThermaCool due to its much 
small thickness

 TIMs minimize the effect 
that pressure has on TCR
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Radiation Aging: Cho-Therm

 Radiation aging increases the TCR

 Little difference between the 50 Mrad and 100 Mrad samples
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Radiation Aging: ThermaCool
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 Radiation aging increases the TCR

 Little difference between the 50 Mrad and 100 Mrad samples

 Much larger increase in TCR for the ThermaCool samples

 γ-ray radiation makes the sample much stiffer, thus increasing the bulk 
resistance

 Radiation aged samples are pressure independent under 170 psi



ThermaCool Compression
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Recommended TCR Values

 Values were found from a least squares fit to experimental 
data

 Typical pressure range is 200 to 300 psi.
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baPR 

a b P  (psi) a b P  (psi)

Bare interface 0 1.61E+04 -0.98 80-990 1.34E+05 -0.78 90-340

0 4.13E+02 -0.18 90-1000 1.21E+04 -0.68 100-990

50 7.97E+03 -0.59 130-960 1.28E+05 -1.05 130-1000

100 3.54E+03 -0.49 90-960 2.46E+05 -1.11 190-930

0 1.08E+04 -0.37 70-970 4.71E+03 -0.38 70-1000

7.23E+03 0.00 70-170 2.65E+03 0.00 70-170

1.73E+05 -0.70 170-1000 4.74E+04 -0.63 170-880

8.23E+03 0.00 100-170 3.02E+03 0.00 70-170

2.01E+05 -0.67 170-880 6.94E+04 -0.65 170-900

Aluminum Titanium

Cho-Therm

ThermaCool
50

100

TIM

Dose 

(Mrad) 



Conclusions
 A capability for testing TCR satellite materials before and after γ radiation has been 

developed

 TCR of two commonly used electrically insulating thermal interface materials was 
investigated

 The effectiveness of the TIM depends on the contacting materials between which it is placed

 TCR increased when placed between Al

 TCR decreased when placed between Ti

 A significant increase in TCR was observed when the samples were γ radiation aged

 TIM effectiveness decreases over the mission life

 Sample brittleness increased with radiation aging

 Could potentially lead to system contamination through flaking or cracking of the TIM
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Next Steps
 Investigate materials that are radiation-aged under compression

 Look into the effects of γ radiation on electrically conductive TIMs with superior thermal 
performance (CNTs and foils)



Acknowledgments

 Sandia National Laboratories is a multi-program laboratory 
managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the 
U.S. Department of Energy’s National Nuclear Security 
Administration under contract DE-AC04-94AL85000.

 For technical review of this work:
 Dan Guildenbecher(Sandia National Laboratories)

 Travis Fisher (Sandia National Laboratories)

7/28/2013 172012 ASME IMECE


