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MOTIVATION

Problem: Molecular dynamics gives an explicit representation of defects and phonon

modes but is missing physics associated with electrons and electron-mediated transport

thermal conductivity heat capacity Debye T e-p coupling

Material [W/K-m] [J/K-kg] [K] [W/K-m3]

Cu 401 11.2 244 385 394 10.8 345 2.6 × 1017

Si 148 120 0.02 705 888 0.0002 645 1.0 × 1011

Approach: use Boltzmann transport/hydrodynamic PDE models of electron transport

instead of (coherent) quantuum mechanics for nm-size simulations [IVANOV & ZHIGELI,2004]

Outline:

• Two temperature PDE

• Phenomenology

• Atom-continuum

• Algorithm

• Simulations

• Future work

GaN nanowire [TALIN, SNL]

(inset PL under power)
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TWO TEMPERATURE MODEL

The balance of energy, with no significant deformation,

i.e. “rate of storage = conduction + generation” :

ǫ̇ = −∇ · q+ r

results from the 2nd moment of the Boltzmann transport equation.

Two empirical temperatures and carriers of energy :

ǫ̇ = ceθ̇e + cpθ̇p

q = −ke∇θe − kp∇θp

where θe is the electron temperature and θp is the phonon temperature.

The TTM is two coupled, diffusive systems [KAGANOV,1956] in local form:

ceθ̇e = ∇ · (ke∇θe)− g(θe − θp) + re

cpθ̇p = ∇ · (kp∇θp) + g(θe − θp)

where c: heat capacity (per volume), k: conductivity, each per carrier;

and g: electron-phonon exchange, which are all temperature dependent.

In its simplest form, the TTM is linear.

The external source term (for the electron system) typically comes from a laser pulse or

an electric field (re = −Je ·Ψx ∼ 1
Vol

IV ).
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TIME & LENGTH-SCALES

A uniform exchange solution (no x-dependence) gives a timescale τep =
cecp

g(ce+cp)
:

θe − θp = (θe − θp)t=0 exp
(

−
t

τep

)

ceθe + cpθp = (ceθe + cpθp)t=0

the temperature difference follows a simple exponential decay & the total energy ǫ is

constant.

A static solution (no t-dependence) gives a length-scale ℓep =

√

kekp

g(ke+kp)
:

θe − θp = (θe − θp)x=0 +
(

(θe − θp)x=L − (θe − θp)x=0

)

exp
(L− x

ℓep

) exp
(

2x
ℓep

)

− 1

exp
(

2L
ℓep

)

− 1

keθe + kpθp = (keθe + kpθp)x=0 +
(

(keθe + kpθp)x=L − (keθe + kpθp)x=0

) x

L

the temperature difference is again exponential & the conductivity-weighted

sum keθe + kpθp is linear in space.
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PHENOMENOLOGY

The coupled PDEs have three timescales:

• phonon diffusion

τp =
L2ce

ke

• electron diffusion

τe =
L2cp

kp

• electron-phonon exchange

τep =
cecp

g(ce + cp)

copper
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For L = 10nm:

Material phonon diffusion electron diffusion exchange lengthscale

Cu 31 ps 0.04 ps 0.36 ps 6.41 nm

Si 1.7 ps 0.002 ps 5.8 ps 494 nm
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BOUNDARY LAYERS
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• injection of “hot” electrons simulation:

at all boundaries except the left θe = θp

and on the left a flux qe > 0 is pre-

scribed for the electron temperature.

• the boundary layer scales with
√

1
g

and the coupling coefficient is propor-

tional to the (electron) carrier concentra-

tion ≈ 10−12m3

• boundary layers where electrons are

out-of-equilibrium with the phonons af-

fect device performance and possibly

can be exploited
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MD/FE COUPLING

◦ Operators for coarsening/upscaling of fine-scale model (MD) information, e.g. a

coarse-scale temperature can be defined

TI ≡
∑

I,α

mα

3κB

ÑIα

〈

vα · vα

〉

by averaging atomic velocities to get a corresponding continuum field

◦ Coarse-scale governing equations which are “consistent” surrogates for the

fine-scale model in regions where:

⋄ atomic detail is not needed

(e.g. far away from a lattice

defect)

⋄ information is missing (e.g.

electron transport).

Θ

p

T

e-p

fe-md fe-md

e

Θ

q

qq

 Ω 

 Ω 
md

electron

phonon

◦ Fine-scale control algorithms, e.g. MD thermostats, which enable coarse-scale

information to “condition” the small scale solutions so that they interact/follow the

coarse-scale behavior
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ENERGY BALANCE

For a closed system, the total energy should be conserved:

Ė = 〈Ėmd〉+ Ėfe = 0

where 〈•〉 represents a time average.

The energy of the electron & phonon FE systems changes due to exchange with each

other and with the MD system

Ėfe =

∫

Ω\Ωmd

∇ · qp dV +

∫

Ω
∇ · qe dV +

∫

Ω\Ωmd

g
(

θe − θp) dV −

∫

Ω
g
(

θe − θp) dV

=

∫

∂(Ω\Ωmd)
n · qp dA+

∫

∂Ω
n · qe dA+

∫

Ωmd

g
(

θe − θp) dV

The energy of the MD system only changes due to a thermostat force

Ėmd = K̇ + Φ̇ =
∑

α

(

mαvα · v̇α + ∂xα
Φ · vα

)

=
∑

α

fλα · vα

We postulate a local balance on the FE-scale (for an isolated system):

ĖI =
∑

α

NIα〈f
λ
α · vα〉+

∫

∂(Ω\Ωmd)
NIn · qp dA+

∫

Ωmd

NIg
(

θe − θp) dV = 0

i.e. “thermostat power + FE/MD boundary conduction + exchange to MD = zero”

Here NI is the shape function associated with node I and NIα is the shape function

evaluated at xα. This leads to (a) thermostat & (b) temperature evolution equations
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LOCAL THERMOSTAT

Just like for the Hoover thermostat [EVANS,1983], Gauss’s principle of least constraint can

be used to derive the thermostat

min
v̇α

1

2

∑

α

mα‖v̇α − v̇∗
α‖

2 +
∑

I

λI ĖI

where v̇∗
α = 1

mα

fα are the unconstrained accelerations and λI are Lagrange multipliers.

The Euler-Lagrange equations can be solved for λI

0 = mαv̇α − fα +
∑

I

NIαλImαvα

0 = ĖI

The result is a thermostat velocity-drag force that is interpolated on the FE basis & acts

on vα

fλα = −
1

2

∑

I

NIαλIvα

in effect a coarse-scale force acting on fine-scale kinematics.
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CONCURRENT COUPLING ALGORITHM

FE temperature evolution equations:

∑

∈N

(

∫

Ω
NINJdV

)

θ̇eJ =
∑

J∈N

(

−

∫

Ω

ke

ce
∇NI · ∇NJ dV θeJ −

∫

Ω

g

cp
NINJ dV (θeJ − θ

p
J
)

+

∫

Γq

ke

ce
NIn · ∇NJ dV θeJ

)

∑

∈N

(

∫

Ω
NINJdV

)

θ̇
p
J
=

∑

J∈N

(

−

∫

Ω\Ωmd

kp

cp
∇NI · ∇NJdV θ

p
J
+

∫

Ω\Ωmd

g

cp
NINJ dA (θeJ − θ

p
J
)

+

∫

Γq∪∂Ωmd

kp

cp
NIn · ∇NJ dV θ

p
J

)

+
2

3κB

∑

α∈A

NIα∆Vα

〈

vα ·
(

fλα − ∂xα
Φ
)〉

MD thermostat:

v̇α = −
1

mα

∂xα
Φ−

1

2

∑

I

NIαλIvα

∑

α,J

NIα(mαvα · vα)NJα λJ = −

∫

Ωmd

NIg(θ
e − θp + τ(θ̇e − θ̇p)) dV −

∫

∂Ωmd

NIn · kp∇(θp + τ θ̇p) dA
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TIME INTEGRATION

• FE temperature evolution equations:

θ̇eJ =F e
J (θ

e
J , θ

p
J
)

θ̇
p
J
=F

p
J
(θp

J
, θeJ ) +MJ (xα,vα, λα)

• MD thermostat:

v̇α = fα(xα) + fλα (vα, λα)

To accommodate fast timescales, & the structure of an MD code (LAMMPS) we use a

mixture of integration schemes. For one time step:

1. Apply the thermostat by solving for λ and integrating v̇ = fλ with Verlet

2. Phonon: Gear predictor for θp = θp(θ̇p, θ̈p) and Verlet for θ̇p = M

3. Electron: either implicit backwards Euler or subcycled forward Euler for θ̇e = F e

4. First Verlet half step for v̇ = f and update x and f

5. Second Verlet half step for v̇ = f

6. Apply the thermostat by solving for λ and integrating v̇ = fλ with Verlet

7. Phonon: Gear corrector for θ̇p = F p and Verlet for θ̇p = M
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JOULE HEATING

Nanowires 20 cells long, electron system heated with a uniform source

Copper
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JOULE HEATING
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JOULE HEATING
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CARBON NANOTUBE

TU-Delft

• CNT heated with a localized source but the

electron conductivity sufficiently high to flat-

ten temperature profile

• fast rise in electron temperature, followed

by slower (linear) rise that matches the

phonon temperature rise

• phonon temperature “noisy” due to small

number of atoms under each node’s support

conductivity capacity e-p coupling

[W/K-m] [J/K-kg] [W/K-m3]

100 24.4 415 0.46 0.9 × 1014
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CURRENT WORK

Work-to-date shows the utility of the method in enhancing nonequilibrium MD, but there

are many remaining issues to consider, including:

◦ Boundary conditions for the two

temperatures

◦ Non-linear temperature effects:

ce(θe) & g(θe − θp)

◦ Defects : effects on electrons,

phonons and exchange

◦ Electron conservation & momen-

tum equations

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

-60 -40 -20  0  20  40  60

D
E

N
S

IT
Y

X-COORDINATE

Haynes-Shockley experiment showing

drift & diffusion

contact : rjones@sandia.gov

rjones@sandia.gov – p. 14/21



ADDITIONAL SLIDES
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TIME DEPENDENT DENSITY FUNCTIONAL ESTIMATION

kinetic energy of nuclei

TDDFT calculates the transients in the elec-

tron density and atomic motion, thus directly

simulating the exchange of energy

kinetic energy of electrons
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EXAMPLE: UNIFORM EXCHANGE

A simple simulation to test consistency with the two temperature model, Ω = Ωmd:

• code : LAMMPS [PLIMPTON]

• material : 3D (solid) Argon,

Lennard-Jones pair potential

lattice size ℓ = 5.405 Å at 30K

• system size (24× 6× 6)ℓ

with periodic boundary conditions

• MD thermalization for 10.000 ps

• exchange timescale τe-p = 3.2ps

• same heat capacity & conductivity

for electron system as the phonon

system (temperature independent)
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sen continuum heat transfer model
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EXAMPLE: “NANOWIRE”

ghosts ghosts

• Lennard-Jones Argon (32×8×8)ℓ

• Internal FE/MD boundaries

padded with zero displacement,

zero temperature ghost atoms

• Gaussian initial electron tempera-

ture to emulate laser heating

• Heat capacity ce = 1
10

cp

• Adiabatic FE boundary conditions

• Weak FE-scale energy conserva-

tion (but exact total energy conser-

vation) since θp is tied to kinetic

energy in Ωmd and total energy in

Ω \ Ωmd
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vation) since θp is tied to kinetic

energy in Ωmd and total energy in

Ω \ Ωmd
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EXAMPLE: “GRAIN BOUNDARY”

ghosts ghostsHEAVY
ATOMS

• L-J Argon (40× 10× 10)ℓ

• Acoustic mismatch created with

atomic masses equal to 10mα in a

2ℓ wide region in the center

• MD thermalized to 30K and at

t = 0 FE temperature boundary

condition prescribed 50K on the left

and 10K on the right

• Coupled system, assuming defect

is transparent to the electron sys-

tem, has similar transient behavior

to phonon-only system but electron-

phonon exchange minimizes the

Kapitza resistance at steady state
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EXAMPLE: “JOULE HEATING”

ghosts ghosts

• L-J Argon (40× 10× 10)ℓ

• MD thermalized to 20K and at

t = 0 FE temperature boundary

condition prescribed 40K on the left

and 20K on the right to simulate

“hot” electrons coming in from the

left

• the electrons are given a source

of heat that represents the effects

of an external electric field
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MOTIVATION

Models of electron-mediated energy transport:

◦ coherent transport where wave-like nature and phase electrons is important :

ab initio quantum mechanical simulation is needed at small scales (also limited to

small systems).

◦ incoherent transport where electrons can be treated a particles :

Boltzmann equation

f,t +∇xf · v +
1

m
∇vf · F = s

where the distribution f depends on an enormous number of variables {xi,vi}.

Also the scattering/source term s is very hard to prescribe.

A number of reductions exist:

⋄ Two temperature model (TTM) which comes from the 2nd moment : energy

⋄ Hydrodynamic model HDM (first 3 moments : density, momentum & energy)

⋄ Drift-Diffusion model (DDM) which is a simplification of HDM commonly used

in device simulation
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