SimUIations Of TribOIOQy in SAND2011- 6388C
Nanocrystalline Metallic Films
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Introduction: Gold

Gold has desirable properties
High conductivity 4.52 x 107 S/m

Doesn’t corrode/oxidize

Can be made very thin
Not everything is shiny..
- High adhesion ( > GPa)
= High friction (u=1-2)

Can we get the best of both
worlds?

(a)

(d)

Luedtke and
Landman,
Comp. Mat. Sci.
(1992).




Are Composites the Answer?

- Alloys investigated in 1798 to Cavendish (1798) via Chaston,

reduce wear in coins

« 11 alloys (including Cu), ~ 8.3 %
« Cavendish designed testing machine

= None really worked

- QOur goals:

« Maintain electrical properties _
« Reduce adhesion and friction 20| ]
- 5 16l _'SOft Au
- Questions: ¢
«  Why do composites change u? : o f ]
- Whatis the optimal thard Au

composition? 0 a0 am  ewo 0 1000
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Simulation Methods
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Large scale Molecular Dynamics

dual atoms
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Can track location, velocity,

Constraints on length and time scales

Embedded Atom Method

Very accurate for mechanical properties

— switch to Ag
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Grain Analysis

grain

grains - boundarleS

x stacking

faults

Locally FCC atoms colored according to Euler angle
Locally HCP atoms colored red — twins & stacking faults

Otherwise colored black — grain boundaries




Melt & quench
Start with

Melt at 1800 K (20 ps)

Rapidly quench (100ps)

Grains ~ 5 nm

Can grow grains easily
Metallurgy aside

Twins indicate that surface is
aligned with {111}

Growth pictures indicate that
{111} growth direction
preferentially nucleates at

surface

Nanocrystalline Ag

bulk FCC




Tip-based Friction Simulations

44—

shear v

Substrate: nanocrystalline Ag, 17 nm (W) x 34 nm (H) x 67 nm (L)
Tip: 10 nm radius
Shear velocity: 2 m/s (constant velocity, and separation or force)




Force vs. Separation
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Separation is arbitrarily defined
Initial adhesion: ~40 nN /4 Gpa

Pressures in line with Israelachvili, Acta Mat. (2003).




Behavior Under Shear

Layering of tip
atoms
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Grain Level Snapshots

O nm

14 nm, liftoff

Initially distinct grains
After shear (adhesive load), coalescence — now a mode Il crack
Single grain forms across interface — stress induced grain growth




Types of Cracks

cold-weld

substrate

Mode I: Tensile Shear
Mode II: In-plane Shear
Mode IlI: Out-of-plane Shear




FCC Slip Systems

Along {111} plane
In <110> direction
Ductility
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Experimental Verification

Lu, Nature Nanotech, 2010 _47 N N
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Cold welding of single crystals with substructure evolution
1.5 s of contact time with little external force (exp)

Simulations show growth with 2 ps contact under compressive load




Friction Coefficient

For pure metals, expect uy
=0.5-2.0

What is the issue?

= Elastic tip?

= Multiasperity contacts?
« Transfer films?

« Third bodies?

« Data for last point not great...

Au-Au contacts 32 ,Um/S
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Barriga, Tribology International, 2007
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Plowing Movie
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Constant applied load of 100 nN
Constant tip velocity of 2 m/s
Movie shows plowing of substrate from rigid tip




Not many alloy potentials

with Au or Ag

Cu is not very soluble in Ag

Sterling silver is 7.5% Cu
by weight (~12% atomic)

Our method is unorthodox,
but fine on our timescales

Alloys: Ag/Cu

T




Tip/Slab with Ag/Cu
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Alloy is more adhesive (work of adhesion twice that of Ag)
Can’t measure friction with tip/slab geometry

Alloys suppress commensurate contacts




Slab on Slab Geometry

12

(A)

10N

Separat

Duplicate slab & rotate

Bring into contact (two snap-ins from roughness)

Adhes

ilar for Ag and Ag/Cu
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Slab on Slab Geometry

Pure Ag Ag/Cu alloy

- Hold in contact — some grain growth
- More disorder in alloy

- Shear using fixed atoms at top, similar to tip




Ag Slabs Falil
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. Coalescence
. Stress induced grain growth

. Shear occurs at stacking faults, not junction -- not shearing
distinct slabs




Grain Growth vs. Time

Rigid top slab
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Alloy Slabs Slide

1.0 A WH- e {

Vv (m/s)

0 50 100 150 200 250 300
z (A)

- Mechanism preventing grain coalescence allows sliding

. Shear occurs primarily at junction




Comparison of Friction
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Courtesy: WG Sawyer, U. Florida

- Qualitative agreement with experiment

.  No commensurate interface formed




What is the Mechanism in Alloys?

Friction comparison slightly unsatisfying

Comparing tip friction to slab friction
Factor of 4 (not 10) seen by us, Harrison

ldeal comparison:

Same system (tip/slab or slab/slab)
Remove grain growth mechanism
Determine what reduces friction in alloys




Rigid Tips

Rigid tips => no grain growth
u slightly higher for alloy

Shear strength essentially
identical

Materials properties have little
effect

All friction is plowing!

Is this because of flow stress?
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Flow Stress Contributes Little

RcosO=R-d
d=062/2R

o)
A=g (d—-s?/2R)ds
0

A=20563/3R

F.=%mdH F=(263/3R)H

u=F/F,=0.1

Flow stress contribution ~.1, independent of hardness




Rigid Slab on Substrate

rigid |

elastic

- Rigid slabs suppress grain growth
- No plowing is possible




Rigid Slab — Pure Ag

2.7 ns
Slab + |
transfer
film
4.2 ns

Slight grain growth, forms transfer film

Slides along grain boundary (of transfer film) or stacking
fault depending on availability




Rigid Slab -- Alloy

¥3 ¢ oo

. Alloy slides at boundary, but also throughout

substrate




Velocity Profiles
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Velocity profiles indicate liquid-like shearing

Ag shears at transfer film

AgCu shears at boundary, also throughout substrate

Can extract pseudo-viscosities: Ag = 19 Pa-s, AgCu = 10 Pa-s

Compare to Merkle and Marks, Wear (2008): Au = 2 Pa-s




Rigid Slab Friction

Alloy shear stress 20%
higher (650 MPa vs 530
MPa)

Liquid Cu viscosity slightly
higher than liquid Ag

Implies alloy has higher
viscosity

Does this imply higher shear
stress in the alloy?

u essentially identical —
grain growth suppression
leads to same friction
mechanism

Shear Stress (MPa)
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Conclusions

Metallic friction mechanisms revealed

Pure metals

Cold welding, grain reorientation
Shear along slip planes

Commensurate interface = high friction

Alloys/composites (with different lattice constants)

Still cold welding, but grain reorientation suppressed
Shear along grain boundaries
Liquid-like lubrication = lower friction

Similar to mechanism proposed in different metal (Ni) at
different scales (Prasad, Battaile and Kotula, Scripta Mat. 2011)
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