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Safety Factors

* Much of the early work on engineering reliability comes from the civil
engineering field, concerned with reliability of structures

* |[n this lecture, the notation of L = load, R = resistance, we want L <R

* Nominal safety factor: SF =R, /Lom, Where R, ming 1S Usually a
conservative value (e.g. 2-3 standard deviations below the mean) and
L ominal IS @ISO @ conservative value (2-3 standard deviations above the
mean)

* Problem: the nominal safety factor may not convey the true margin of
safety in a design

L ‘R

\ Margin, M /

System Response Required Performance

>
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Safety Factors

 Variety of approaches to improve a design

— Increase the distance between the relative positions of the
two curves: this reduces the probability of the overlapping
area, and the probability of failure decreases

— Reduce the dispersion of the two curves
— Improve the shapes of the two curves
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} Probability of Failure

p, = P(failure)= P(R<L)
[ ferar

Pr=

p, = Fef,()dl

In practice, this integration is hard to perform and doesn’t
always have an explicit form, except in some special
cases
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Probability of Failure

- Special Case: R~N(uy, og), L~N(y,, 5,)
* DefineZ=R-L
p, = P(failure) = P(Z <0)

) _q{O—(uR—m

2 2
VOrt0O, |

P, _I_CD{(.UR_.“L)

2 2
\OR+O; |

* There are also modifications which treat multiple loads,
or lognormal distributions

* This formulation allows more granularity: quantities
such as the capacity reduction factor and load factor
can be calculated (Haldar and Mahadevan)
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Reliability Analysis

« Assume that the probability of failure is based on a specific
performance criterion which is a function of random variables,
denoted X.

* The performance function is described by Z:
Z=g(Xy, Xy, X5, .., X))

* The failure surface or limit state is definedas Z=0. ltis a
boundary between safe and unsafe regions in a parameter
space.

* Now we have a more general form of P¢; e

p, = P(failure) = P(Z <0)
P, =j jfX(xl,xz,...,xn)dxldxz...dxn

g(0<0
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# Reliability Analysis

* Note that the failure integral has the joint probability density
function, f, for the random variables, and the integration is
performed over the failure region

P, =j jfX(xl,xz,...,xn)dxldxz...dxn
g()<0

« If the variables are independent, we can replace this with the
product of the individual density functions

* In general, this is a multi-dimensional integral and is difficult to
evaluate.
» People use approximations. If the limit state is a linear function of

the inputs (or is approximated by one), first-order reliability methods
(FORM) are used.

* If the nonlinear limit state is approximated by a second-order
representation, second-order reliability methods (SORM) are used.
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Mean Value Method (FOSM)

» Often called the First-Order Second-Moment (FOSM) method or the
Mean Value FOSM method

 The FOSM method is based on a first-order Taylor series expansion of
the performance function

* |t is evaluated at the mean values of the random variables, and only
uses means and covariances of the random variables

« The mean value method only requires one evaluation of the response
function at the mean values of the inputs, plus n derivative values if one
assumes the variables are independent - n+1 evaluations in the
simplest approach (CHEAP!)

=g(u,)

n n o d d
o, =le leCov(z,J)d—g(ux)d—g(ux)
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Mean Value Method (FOSM)

* Introduce the idea of a safety index B (think of this as how far in
“normal space” that your design is away from failure)”

My
ﬁ o)

p, =0l pl=1-0[s]

« FOSM does not use distribution information when it is available

* When g(x) is nonlinear, significant error may be introduced by
neglecting higher order terms in the expansion

* The safety index fails to be constant under different problem
formulations

* It can be very efficient. When g(x) is linear and the input variables
are normal, the mean value method gives exact results!
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} Mean Value Method (FOSM)

Some extensions/notation

2:::>.17913 25,}§-::>‘Z
_.Ug_f Zz,ug—crgﬁcdf,
ﬁcdf T - ” B
& Z:ug_l_ggﬁccdf
Z_
Bt = a p,=®[-pl=1-|]
O,

p = probability of failure

B= reliability index

z = response level A) o
11 Laboratories
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# Most Probable Point Methods

* Transform the uncertainty propagation problem
into an optimization one: first transform all of the
non-normal random variables into independent,
unit normal variables. Then, find the point on the
limit state surface with minimum distance to the
origin.

* The point is called the Most Probable Point
(MPP). The minimum distance, 3, is called the
safety index or reliability index.

« X is often called the original space, U is the
transformed space.
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MPP Search Methods

*Failure
region
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Uncertainty Transformations

* Want to go from correlated non-
normals to uncorrelated standard
normals (u)

» Several methods

— Rosenblatt

— Rackwitz-Fiesler
— Chen-Lind

— Wu-Wirshing

— Nataf

* Rosenblatt: First transform a set of
arbitrarily, correlated random
variables X,...X, to uniform

distributions, then transform to
independent normals.

* Nataf: First transform to correlated _

normals (z), then to independent
normals u. L is the Cholesky factor
of the correlation matrix

14

U, :FX1 (X))
U, = FX2|X1 (X, [x))

U, = FXn|X1,X2,...(Xn | X)5 X 500X, ;)

U, :(D_I(U1)
u, :(D_I(Uz)

u, =(D_1(Un)

D(z,)=F(x,)

z=Lu
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MPP Search Methods

Reliability Index Performance Measure
Approach (RIA) Approach (PMA)

RS T N -
minimize u’u minimize _'_{'r{ll)

subject to G(u) =2 subject to ulu = 3°

*Find min dist to G level curve

*Find min G at g radius
*Used for fwd map z - p/f

*Used for invmap p/g = z

T T T T T T T
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P ﬂeliability Algorithm Variations:
Eirst-Order Meth

Limit state linearizations

AMV:  g(x)=g¢ ﬂ*x}"’vr"-}'(.”xJT( ~ pix)
u-space AMV: G(u) = a) + VuG(jta ) (0 — 1)
AMV+:  g(x) = )+Mt )T (x - x%)

u-space AMV+: G(u) = G(u ) 4+ V,G(u*)" (u—u*)
FORM: no linearization

Integrations

P((,r' < Z}I = ‘I'{_ﬁf:df}

*1et- { (452) = B(~Bocy)
i Z — e
order: P "

MPP search algorithm
[HL-RF], Sequential Quadratic Prog. (SQP), Nonlinear Interior Point (NIP)

Warm starting

When: AMV+ iteration increment, z/p/p level increment, or design variable change
What: linearization point & assoc. responses (AMV+) and MPP search initial guess
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_. Reliability Algorithm Variations:
Second-Order Methods

2nd-order local limit state approximations
* e.g., x-space AMV2+:

, - T N i R ey .
9(x) = g(x") + Vag(x") (x — X") + 5(x — x) T V2g(x")(x — x7)

)

*Failure

* Hessians may be full/FD/Quasi :
region

N
« Quasi-Newton Hessians may be BFGS or SR1 \
u* - MPP

2nd-order integrations

1—1 .
- 1 B

FORM

v

ecurvature correction

Synergistic features:

* Hessian data needed for
SORM integration can enable
more rapid MPP convergence

* [QN] Hessian data accumulated during
MPP search can enable more accurate
probability estimates

Sandia
m National _
17 Laboratories




_. Reliability Algorithm Variations:
Second-Order Methods

A
u
.. .. . . 2 Failure
Multipoint limit state approximations region
* e.q., TPEA, TANA:
9 mn "—L:\Jﬂ ;E,]_-—Pf 1 n u* - MPP
g(x) = g(x2) + Bz (x2) =2 (2P — aiy) + elx) Z(;a‘ff — 2P)?
=1 T bi © = FORM
99 (x,) .
p; = 1+In E'?'-[Xl" /111 [:] B
KQLXEJ Ty >
(x H ul
= I = T . T
Dlimp ol —ah)? + 30 (@ — ah)? SORM
- " g, iy A
H = Elg[xll—g[le—iz .fjﬂ;z‘l-[ 9 !:31- []Pl—?izll -'\\

Importance Sampling
*Use of importance sampling to calculate prob of failure:
+After MPP is identified, sample around MPP to estimate P; more accurately
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ﬂeliability Algorithm Variations:
Sample Results

Analytic benchmark test problems: lognormal ratio, short column, cantilever

L . 4 1+ I . -
ot +43 Z levels - w43 p levels -
08| E 08 4
s 508 1 o7 SOSM 1
£ B x-fu-space AMV 4 9 w-hu-space ANV
g per x=lu-space AMVZs, TAMA. & SORM 4 2 04 9 g-ju-zpace AMVZ TAMA, & SORM 1
£ 107 Latin hypercube samples * 10° Latin hypercube samples
s 05| 4 3 05 <
g §
Eosl < p £ o4l ]
a a
03 B 03 4
Dz g 0.2 B
o1 B iR1S E
i iz ule] e of 3 = 4
-10 = = = = : 2 -10 = = - = » = ]
Response Value esponse Value
BIA SQP Function NIP Function CDF p Target z PMA SQP Function NIP Function CDF = Target p
Approach Evaluations Evaluations  Error Norm  Offset Norm Approach Evaluations Evaluations  Error Norm  Offset Norm
MVFOSM 1 1 0.1548 0.0 MVFOSM 1 1 7.454 0.0
MWVS0SM 1 1 0.1127 0.0 MVSOSM 1 1 6.823 0.0
x-space AMV 45 45 0.000275 18.28 x-space AMV 45 45 0.9420 0.0
u-space AMV 45 45 0.006408 18.81 u-space AMV 45 45 0.5828 0.0
x-space AMV? 45 45 0.002063 2,482 x-space AMV? 45 45 2.730 0.0
u-space AMV? 45 45 0.001410 2.031 u-space AMV? 45 45 2.828 0.0
x-space AMV+ 192 192 0.0 0.0 x-space AMV+ 171 179 0.0 0.0
u-space AMV 4+ 207 207 0.0 0.0 u-space AMV+ 205 205 0.0 0.0
X-space AMVI4 125 131 0.0 0.0 x-space AMV?Z4+ 135 142 0.0 0.0
u-space AMVZ®+ 122 130 0.0 0.0 u-space AMV?Z4 132 139 0.0 0.0
x-space TANA 245 246 0.0 0.0 x-space TANA 203* 272 0.04259 1.598e-4
u-space TANA 206 278 6.082e-5 0.08014 u-space TANA 325* 311* 2.208 5.600e-4
FORM G26 176 0.0 0.0 FORM 720 192 0.0 0.0
SORM G669 219 0.0 0.0 SORM 535 191*% 2.410 6.522e-4

*Note: 2"9-order PMA with prescribed p level is harder m National .
19 problem - requires f(p) update/inversion Laboratories
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Optimization under Uncertainty

* Design for reliability is a classic OUU problem,
often called RBDO (reliability-based design
optimization)

* Nice properties in that the reliability
formulation itself generates quantities such as
derivatives of performance function with
respect to uncertain variables

» Variety of approaches (next page)

» Simplest case: think of a “nested” algorithm, . .
with an optimization outer loop and sampling
inner loop

*Design
*Optimization

«Sampling
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RBDO Algorithms

Bi-level RBDO RIA Ill'll-lillliz'[—‘i _J ! _ PMA minimize f

+ Constrain RIA z - p/p result RBDO subject to [ = *_f RBDO| subject to 2 > 2

« Constrain PMA p/B > z result or p=p
Sequential/Surrogate-based RBDO: ’

* Break nesting: iterate between opt & UQ until target is met. !
Trust-region surrogate-based approach is non-heuristic.
minimize f(do) + Vaf(do)' (d —do) ] i

B 1st-order
subject to  8(dg) + V4B(do)  (d — dg) = 3 (also 2d-order w/ QN) -
d—dg | < AF

%

Unilevel RBDO: min : f(d,p,y(d,p))
« All at once: apply KKT conditions of dong=(d g0y,
MPP search as equality constraints s.t. :Gf(u;m) =0
« Opt. increases in scale (d,u) Bailowed — Bi =2 0 | KKT
« Requires 2nd-order info for lwill VG (us, m) || + uf VuGfi(u;,n) =0 | of MPP
derivatives of 1st-order KKT Bi = ||

d'<d<qv
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New Topic:
Importance Sampling for
Black-Box Simulators
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Motivation

« USE CASE: We have DAKOTA users who take an initial set of
Latin Hypercube samples, then would like to perform some
additional samples to help refine a failure probability estimate

* They want to do this with relatively small number of samples:
100-200 initial samples and 100-200 samples from an
importance sampling density.

* We developed a customized importance sampler where the
importance sampling densities are constructed based on kernel
density estimators.

Is importance sampling efficient and accurate for situations where
we can only afford small numbers of samples?

Does importance sampling require the use of surrogate methods
to generate a sufficient number of samples to increase the
accuracy of the failure probability estimate?
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Background

* Importance sampling is a method used to sample random
variables from different densities than originally defined.

 These importance sampling densities are constructed to pick
“important” values of input random variables to improve the

estimation of a statistical response of interest, such as a mean or
probability of failure.

E(r(X)) = [r(x) fy (x)dx

E,(:00) =Y r(x)

J(x) JX) | _IrGa)f(x)
E(r(X)) = jf”(x) )h(x)a’x— {( )h(X)} i ny h(X)
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- &
# Selection of importance density

* The variance of the importance sampling estimator is minimized
when h(x) o |r(x)f(x)|.

 For black-box simulations that have multiple uncertain inputs
which may come from a wide variety of random input distribution
types, we cannot generally assume that the importance
sampling density will be normal or have a parametric form.

“The most difficult part in parametric importance sampling is
choosing a suitable distribution family to start with. There is no
general recipe, and the issue remains largely a matter of art in
the literature. Most parametric distributions fail to include g (the
optimal importance sampling density) as a member.”

* Nonparametric methods: Zhang (1996) demonstrates increased
convergence but higher computational cost of nonparametric
methods.

> Kernel density estimators
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Kernel density estimators

« Kernel Density Estimation (KDE) is a technique used to estimate
the density of a random variable X given n independent samples
X, ..., X, Of it.

-
_—
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Rosenbrock test function

Rosenbrock's F
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mportance Sampling Test Results

» Rosenbrock function: X1, X2 both distributed as U[-2,2]

« Want to obtain estimate of failure probability (Rosenbrock < 3)
* For each combination of initial LHS/ IS points, we ran 100 replicates
* True value ~ 0.0383

Number of Number LHS Mean LHS Std dev. | IS Mean Failure IS Std dev. Mean percentage
initial LHS | of Importance Failure Failure probability Failure of IS that “fail”
samples samples probability Probability Probability

100 200 0.039 0.01096 0.03798 0.01139 0.1283

50 100 0.0432 0.01429 0.03854 0.01665 0.1159

100 100 0.036 0.01241 0.03986 0.01567 0.133

200 200 0.03785 0.00955 0.03774 0.00823 0.1412

200 400 0.03702 0.00843 0.03868 0.00768 0.1432
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* Note that failure probabilities not significantly different but we have increased
percentage of points that fail by a factor of three

 Additional analysis showed that the accuracy of the failure estimates is not
greatly improved IS due to the limited number of samples.

* The main benefit is that KDE IS estimators provide a quick way to generate
more samples in the failure region.
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Next steps

« We tested this approach on a variety of test problems, focusing on
situations with small sample sizes to be representative of expensive
computational simulations.

 We have looked at this approach for 5-D problems and a problem with a
discontinuity in the response space: it worked fine in both cases

* Further investigation into scaling up to multiple dimensions
« Adding points “near” the response threshold can help
» Also investigated surrogate methods: need to have accurate surrogates

» This approach is reasonably robust and can produce failure probability
estimates that are comparable to failure estimates produced by small
numbers of LHS sample points.

 The main benefit we see by using this approach is that the kernel
density estimators provide a quick way to generate more samples in the
failure region. We found that importance sampling increased the
number of samples in the failure region by a factor of 3 to 8 for our test
cases.
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