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Motivation and Challenges Atmospheric Transport using WRF

e Accurate regional estimates of Greenhouse Gas (GHG) emissions are necessary to evaluate the effectiveness of
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country, state, and municipal-level strategies for reducing the anthropogenic component of these emissions. S D TN T
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e Existing attribution methods based on CO2 concentrations alone provide little or no information on source
types, although this additional information would be valuable for policy support.
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e There are substantial discrepancies between reported bottom-up GHG emissions and measured top-down ac-
cumulations of these emissions in the atmosphere.
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e The biogenic component dominates the GHG measurements. Isolating the anthropogenic component is chal-
lenging.
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Case Study - Inference of Source Parameters e The computational domain covers Oklahoma and Kansas - see the inner rectangle in the figure to the left.
e The source location is shown with concentric circles, and the sensors are shown with white squares.

e Weather Research and Forecasting (WRF) framework used e Typical wind patterns around an existing source were considered during sensor placement.
to model the atmospheric transport

— Nested computational domain - 3 layers - using 30km,

10km, and 3.3 km grid sizes, respectively. Surrogate Model Construction

— Initial and boundary conditions are based on NCEP
Final Analyses (FNL) data.
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e The velocity field at 10m is used to drive the 2D advection-
diffusion of a passive scalar.
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Sensor 1

— The spatial profile component Sz (x) of the source is
designed to have the scalar emitted from one particu-
lar cell in the finest grid of the computational domain

— The time profile S;(t) consists of a sequence of peri-
odic puffs (see figure). The amplitude Ay of the puffs
is assumed to be known, while the duration, s;, and
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the interval between them, s5, are not. “

Sensor 3

— The scalar transport is simulated only in the finest
computational grid, using convective boundary con-
ditions.

A
S(t) e The cumulative scalar concentrations measure at several sensor locations over two days is represented as a
function f(s) of source parameters s = (s, s2).

e Based on the measurements
recorded at several locations
away from the source we will S S,
attempt to infer the source Ag| = ah >
parameters s; and ss.

e The surrogate model values are based on 7-th order polynomials using Legendre basis functions. The polyno-
mial coefficients were constructed using 121 model simulations.

> time e The surrogate models show a maximum discrepancy of about 4% compared to results from full model simula-
tions.

o WRF-simulated winds are used in the 2D scalar dispersion to demonstrate inference in the presence of natural variations
in wind velocity. The duration of the “source puffs” were chosen as the subject of the inference to ensure a non-linear
system response.

Inference of Source Parameters

MCMC samples Joint PDF estimate from samples Joint PDF - analytical solutio
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p(s|D) x Lp(s)p(s) e N is the number of measurement sites, 859 )
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relates the prior distribution p(s) of source param- e f(s) are pollutant concentration at the measurement
eters s to the posterior p(s|D), where the data D is site © computed using a transport model of choice L
the set of measurements at various sites around the (e.g. WRF+scalar transport) '
SOUTCE. e y, are the experimental values B = g ’ ot :
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tween the data D and the model f(s). The standard deviation o includes both the instrument er-
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Posterior Distribution Sampled via Markov Chain Monte Carlo v
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Given the likelihood Lp(s) and the prior p(s), we then draw samples from the posterior distribution p(s|D) via
Markov Chain Monte Carlo (MCMC) sampling. MCMC is a class of techniques that allows sampling from a posterior
distribution by constructing a Markov Chain that has the posterior as its stationary distribution [2].
Surrogate Model Construction: Polynomial chaos spectral representation
e The computational expense of the WRF and scalar transport simulations, typically associated with a large num- o Two synthetic source scenarios were considered: (a) (s1,s2) = (0.082,0.075) and (b) (s1,s2) = (0.062,0.082).
ber of MCMC samples, will be circumvented by employing surrogate models, that are used instead of the Here the time values were normalized with respect to the total measurement time (2 days).

forward model f(s) in the MCMC. e The surrogate model approach reduced the computational cost for the MCMC samples by approximately 300

e These surrogate models are based on polynomial chaos (PC) expansions [1, 3] and are used to represent quan- times.
tities of interest, e.g., scalar concentration at specific locations, as functions of source and model parameteriza-

Hons e In the first scenario the inference process detected a multi-modal distribution with one of the modes centered

around the “truth”. For this scenario the information available from the measurements is not sufficient to pin-
Interpret input parameters s as random variables, point the source characteristics. In the second scenario the joint PDF is centered around the expected values.
which can be represented via their cumulative dis-

tribution function (CDF) F'(-), such that, with &; ~ (W, (E)W,(8)) = /\I!i(f)\lfj (&)pe (€)dE = 6;5(V;(€)?)

Uniform|[—1, 1], we have:

e In both cases the joint PDF obtained through MCMC sampling agrees well with the analytical values.

g+ | The coeff1c1eqts Zk are computed by Galerkin (or- Future Work
s; = F, 5 : fori=1,2,.... thogonal) projection
(F(S(E))T(E)) Extend this methodology to high-dimensional parameter dependencies. Incorporate dimensionality reduction

The forward model output for the scalar dispersion Zy, = 2 (0)) methodologies to make the inversion tractable.
given by f(-) can be represented as a PC expansion: k . . . . o

S e Take into account GHG's biogenic background and expand the type of sources (e.g. spatially distributed and

" Here, the projection integrals are computed by line sources).
f(8)=2Z=) Zy¥(€) quadrature e . .
o N Include tracer chemistry in the inversion to detect sector information.
quad

U, (+) are standard Legendre polynomials of inde- (f(s(&)¥r(&)) = Z w f(8(&))Yk (&) e Incorporate experimental design methodologies to optimally place sensors given historical information on re-
pendent, random variables &, orthogonal w.r.t. uni- =1 gional transport patterns.
form pdf pe(€), i.e.
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