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Motivation and Challenges

• Accurate regional estimates of Greenhouse Gas (GHG) emissions are necessary to evaluate the effectiveness of
country, state, and municipal-level strategies for reducing the anthropogenic component of these emissions.

• Existing attribution methods based on CO2 concentrations alone provide little or no information on source
types, although this additional information would be valuable for policy support.

• There are substantial discrepancies between reported bottom-up GHG emissions and measured top-down ac-
cumulations of these emissions in the atmosphere.

• The biogenic component dominates the GHG measurements. Isolating the anthropogenic component is chal-
lenging.

Case Study - Inference of Source Parameters

• Weather Research and Forecasting (WRF) framework used
to model the atmospheric transport

– Nested computational domain - 3 layers - using 30km,
10km, and 3.3 km grid sizes, respectively.

– Initial and boundary conditions are based on NCEP
Final Analyses (FNL) data.

• The velocity field at 10m is used to drive the 2D advection-
diffusion of a passive scalar.

∂c

∂t
+ (u · c) = D∇2c+ Sx(x)St(t)

– The spatial profile component Sx(x) of the source is
designed to have the scalar emitted from one particu-
lar cell in the finest grid of the computational domain

– The time profile St(t) consists of a sequence of peri-
odic puffs (see figure). The amplitude A0 of the puffs
is assumed to be known, while the duration, s1, and
the interval between them, s2, are not.

– The scalar transport is simulated only in the finest
computational grid, using convective boundary con-
ditions.

• Based on the measurements
recorded at several locations
away from the source we will
attempt to infer the source
parameters s1 and s2.
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• WRF-simulated winds are used in the 2D scalar dispersion to demonstrate inference in the presence of natural variations
in wind velocity. The duration of the “source puffs” were chosen as the subject of the inference to ensure a non-linear
system response.

Bayesian Inference of the Source Parameters

Bayes formula

p(s|D) ∝ LD(s)p(s)

relates the prior distribution p(s) of source param-
eters s to the posterior p(s|D), where the data D is
the set of measurements at various sites around the
source.
The likelihood accounts for the discrepancy be-
tween the data D and the model f(s).

LD(s) ∝ exp

(

−
N
∑

i=1

(f(s)− yi)
2

2σ2

)

• N is the number of measurement sites,

• f(s) are pollutant concentration at the measurement
site i computed using a transport model of choice
(e.g. WRF+scalar transport)

• yi are the experimental values.

The standard deviation σ includes both the instrument er-
ror as well as any model discrepancy error (initial and
boundary conditions, sub-grid models, numerical approx-
imations) introduced by f .

Posterior Distribution Sampled via Markov Chain Monte Carlo

Given the likelihood LD(s) and the prior p(s), we then draw samples from the posterior distribution p(s|D) via
Markov Chain Monte Carlo (MCMC) sampling. MCMC is a class of techniques that allows sampling from a posterior
distribution by constructing a Markov Chain that has the posterior as its stationary distribution [2].

Surrogate Model Construction: Polynomial chaos spectral representation

• The computational expense of the WRF and scalar transport simulations, typically associated with a large num-
ber of MCMC samples, will be circumvented by employing surrogate models, that are used instead of the
forward model f(s) in the MCMC.

• These surrogate models are based on polynomial chaos (PC) expansions [1, 3] and are used to represent quan-
tities of interest, e.g., scalar concentration at specific locations, as functions of source and model parameteriza-
tions.

Interpret input parameters s as random variables,
which can be represented via their cumulative dis-
tribution function (CDF) F (·), such that, with ξi ∼
Uniform[−1, 1], we have:

si = F−1

si

(

ξi + 1

2

)

, for i = 1, 2, . . . .

The forward model output for the scalar dispersion
given by f(·) can be represented as a PC expansion:

f(s) = Z ≈
K
∑

k=0

ZkΨk(ξ)

Ψk(·) are standard Legendre polynomials of inde-
pendent, random variables ξ, orthogonal w.r.t. uni-
form pdf pξ(ξ), i.e.

〈Ψi(ξ)Ψj(ξ)〉 ≡

∫

Ψi(ξ)Ψj(ξ)pξ(ξ)dξ = δij〈Ψi(ξ)
2〉

The coefficients Zk are computed by Galerkin (or-
thogonal) projection

Zk =
〈f(s(ξ))Ψk(ξ)〉

〈Ψ2

k(ξ)〉

Here, the projection integrals are computed by
quadrature

〈f(s(ξ))Ψk(ξ)〉 =

Nquad
∑

l=1

wlf(s(ξl))Ψk(ξl)
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Atmospheric Transport using WRF
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• The computational domain covers Oklahoma and Kansas - see the inner rectangle in the figure to the left.

• The source location is shown with concentric circles, and the sensors are shown with white squares.

• Typical wind patterns around an existing source were considered during sensor placement.

Surrogate Model Construction

Scalar Transport Model
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Surrogate Model Discrepancy

• The cumulative scalar concentrations measure at several sensor locations over two days is represented as a
function f(s) of source parameters s = (s1, s2).

• The surrogate model values are based on 7-th order polynomials using Legendre basis functions. The polyno-
mial coefficients were constructed using 121 model simulations.

• The surrogate models show a maximum discrepancy of about 4% compared to results from full model simula-
tions.

Inference of Source Parameters

MCMC samples
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Joint PDF estimate from samples Joint PDF - analytical solution

• Two synthetic source scenarios were considered: (a) (s1, s2) = (0.082, 0.075) and (b) (s1, s2) = (0.062, 0.082).
Here the time values were normalized with respect to the total measurement time (2 days).

• The surrogate model approach reduced the computational cost for the MCMC samples by approximately 300
times.

• In the first scenario the inference process detected a multi-modal distribution with one of the modes centered
around the “truth”. For this scenario the information available from the measurements is not sufficient to pin-
point the source characteristics. In the second scenario the joint PDF is centered around the expected values.

• In both cases the joint PDF obtained through MCMC sampling agrees well with the analytical values.

Future Work

• Extend this methodology to high-dimensional parameter dependencies. Incorporate dimensionality reduction
methodologies to make the inversion tractable.

• Take into account GHG’s biogenic background and expand the type of sources (e.g. spatially distributed and
line sources).

• Include tracer chemistry in the inversion to detect sector information.

• Incorporate experimental design methodologies to optimally place sensors given historical information on re-
gional transport patterns.
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