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e Enriched uranium can be
used to construct a nuclear
weapon

* |tis important to verify the
enrichment of uranium as it
exits the processing stream
to detect material diversion
efforts
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e “Enrichment meter”
measures gamma
emissions from the
uranium hexafluoride (UFy)

— Gives local enrichment, not
total mass

— Sensitive to variations in
container wall thickness

— Not sensitive to material
beyond outer skin of UF,
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The enrichment meter principle. From Reilly et
al.,Passive Nondestructive Assay of Nuclear
Materials, Fig. 7.3
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Sandia’s concept: directly measure fast neutron

emissions

 Fast neutrons generated by v
independent processes within _1 R —
the UF4 can provide an hl
iIndependent enrichment 107

measurement that samples
the entire UF; volume

 Neutron imaging of the UF,
distribution detects

107}

107}

Particles transmitted

unexpected UF, geometries 107}
and applies necessary o o186 keV gammas |
corrections _jhermal newtrons

« Sandia has developed e TN U TR B TR
expertise in neutron imaging e thickness tem)
and spectroscopy that will Transmission of particle beams through
enable success 5% enriched UF, (without container wall)




238: neutrons via spont. fission
and (a,n) reaction on F atoms

234U: neutrons via (a,n) reaction
on F atoms

The two processes have
measurably different energy
spectra

— It should be possible to separate

234U and 238U contributions to the
energy spectrum

— Direct measurement of 234U and
238 masses
234U content is proportional to
235 content (proven by LANL
for enrichment < 5%)
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» Calculations of the cylinder emissions

: Imply manageable spectral perturbations

« The source term is perturbed in a large mass of UF.
— Scattering
— Induced fission
— Absorption

« A 30B cylinder was modeled in MCNP5.
— Enrichments: DU, "aU, 5% enriched 23°U
— Maximum fill mass

e Spectra appear to maintain enough structure for the
measurement concept to work.
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Comparing the SOURCES 4C neutron source term arld the
30B cylinder emissions calculated by MCNP5 for ""UF
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*"".- Yovat Calculated 30B cylinder emissions for three enrichments
- - 5 with energy bin limits (denoted in gray)
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« The ratio of neutrons in the (a,n) and S.F. regions is a function
of enrichment

— Cut data at the end of the (a,n) spectrum (~2.54 MeV)
— A realistic detector will have a detection threshold (choose 1 MeV)

e For the simulated data, the ratio is a monotonic function of

~ enrichment




e The Neutron Scatter Camera is a

mature system developed at Sandia

for large-area search
— Multi-element system
— Liquid scintillator for n/y discrimination

— Imaging capabilities (interaction cell locations,
measured energies)

— Spectrometry (deposited energy, time-of-flight)
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« Consider PuO, holdup in a
reprocessing facility
— Gloveboxes
— Hulls

« A combination of imaging (to
locate hotspots) and
spectrometry (to measure
total activity) may be useful

— Spectrometry technique:
follows directly from UF,
enrichment measurement
concept

— Imaging: could potentially
couple with Hausladen’s
Imager, or may find another
Imaging technique is better

La Hague reprocessing facility
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JWea e Plutonium vs. uranium measurements

 Consider PuO,. How do the proposed
measurements compare to UF;?

« PuO, advantages:

— Spectrum: (a,n) on O produces higher-energy neutrons

— Rates: There are >1000x more neutrons emitted from PuO, per
cm3

 PuO, disadvantage:
— Isotopics are messy...f(initial enrichment, burnup, cooling time)
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PuO, Neutron Spectrum PWR (33,000 MW d/t)

6.0E+01

produces unique (a, n) 50801
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Working an example

Data from various online sources accumulated
¢ Varying isotopic content for PuO.,.

Atom Fractions

Magnox SO1 SO2 PWR PWR PWR

BURNUP 3000 8167 6808 33000 43000 53000
Pu 238 0.001 0.00557 | 0.00462 0.013 0.02 0.027

Pu 239 0.8 0.71886 | 0.73218 0.566 0.525 0.504
Pu 240 0.169 0.1905 | 0.18812 0.232 0.241 0.241

Pu 241 0.027 0.0721 | 0.06384 0.139 0.147 0.152

Pu 242 0.003 0.01295 | 0.01124 0.047 0.062 0.071
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Use “effective” Isotope masses

e PWR reactor with 43,000 MW d/t burn up

{73) Sondia Mational Laboratories

3
Rho | Atom |_ . .. isotope | Atom - For1em*| - ee 510 | Eff 239
Element |lsotope o Stoichiometry | Mass/ Dens. true Pu I —
8 Molecule | [#/cc] mass (g) & &
Pu 238 115 0.02 1 4.76 5.12E+20 | 10.1255 | 95.04192 [2015.646
Pu 239 11.5 0.525 1 125.475 | 1.34E+22
Pu 240 11.5 0.241 1 57.84 | 6.17E+21
Pu 241 11.5 0.147 1 35.427 | 3.76E+21
Pu 242 11.5 0.062 1 15.004 | 1.59E+21
) 16 11.5 0.99757 2 31.92224 | 2.55E+22
) 17 11.5 0.00038 2 0.01292 | 9.73E+18
) 18 11.5 0.00205 2 0.0738 | 5.25E+19
SUMS: 238.506 | 2.55E+22
eff (Pu-240 eff mass proportional to SF contribution)
Mygo = 2.52 * My3g + Myyq + 1.68 * My, (Pu-239 eff mass proportional to (&, n) contribution)
eff 13400 N i 14.1 o e 1.3 gl 2
m - *m m *m *Mm *Mm
,—@9}1 38.1 238 239 38.1 240 38.1 241 38.1 242




e Sources outputs data for:
— (alpha, n)
— Spontaneous Fission

Absolute Totals (neutrons/sec-basis)

E (MeVv) {a,n) (st {dn) Total
—= Delayed neutrons 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
) ) ) 2.000E-02 4.571E-01 2.202E400 O0.000E4+00 2.659E+00
(Ignored in this case ~ 4.000E-02 9.447E-01 3.990E+00 0O.000E+00 4.934E+00
6.000E-02 1.171E+00 5.117E+00 O0.000E+00 6.28BE+00
()) 8.000E-02 1.293E+00 6.000E400 O0.000E4+00 7.293E+00
1.000E-01 1.485E+00 6.739E+400 O0.000E+00 8.224E+00
1.200E-01 1.664E+00 7.378E+00 O0.000E+00 9.042E+00
— Total neutron 1.400E-01 1.825E+00 7.941E+00 0O.00D0E+00 9.766E+00
. ) 1.600E-01 1.965E+00 8.444E+00 0.000E+00 1.041E+01
contribution 1.800E-01 2.048£+400 8.898E400 O0.000E+00 1.095E+01
2.000E-01 2.086E+00 9.310E+00 O0.000E+00 1.140E+01
2.200E-01 2.093E+00 9O.687E+00 O0.000E+00 1.17BE+01
° Want to Compare 2.400E-01 2.092e+00 1.003e+01 0.000E+00 1.212E+01
. - 2.600E-01 2.113E+00 1.035E+01 O0.000E+00 1.246E+01
2.800E-01 2.118E+00 1.064E+01 0.000E+00 1.276E+01
TOtaI SpECtra to (a’ n) 3.000E-01 2.132E400 1.091E+401 0.000E+00 1.304E+01
. . . 3.200E-01 2.1396+00 1.116E+01 0.000E+00 1.330E+01
and SF IndIVIdua”y. 3.400E-01 2.117E+00 1.13964+01 0.000E+00 1.351E+01
3.600E-01 2.106E+00 1.160E+01 0.000E+00 1.371E+01

Energy bins (0 to
14.98 MeV)




Plotted Results of Ideal (alpha, n) and Spontaneous Fission neutron

contributions calculated by SOURCES4C with 1MeV threshold.
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PuO2 with 43,000 MW d/t mean fuel burnup _
» Look for a point to

split graph in two
« SFand (a, n)
508401 /\ « Integrate using bin
boundaries
 Why?
» Detector sees
total only (Green
] Curve)
6.0 8.0 10.0 12.0 4.0 ¢ Need to use
Energy (MeV) simulations to tell
SF from (a, n)
Lan) contributions

7.0E+01

6.0E+01 —

1.0E+01

0.0E+00

e Method:
e Calculated double derivatives to look for the 2 peaks
&t Averaged the integral between the two peaks to find the energy at which to
oAb

= —split the graph 18 (7)o Natonl Lbortores
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Aalpha, n) rate vs. Pu-240 effective mass

L 2
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4500
showed a higher correlation 1::
with the Pu-240 effective ——
mass compared to the Pu-239 ——
effective mass. This T —
confirmed our expectations. m—
(No threshold set) —
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y=1.2165x + 672.3
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®

y =40.347x - 478.39
R?=0.9863

o
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Mass

Purpose of measuring
rates as a function of
mass:

To find a relationship
concerning all 5
isotopes where we can
back-calculate amount
of Pu-240 and Pu-239.

mn 500 1000 1500

Mass

2000 2() 2500 3000

(i) Sandia National Laboratories




« MCNP - Gaussian Energy Broadening function applied

— Geometry: point source of PuO, placed 6 inches away from
midpoint of scintillation detector (EJ309).

o Detector: 5 inch (12.7 cm) diameter, 5 inch depth.
— Including aluminum covering of 0.15 thickness, overall dimensions = 13

cm
13 cCm

- |

6”

13cm

Detector

PuO2 point source




e Ran MCNP simulations for

these spent fuel
compositions:

Magnox (Burn up=3,000)
PWR1 (Burn up=33,000)
PWR2 (Burn up=43,000)
PWR3 (Burn up=53,000)
San Onofre 1 (Burn
up=8,167)

San Onofre 2 (Burn
up=6,808)
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Magnox-3,000
PWR-33,000
— PWR-43,000
A — PWR-53,000
San Onofrel-8,167
San Onofre2-6,808 |

neutrons/sec

10 15

' Energy (MeV
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Neutron Energy spectrum with Gaussian Energy Broadening

25
1.82 MeV Cutoff | —— PWR-53,000 |
o N R S O i
S 8 sl b I |
between (alpha, n) and SF 2 ' '
rates to find cutoff line. e S ]
— Compared (alpha, n) to SF ratio rates 5 5
across all energies in MCNP to the ] e T P ]
corresponding ratios in SOURCES4C : |
— Found energy where difference in 0 : T T
ratios is minimum and uses that point Energy (MeV)
as cutoff to split the MCNP spectrum. _
i SOURCESA4C: PuO2 with 53,000 MW d/t burn up
o Leftof line =SF oeon
e Right of line = (a,n) 8.0E+01 1.82 MeV Cutoff
— Example: PWR with 53,000 burn 70801 | SF
up 6.0E+01
Ll . . . @ 5.0E+01
 Minimum difference in ratios . S
of (a,n):SF between " e talpha, n) —s)
SOURCES4C and MCNP - !
occurred at 1.82 MeV. 1 0E+01
0.0E+00 |
mﬁ"}, 24 00 >0 o @Sarmmﬁ:&mmtm




ompiled Results

True Pu mass for Effective Mass

Effective Mass

Integration of (a,n)

Integration of SF

Classification 3 spectrum spectrum
Lem Pu-239 Pu-240 (no threshold) (no threshold)
PWR 33000 10.14134 1431.2524 82.5852 2.740000E+02 2.235000E+02
PWR 43000 10.13925 2015.6457 95.04192 3.736000E+02 2.639000E+02
PWR 53000 10.1394 2596.7244 102.89928 4.622000E+02 3.003000E+02
Magnox 3000 10.14289 425.27011 42.37944 9.52300E+01 1.061000E+02
SO1-8167 10.180538 808.00756 54.3256152  1.610000E+02 1.427000E+02
SO2-6808 10.18065 729.46677 52.4894256  1.492000E+02 1.355000E+02

(oD 25
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y =0.0925x + 71.962 B SFvs. Pu-239
R%=0.9807

n/s

——Linear ((a,n) vs Pu-239)
—— Linear (SF vs. Pu-239)




\8 Discussion and Summary

« We propose direct use of neutron signatures for nuclear
safeguards material accountancy

— Two physical processes create neutrons with different energy spectra

— For UF,, simulations indicate enrichment can be extracted from emitted
neutrons, even after full transport

— For PuO,, problem is more difficult due to varying isotopics, but initial
analysis hints that it may be possible to estimate Pu mass

 Advantages:
— Spectrum shape/magnitude gives UF, enrichment/mass
— Spectrum shape/magnitude gives PuO, isotopic ratio/mass

— Use of an imaging system (Neutron Scatter Camera or coded aperture
system) suppresses backgrounds, allows mapping of material
distribution

() Sandia National Laboratories




JWea e Future work

 Develop a function of effective Pu-239 and Pu-240
masses to predict the “true” Pu sample mass.
— Estimate systematic error using this method.
— Compare to existing technologies.

e Consider realistic scenarios in reprocessing
facilities
— Provide estimates of backgrounds, signal magnitudes.

— Material distribution (imaging needs; neutron attenuation) and
chemical forms (affects (alpha,n) distribution) in real plant
process streams

 Perform experiments/modeling for different detector
concepts to determine optimal instrument

l.‘:_:‘!-.
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