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Motivation

 In order to investigate localization models experimental data 
must be carefully reduced to develop constitutive parameters
 Simple separation of strain into elastic and plastic components from a 

single constant modulus, while straightforward and a reasonable first 
approximation, needs to be more rigorous for thorough evaluation

 This process is subjective to test conditions, and material 
dependencies.  For this work stress and plastic strain 
dependence were included. 
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Tests Performed

 True triaxial tests performed at 5 different Lode angles
 30, 14.5, 0, -14.5, -30 degrees (axisymmetric compression to 

axisymmetric extension)

 Tests were performed under constant mean stress conditions

 5 mean stresses were tested ranging from 30 to 150 MPa in 30 MPa 
increments in order to map out the failure/yield surface for a range of 
Lode angles

 Unload loops from all tests were used to develop the strain 
separation process. 
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Strain Separation
To Determine the inelastic increment of strain
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Strain Separation: Constitutive Laws
 Starting with common elastic-plastic constitutive models: 

 Isotropy and usual invariant definitions provide the common elastic 
strain models

 Assuming elastic property dependence in incremental form and 
expanding the total derivative
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Strain Separation: Breakdown
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Elastic Modulus Evolution

 Plastic shear and volume strains calculated using a method 
developed in conjunction with Dr. Thomas Dewers

 Stress dependence develops in the form of the evolution of the 
modulus

 Strain dependence develops in the form of the evolution of the 
G0 and K0 parameters, other parameters are constant
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G0 and K0 Evolution

 For a given test G0 and K0

evolved

 G0 and K0 were fit with a 
power function

 Plastic strains were found by 
subtracting elastic strain 
from total strain.  
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Application
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Constitutive Parameter β
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Constitutive Parameter - μ
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Failure/Yield Surface
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Angles vs. Mean Stress
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Band Angle vs. Lode Angle
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Table of Band Angles
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Conclusions

 Strain separation processes can be implemented to provide 
reasonable localization results for high porosity sandstone in 
comparison with experimental results for non-axisymmetric 
states of stress. 
 Further analysis is still required, moduli are dependent on more than 

their respective stress and plastic strain. 

 Separation of strains allows for determination of the onset of 
yield
 Yield occurs earlier with the strain separated more rigorously than if the strains are 

separated into purely elastic and plastic components.  

 Yield surfaces, while similar to failure surfaces, are somewhat different
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Future work
 Currently working to include a pore pressure component

 Working with both drained and undrained tests

 Utilizing acoustic velocity monitoring to confirm elastic property 
evolution determined from unload loops
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