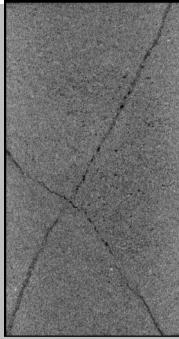
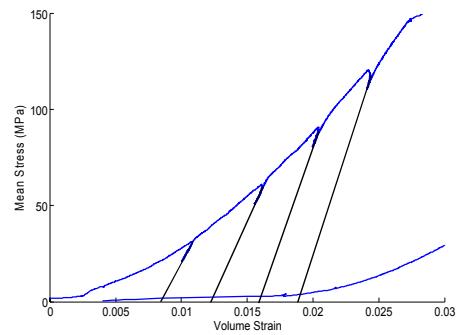
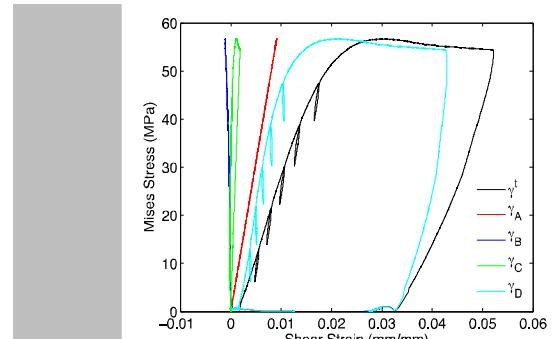


Exceptional service in the national interest



Strain Separation Methods for Porous Sandstone

M.D. Ingraham, K.A. Issen, T.A. Dewers

Outline

- Motivation
- Testing
- Strain Separation Method
 - Volume Strains
 - Shear Strains
- Applications
 - Constitutive parameters
 - Comparison to experimental results
- Conclusions
- Future Work

Motivation

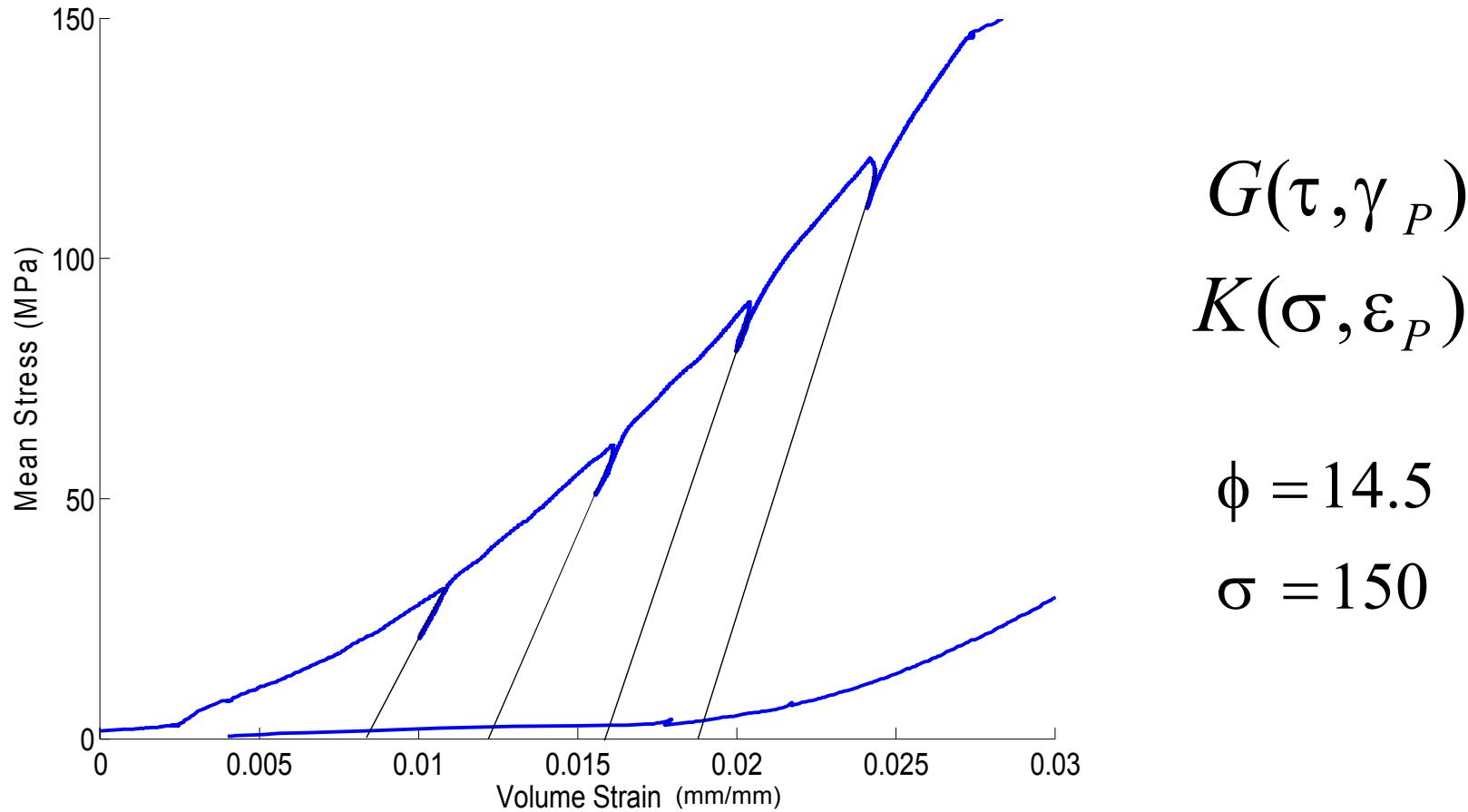
- In order to investigate localization models experimental data must be carefully reduced to develop constitutive parameters
 - Simple separation of strain into elastic and plastic components from a single constant modulus, while straightforward and a reasonable first approximation, needs to be more rigorous for thorough evaluation
- This process is subjective to test conditions, and material dependencies. For this work stress and plastic strain dependence were included.

Tests Performed

- True triaxial tests performed at 5 different Lode angles
 - 30, 14.5, 0, -14.5, -30 degrees (axisymmetric compression to axisymmetric extension)
 - Tests were performed under constant mean stress conditions
 - 5 mean stresses were tested ranging from 30 to 150 MPa in 30 MPa increments in order to map out the failure/yield surface for a range of Lode angles
- Unload loops from all tests were used to develop the strain separation process.

Strain Separation

To Determine the inelastic increment of strain



Strain Separation: Constitutive Laws

- Starting with common elastic-plastic constitutive models:

$$\boldsymbol{\varepsilon}_{ij}^t = \boldsymbol{\varepsilon}_{ij}^e + \boldsymbol{\varepsilon}_{ij}^p$$

- Isotropy and usual invariant definitions provide the common elastic strain models

$$\gamma^e = \frac{\tau}{G} \quad \boldsymbol{\varepsilon}^e = \frac{\boldsymbol{\sigma}}{K}$$

- Assuming elastic property dependence in incremental form and expanding the total derivative

$$d\gamma^t = d\left(\frac{\tau}{G(\tau, \gamma^p)}\right) + d\gamma^p$$

$$d\gamma^t = \frac{d\tau}{G} - \frac{\tau}{G^2} \left(\frac{\partial G}{\partial \tau} d\tau + \frac{\partial G}{\partial \gamma^p} d\gamma^p \right) + d\gamma^p$$

$$d\boldsymbol{\varepsilon}^t = d\left(\frac{\boldsymbol{\sigma}}{K(\boldsymbol{\sigma}, \boldsymbol{\varepsilon}^p)}\right) + d\boldsymbol{\varepsilon}^p$$

$$d\boldsymbol{\varepsilon}^t = \frac{d\boldsymbol{\sigma}}{K} - \frac{\boldsymbol{\sigma}}{K^2} \left(\frac{\partial K}{\partial \boldsymbol{\sigma}} d\boldsymbol{\sigma} + \frac{\partial K}{\partial \boldsymbol{\varepsilon}^p} d\boldsymbol{\varepsilon}^p \right) + d\boldsymbol{\varepsilon}^p$$

Strain Separation: Breakdown

$$d\gamma^t = \frac{d\tau}{G} - \frac{\tau}{G^2} \left(\frac{\partial G}{\partial \tau} d\tau + \frac{\partial G}{\partial \gamma^p} d\gamma^p \right) + d\gamma^p$$

$$d\gamma_A = \frac{d\tau}{G}$$

$$d\gamma_B = -\frac{\tau}{G^2} \left(\frac{\partial G}{\partial \tau} d\tau \right)$$

$$d\gamma_C = -\frac{\tau}{G^2} \left(\frac{\partial G}{\partial \gamma^p} d\gamma^p \right)$$

$$d\gamma_D = d\gamma^p$$

$$\beta = -\frac{d^p \varepsilon}{d^p \gamma} \quad d^p \gamma = d\gamma_C + d\gamma_D$$

- Strain is separated into 4 forms: Elastic, elastic stress dependent, plastic strain dependent, plastic
- A,B,C are recovered upon unloading γ^e , however C and D are the inelastic increment of strain needed for localization theory
- A and B are found by calculating strain with the modulus without G_0 evolution

Elastic Modulus Evolution

- Plastic shear and volume strains calculated using a method developed in conjunction with Dr. Thomas Dewers
- Stress dependence develops in the form of the evolution of the modulus
- Strain dependence develops in the form of the evolution of the G_0 and K_0 parameters, other parameters are constant

$$G = G_0(1 - G_1\tau)$$

$$K = K_0(1 + K_1\sigma - K_2 e^{-K_3\sigma})$$

$$\gamma_{\max}^e + \gamma^p = \gamma_{\min}^e + \gamma^p + \frac{\tau}{G(\tau)} + \frac{\tau_{\min}}{G(\tau_{\min})}$$

$$\varepsilon_{\max}^e + \varepsilon^p = \varepsilon_{\min}^e + \varepsilon^p + \frac{\sigma}{K(\sigma)} - \frac{\sigma_{\min}}{K(\sigma_{\min})}$$

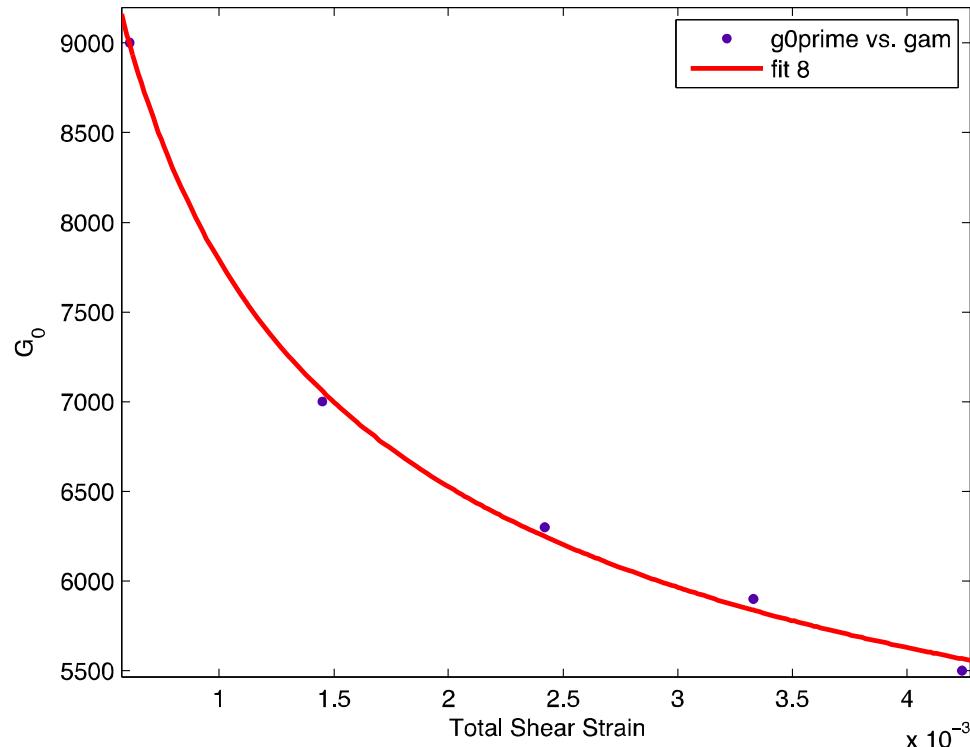
Elastic models based off work of Zimmerman et al. (1986), and Kaselow and Shapiro (2004)

G_0 and K_0 Evolution

- For a given test G_0 and K_0 evolved
- G_0 and K_0 were fit with a power function
- Plastic strains were found by subtracting elastic strain from total strain.

$$G_0 = 3233\gamma^{-0.1498}$$

$$K_0 = 4960\varepsilon^{-0.1602}$$



$$\phi = 30$$

$$\sigma = 75$$

Separated Strains



Application

$$\theta = \frac{\pi}{4} + \frac{1}{2} \arcsin \left[\frac{\frac{2}{3}(1+\nu)(\beta + \mu) - N_{II}(1-2\nu)}{\sqrt{4-3N_{II}^2}} \right]$$

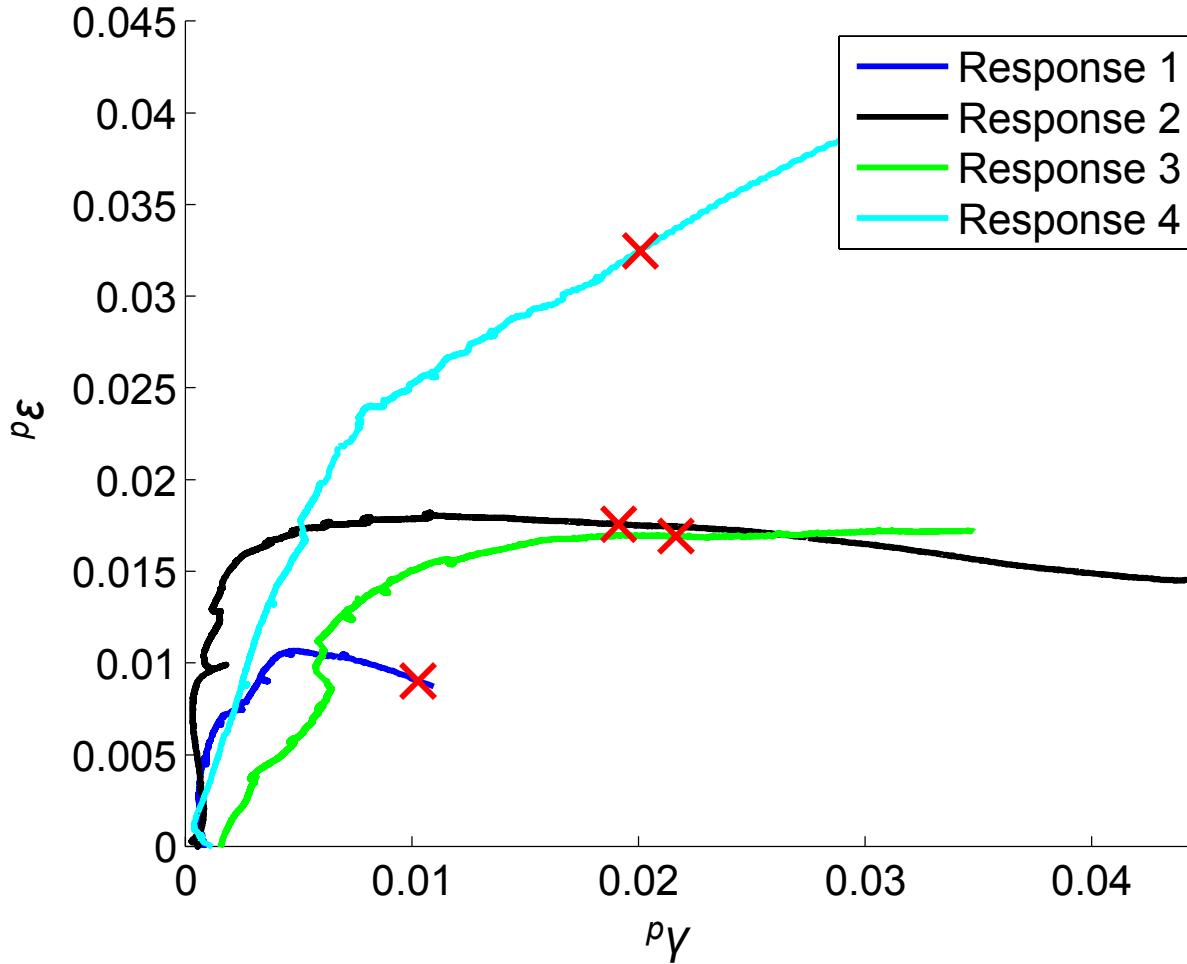
When:

$$-\frac{3(N_I + \nu N_{II})}{1+\nu} \leq \beta + \mu \leq -\frac{3(N_{III} + \nu N_{II})}{1+\nu}$$

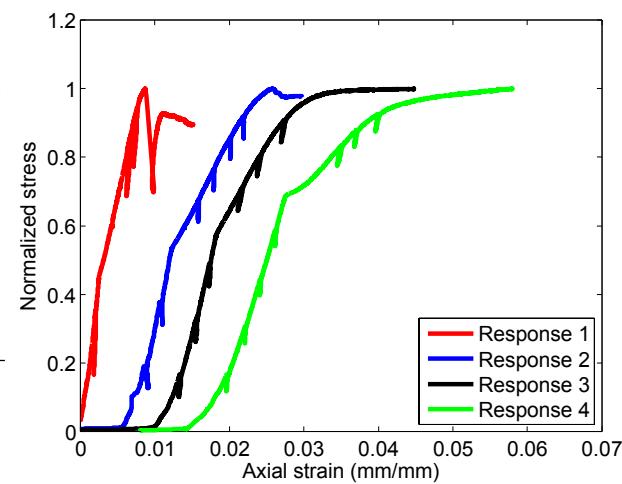
$$N_I = \frac{(\sigma - \sigma_3)}{\tau}, N_{II} = \frac{(\sigma - \sigma_2)}{\tau}, N_{III} = \frac{(\sigma - \sigma_1)}{\tau}$$

Rudnicki and Olsson (1998)

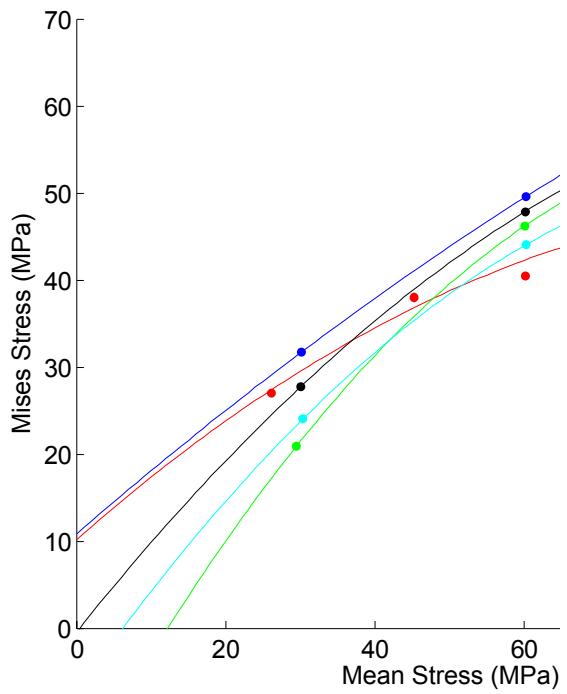
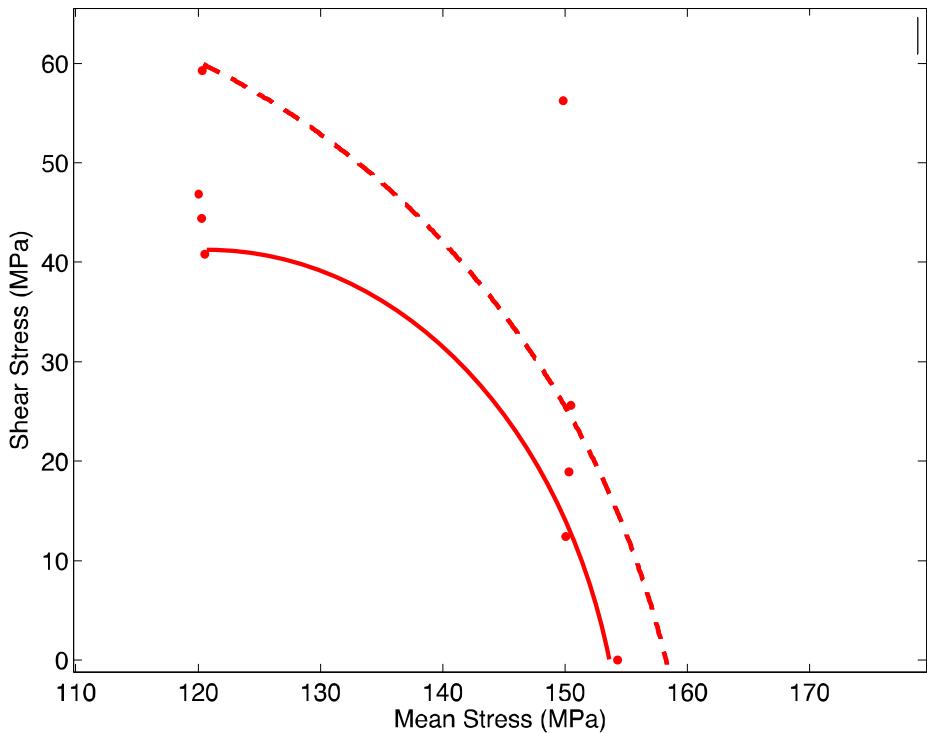
Constitutive Parameter β



$$\beta = -\frac{d^p \varepsilon}{d^p \gamma}$$



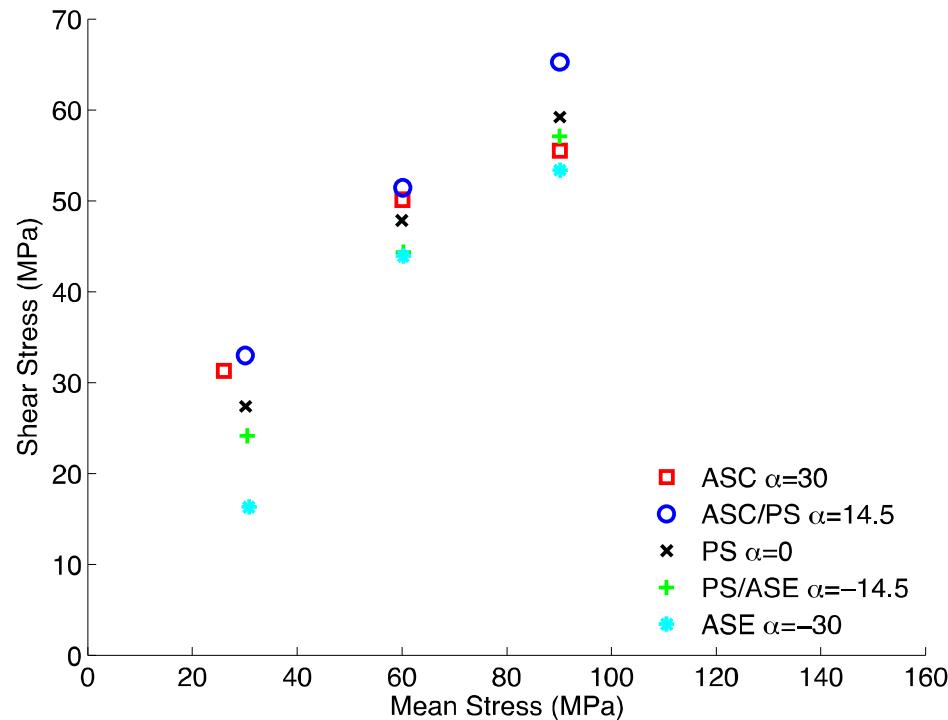
Constitutive Parameter - //



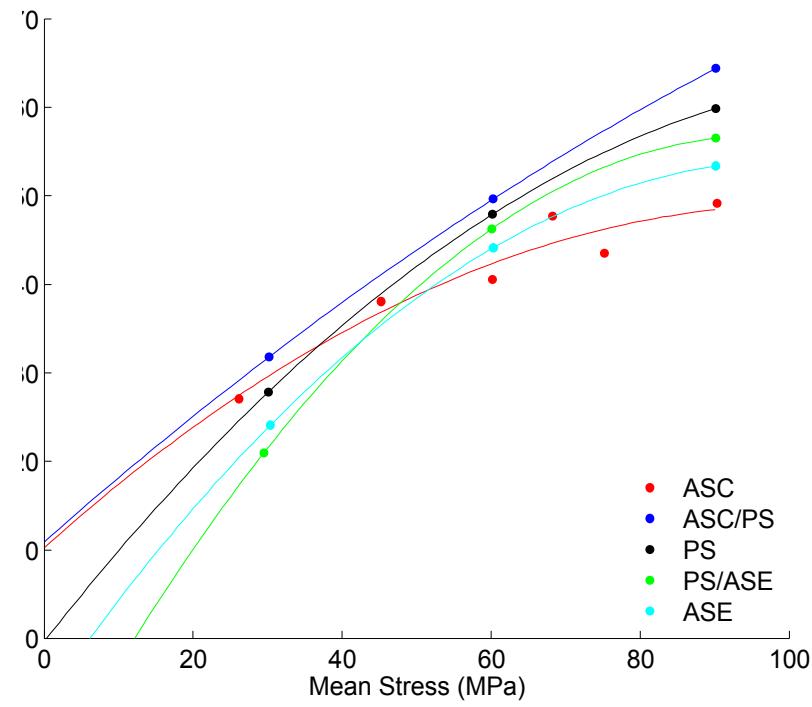
μ – contour of constant inelastic shear/volume strain

Failure/Yield Surface

Failure

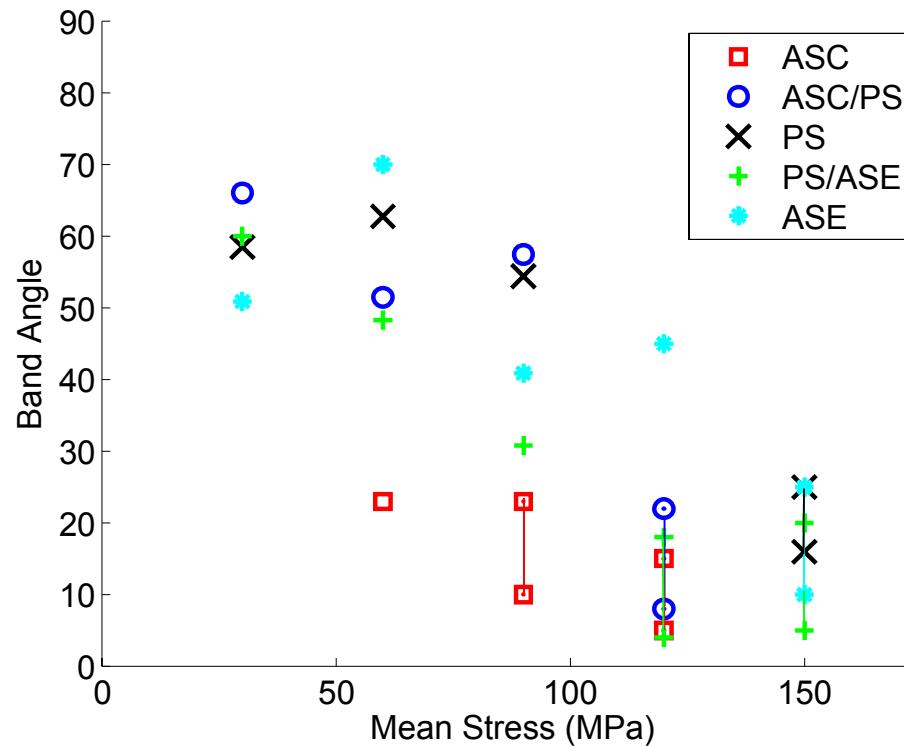


Yield

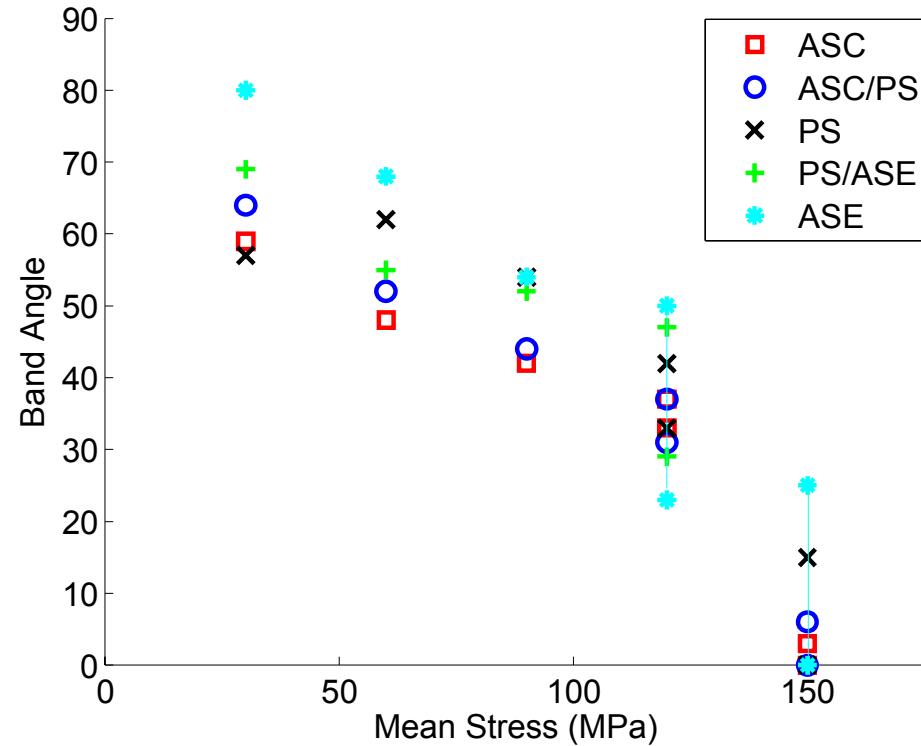


Angles vs. Mean Stress

AE Band Angle

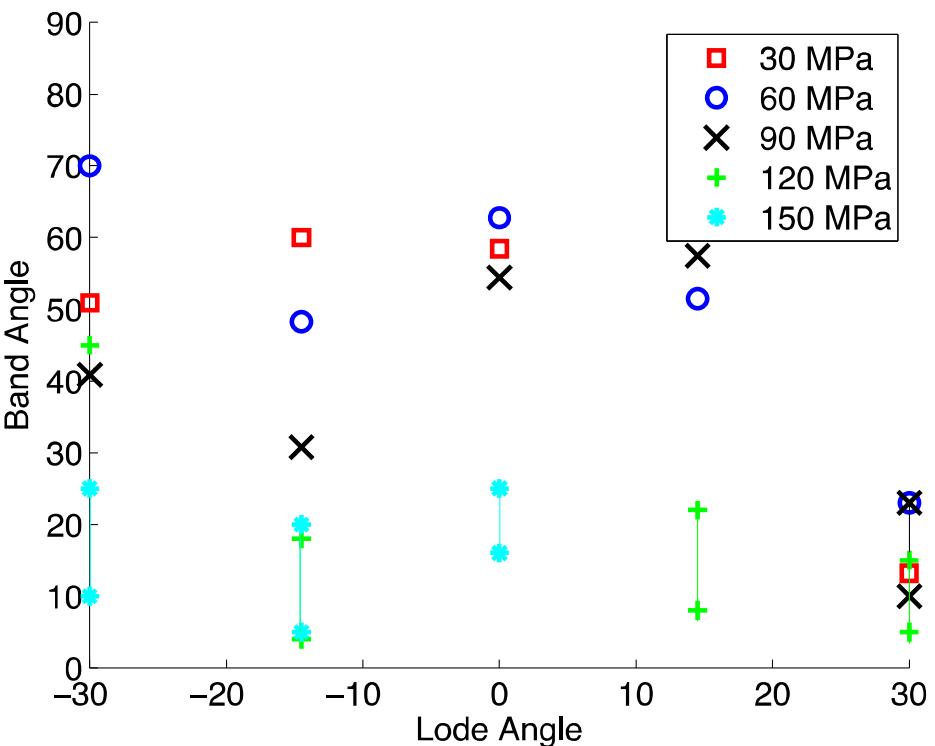


Predicted Band Angle



Band Angle vs. Lode Angle

AE Band Angle



Predicted Band Angle

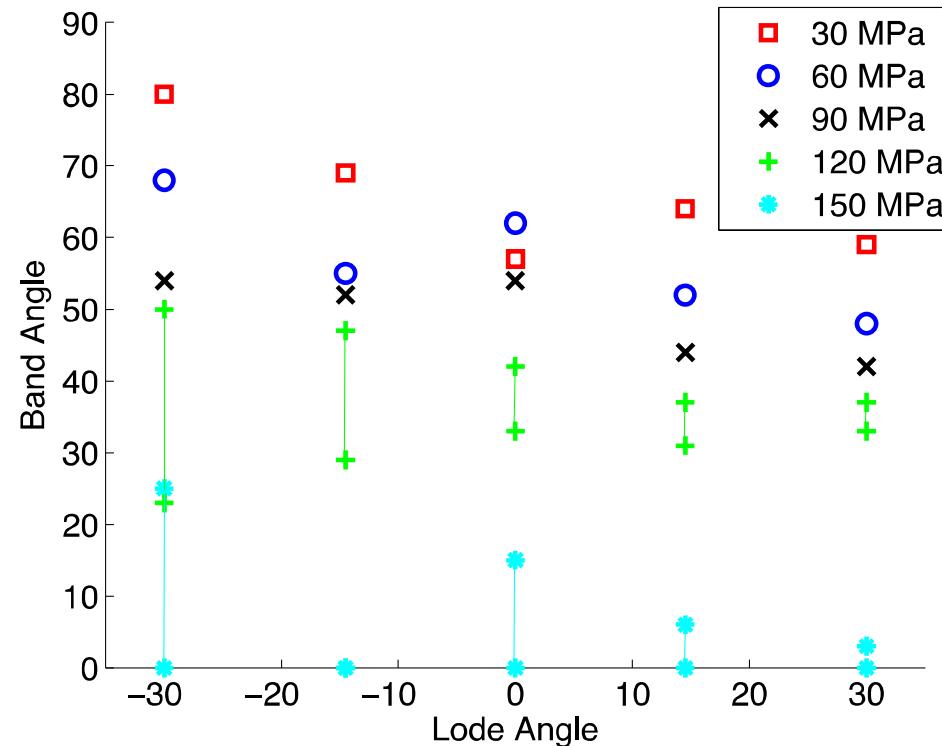


Table of Band Angles

Stress State	Mean Stress (MPa)	β	μ	Predicted θ	AE θ	Measured θ	Response Type
ASC	30	0.76	0.56	59	Conj. Bands	55-60	Shear
ASC	60	0.23	0.31	48	23	30-35	Shear
ASC	90	0.01	0.09	42	10-23	NA	CL
ASC	120	-0.29	0:-0.3	37:33	5-15	NA	CL
ASC	150	-0.66	-1.1:-3	3:0	NL	NA	NL
PS	30	0.09	0.94	57	58	61-80	Shear
PS	60	0.55	0.80	62	63	64	Shear
PS	90	0.08	0.67	54	54	58	Shear
PS	120	-0.23	0:-0.7	42:33	NL	NA	NL
PS	150	-0.75	-1.5:-4.4	15:0	16-25	NA	CL
ASE	30	0.76	0.85	80	51	65	Shear
ASE	60	0.65	0.49	68	NA*	70	Shear
ASE	90	0.04	0.13	54	41	46	Shear
ASE	120	-0.17	0:-1.9	50:23	Conj. Bands	45	Shear
ASE	150	-0.21	-1.8:-6	25:0	10-25	NA	CL

Conclusions

- Strain separation processes can be implemented to provide reasonable localization results for high porosity sandstone in comparison with experimental results for non-axisymmetric states of stress.
 - Further analysis is still required, moduli are dependent on more than their respective stress and plastic strain.
- Separation of strains allows for determination of the onset of yield
 - Yield occurs earlier with the strain separated more rigorously than if the strains are separated into purely elastic and plastic components.
 - Yield surfaces, while similar to failure surfaces, are somewhat different

Future work

- Currently working to include a pore pressure component
 - Working with both drained and undrained tests
 - Utilizing acoustic velocity monitoring to confirm elastic property evolution determined from unload loops

Acknowledgements

- Alex Rinehart, Scott Broome, Perry Barrow, Greg Flint
- DOE Office of Science: Basic Energy Sciences Grant
- NSF Grant EAR-0711346
- Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000