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Motivation ) p_

= |n order to investigate localization models experimental data
must be carefully reduced to develop constitutive parameters

= Simple separation of strain into elastic and plastic components from a
single constant modulus, while straightforward and a reasonable first
approximation, needs to be more rigorous for thorough evaluation

= This process is subjective to test conditions, and material
dependencies. For this work stress and plastic strain
dependence were included.




Tests Performed )

= True triaxial tests performed at 5 different Lode angles

= 30, 14.5, 0, -14.5, -30 degrees (axisymmetric compression to
axisymmetric extension)

= Tests were performed under constant mean stress conditions

= 5 mean stresses were tested ranging from 30 to 150 MPa in 30 MPa
increments in order to map out the failure/yield surface for a range of
Lode angles

= Unload loops from all tests were used to develop the strain
separation process.




Strain Separation ) i
To Determine the inelastic increment of strain
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Strain Separation: Constitutive Laws @)
= Starting with common elastic-plastic constitutive models:

t e p
gij_gij_l_gij

= |sotropy and usual invariant definitions provide the common elastic
strain models

= Assuming elastic property dependence in incremental form and
expanding the total derivative
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Strain Separation: Breakdown
, dv 1t (0G , oG

dy =—— dt +—d +dy”
! G szﬁt ! J !
dy = d_T = Strain is separated into 4 forms:
G Elastic, elastic stress dependent,
t (0G plastic strain dependent, plastic
dy , = ——2(—de
G\ ot = A,B,C are recovered upon
unloading y&, however C and D are
t[(0G ., . e .
dy o =——; - dy the inelastic increment of strain
G\ oy L
needed for localization theory
dy D~ dy”

= A and B are found by calculating
d’s strain with the modulus without G,

p T any B evolution




Elastic Modulus Evolution )

= Plastic shear and volume strains calculated using a method
developed in conjunction with Dr. Thomas Dewers

= Stress dependence develops in the form of the evolution of the
modulus

= Strain dependence develops in the form of the evolution of the
G,and K, parameters, other parameters are constant

G=G,(1-Gn) K=K,(1+Koc —K,e ™)
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Elastic models based off work of Zimmerman et al. (1986), and Kaselow and Shapiro (2004)
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G,and K, Evolution

= For a given test G, and K,
evolved

= Gyand K, were fit with a
power function

= Plastic strains were found by
subtracting elastic strain
from total strain.
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Separated Strains ) .
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Application ) s,
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Rudnicki and Olsson (1998)
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Constitutive Parameter
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Failure/Yield Surface )i
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Angles vs. Mean Stress

AE Band Angle
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Band Angle vs. Lode Angle @
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Table of Band Angles Lk

Mean
Stress Stress Response
State (MPa) p H Predicted 0| AE 0 Measured 0| Type
ASC 30 0.76 0.56 59 Conj. Bandy  55-60 Shear
ASC 60 0.23 0.31 48 23 30-35 Shear
ASC 90 0.01 0.09 42 10-23 NA CL
ASC 120 -0.29 ] 0:-0.3 37:33 5-15 NA CL
ASC 150 -0.66 | -1.1:-3 3:0 NL NA NL
PS 30 0.09 0.94 57 58 61-80 Shear
PS 60 0.55 0.80 62 63 64 Shear
PS 90 0.08 0.67 54 54 58 Shear
PS 120 -0.23 | 0:-0.7 42:33 NL NA NL
PS 150 -0.75 |-1.5:-4.4 15:0 16-25 NA CL
ASE 30 0.76 0.85 80 51 65 Shear
ASE 60 0.65 0.49 68 NA* 70 Shear
ASE 920 0.04 0.13 54 41 46 Shear
ASE 120 -0.17 | 0:-1.9 50:23  |Conj. Bands 45 Shear
ASE 150 -0.21 | -1.8:-6 25:0 10-25 NA CL
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Conclusions

= Strain separation processes can be implemented to provide
reasonable localization results for high porosity sandstone in
comparison with experimental results for non-axisymmetric
states of stress.

= Further analysis is still required, moduli are dependent on more than
their respective stress and plastic strain.

= Separation of strains allows for determination of the onset of

yield

= Yield occurs earlier with the strain separated more rigorously than if the strains are
separated into purely elastic and plastic components.

= Yield surfaces, while similar to failure surfaces, are somewhat different
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Future work ) .
= Currently working to include a pore pressure component
= Working with both drained and undrained tests

= Utilizing acoustic velocity monitoring to confirm elastic property
evolution determined from unload loops
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