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Mass-density remap

Given an old mesh C(€2) and the mean density values p; on the old mesh
cells ¢;, find accurate approximations m; for the masses on a new mesh
C(R), associated with the new cells ¢;:

1

an,-zﬁ;‘?X:/p(x)dV, i=1,...,C; such that
G
C1. The total mass is conserved: Z L mi = Z,CZI mi =M.

C2. If p(x) is a global linear function on €2, then the remapped masses
are exact:
ﬁv,-:iﬁ?x:/p(x)dv, i=1,...,C.
G
C3. The approximation of the mean density on the new cells, p; = %,
satisfies the local bounds

pi < pr < pf, i=1,...,C,
in other words:

~min

m = pM" iy < iy < PPy =2 M
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A few comments
19xx—-2009:
@ Remap is a well-studied problem.
@ Important applications in transport (ALE); many others.

@ The constraints (C1)—(C3) are typically handled by construction:
— a careful choice of variables in the remap scheme;
— a special reconstruction procedure; and
— a particular choice of ‘limiter’ (WIKIPEDIA: 15 slope limiters).

@ Example: Flux-corrected remap (FCR).

2009-2012:
@ We use global optimization ideas to reconcile (C1)—(C3).
@ A mathematically rigorous way to handle constraints.
@ Elegant theory, and connections to methods like FCR.

@ Improved accuracy and robustness.

2012-2013:
@ Optimization-based remap at the cost of conventional remap.

Sandia
National D. Ridzal Optimization-based remap and transport 5
Laboratories



M Remap OBR Optimization algorithms

Optimization-based remap (OBR)

Remap results

Sandia
@ National D. Ridzal Optimization-based remap and transport

Laboratories

Adaptable targets

Transport results




ﬂ Remap OBR Optimization algorithms Remap results Adaptable targets Transport results
Optimization-based formulations of remap

Generic formulation
@ Introduce exact mass update operator m®* = L(p(x)) .
@ Approximate L(p(x)) via Ly(m, u(p)), where

m = Lp(m,u(p))  Vp(x) €C,

i.e., it is exact for a given class C of functions, e.g., linear functions.
o Define a target u' such that L,(m,u") = m®™, Vp(x) € C.

@ Solve optimization problem:

S 1. :
minimize §||u —u'l3, subject to

Ly(m,u™) = m™ Vp(x)€C; uwecuh

C C )

Somi= > (L(m @) and A< Ly(m, @) < A
i=1

i=1
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Optimization-based formulations of remap

Flux-variable flux-target (FVFT) formulation

Given the mesh side-to-cell incidence matrix D, define the approximate
mass update operator of the form

m = Ly(m, u(p)) := m+ Du(p),

where u(p) approximates the exact mass fluxes on the swept regions:

ui :/p(x)dV J€S(Q).

fj

Compute target ujT = / p"(x)dV; j=1,...,S; solve

1
S L .
minimize §||u — uT||§2 subject to

ﬁeSé’ and m™" < m+ DU < M.
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Optimization-based formulations of remap
Mass-variable mass-target (MVMT) formulation

Define the approximate mass update operator of the form
m = Ly(m, u(p)) :=m+ u(p),

where u(p) approximates the exact mass increments between the new
cells and old cells:

U = /~ p(x)dV — / )V i€ C(@).

i i

Compute target u] := / p"(x)dV — / p"(x)dV; i=1,...,C; solve

for cj
_— 1. .
minimize §||u —u'|, subject to
c
e Ch; =0 and MM < m+4+u< mm.

i=1
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Optimization-based formulations of remap

Theoretical results

Uniqueness: Under very mild assumptions on mesh connectivity, FVFT
and MVMT are strictly convex quadratic programs with unique solutions.

High-order: Suppose that the barycenter of each new cell is contained
within the convex hull of the barycenters of its old neighbors. Then,
FVFT and MVMT preserve globally linear functions.

Monotone: The feasible set is nonempty; hence, MVMT and FVFT
preserve local bounds.

Big brother: FCR is a “local” version of FVFT, in the sense that its
feasible set is separable, per cell. However, FCR's feasible set is fully
contained in and generally smaller than FVFT's feasible set. Hence,
FVFT is provably more accurate.
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Optimization-based formulations of remap

FVFT (4 € S§ =R%) MVMT (@ € C" = R€)
N 1 . 10 N 1. 10
minimize §||u— ulz, s.t. minimize 5||u— u'llz, s.t.
ﬁvm'"gm—i-Dﬁgﬁvmax Zﬁl_zo; ,’:hmmgm_l_ﬁgﬁ,lmax
i=1

Preliminary comparison

@ The objective functions are structurally identical and quite simple.

@ The FVFT constraint is a globally coupled inequality constraint; its
stencil is sparse and equivalent to that of the discrete divergence operator.
In Bochev, Ridzal, Scovazzi, Shashkov (2011) the FVFT problem is solved
using a semismooth Newton iteration; requires global linear system solves!

@ The MVMT inequality constraint is a simple bound constraint; however,
there is a single dense equality constraint that couples all variables!
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Optimization-based formulations of remap

FVFT (4 € S§ =R%) MVMT (@ € C" = R€)
N 1 . 10 N 1. 10
minimize §||u— ulz, s.t. minimize 5||u— u'llz, s.t.
ﬁvm'"gm—i-Dﬁgﬁvmax Zﬁl_zo; ,’:hmmgm_l_ﬁgﬁ,lmax
i=1

Preliminary comparison

@ The objective functions are structurally identical and quite simple.

@ The FVFT constraint is a globally coupled inequality constraint; its
stencil is sparse and equivalent to that of the discrete divergence operator.
In Bochev, Ridzal, Scovazzi, Shashkov (2011) the FVFT problem is solved
using a semismooth Newton iteration; requires global linear system solves!

@ The MVMT inequality constraint is a simple bound constraint; however,
there is a single dense equality constraint that couples all variables!
— Any advantages?
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Optimization algorithms
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(m)

MVMT Algorithm

We solve
L 1. T2 bi
minimize §||u— u'llg, subject to
C .
ST =0 and AN < mtT< AT
i=1
Known as the singly linearly constrained QP with simple bounds, see
Dai, Fletcher (2006, Math. Program.).

Key observation: The related optimization problem without the mass
conservation constraint, Z,C=1 u; = 0, is fully separable!

The related problem can be solved by independently (and concurrently)
solving C one-dimensional quadratic programs with simple bounds.

Goal: Satisfy the second constraint, Z,C:l Ui =0, “in a few iterations”.
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MVMT Algorithm
Define Lagrangian functional L : RE xR x R¢ x R¢ - R,
c G

~ 1 o I
L(4,\, pi1, p2) = 5 ;(u; —ul)*— A; uj —
Z;C:1 puai (B — M 4+ m;) — ZIC:]. piz,i (AP —m; = T;)
where T € R are the primal optimization variables, and
X ER, u1 € RS, and pp € RE are the Lagrange multipliers.
Karush-Kuhn-Tucker (KKT) conditions:

~ T .
Up=u; + A+ pi— o i=1,...,
%?i"—m,gﬁ,-gﬁﬁ“ax—mi; i=1,...
p1,i =0, p2; >0, i=1,...,

H1i (U, — ,’;’;nin + m,-) =0, 2, i (—U,' + ,~n’r_nax — ml.) =0, i=1,...,
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MVMT Algorithm

Transport results

Idea: We solve the KKT conditions directly.

First, we focus on the conditions in black, separable in the index i. For
any fixed value of A\ a solution to the “black” conditions is given by

Ui=ul + X pa,i = p2,i =0 if mht—m, <ul A< M- m,
U=mM"—m; jpo;=0, p,i=0—u — X if uf +AX<mM"—m,
U=m™—m; pi=0, poi=u —Ti+X if uf +X>m">—m,,

foralli=1,...,C.

Ignoring p1 and pp and treating 4; as a function of \ yields

Ui(\) = median(m™" — m., u] + X\, MM —m.), i=1,....C. |

This is a trivial O(C) computation.
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MVMT Algorithm

Second, we adjust A in an outer iteration in order to satisfy the
constraint Z,Czl ui(A) =0.

“ ”

red

When we find the A\* such that Z,C:1 u;(A*) = 0 holds, we will have
solved the full KKT conditions.

The function Ziczlﬁ,-(/\) is a piecewise linear, monotonically increasing
function of a single scalar variable \. Therefore, a secant method can
be efficiently employed as the outer iteration.

In all our examples, the algorithm requires < 5 secant iterations!
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MVMT Algorithm

@ Initialization: Set \g < 0, 7« 1012 and ANP — 108,
@ Finite difference step:
© Compute Ti(Xo) « median(m™™ — m,, u + Ao, MP™ — m,) Vi.

Compute residual r, «— Z,C:I Ti(Mo).
If |rp] < 7, then return T;(Xo) Vi and stop.

@ Set TUi( Mo+ AXP) — median(m™ — m;, u] + Xo+ AN, MM — m,) Vi.
Compute residual re «— S Ui(Xo + AXP).

© Seta «— ANP/(rc —1,).

Q Set A\, — Xo. Set Ac — A, — arp.

© While |rc| >n  (Secant Iteration)
@ Compute Gi(\c) « median(m™ — m,, uf + \e, M™ — m;) Vi.

Compute residual r. — Z;:1 Ti(Ae)-
@ Set a— (Ap— Ac)/(rp — rc). Set rp «— re.
@ Set A\, — Ac. Set Ac — Ac — are.
End While
@ Return T;(\c) Vi and stop.
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Remap results
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Remap: Shape preservation

FCR Result (New Mesh)

Original Density (Old Mesh)

100 ) 100 )
w ol
80 60 -
wf wf
af wf
of of
n‘\ 0‘2 0‘3 v‘o 0‘5 n‘s 0‘7 a‘u D‘S 1 n‘\ 0‘2 n‘s 0‘6 0‘5 n‘s 0‘7 U‘B o‘e 1

wof - o - ]
ol ol ]
wf wf 1
wf ol 1
wf af 3
of of 1
o n‘\ u‘z n‘:l n‘o u‘s n‘s n‘7 n‘s n‘s 1 o n‘\ n‘z ﬂ‘:l n‘o a‘s n‘s 0‘7 n‘s u‘s 1

Figure: FVFT and MVMT preserve the shape of the peak, giving identical
results, while FCR loses accuracy and transforms the peak into a step function.
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Remap: Monotonicity preservation

1 1
0.5 0.5
«—
00 0.5 1 G0 0.5 1

Figure: A 3x3 uniform mesh (left pane) and a “compressed” mesh (right
pane) with a £x¢-fold compression, £ = 4, of the middle cell.

{=5 {=6 =7 {=14 (=15 (=16 ¢=100

FVFT yes yes yes yes yes yes yes
MVMT yes yes yes yes yes yes yes
FCR yes yes yes yes no no no

Table: Monotonicity of FVFT, MVMT and FCR, applied to a linear density.

Sandia
@ National D. Ridzal Optimization-based remap and transport 17
Laboratories



ﬂ Remap OBR Optimization algorithms Remap results Adaptable targets Transport results

Remap: Asymptotic accuracy

FVFT MVMT FCR
mesh remaps Ly err rate Ly err rate Ly err rate
64 x64 320 1.09e-03 — 1.15e-03 — 1.03e-03 —
128x128 640 2.69e-04 2.03 2.77e-04  2.06 2.81e-04 1.87
256x256 1280 6.71e-05 2.01 6.82e-05 2.04 9.23e-05 1.74
512x512 2560 1.68e-05 2.01 1.69e-05 2.03 3.65e-05 1.60

Table: FVFT, MVMT and FCR errors and convergence rate estimates for the
sine density using a sequence of repeated-repair ( “torture”) cyclic meshes.
FVFT and MVMT are second-order accurate; FCR is not.

In summary, optimization-based remappers are more robust and
more accurate than FCR.

The results are similar if FCR is replaced with another non-global
(explicit) remapper.
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Remap: Speed

FCR MVMT FVFT
mesh remaps time(sec) time(sec) ratio time(sec)  ratio
Sine
64 x 64 320 4.1 4.1 1.0 6.8 1.7
128x128 640 25.1 24.6 1.0 48.7 1.9
256256 1280 177.2 173.1 1.0 384.6 2.2
512x512 2560 2049.1 1918.0 0.9 3677.5 1.8
Peak
64 %64 320 4.9 4.9 1.0 7.7 1.6
128x128 640 28.0 28.6 1.0 53.9 1.9
256x256 1280 194.5 192.8 1.0 400.8 2.1
512x512 2560 2060.1 2096.5 1.0 4410.5 2.1
Shock
64 x 64 320 4.6 4.9 1.1 9.0 2.0
128x128 640 27.4 29.1 1.0 85.1 3.1
256256 1280 192.5 195.6 1.0 414.4 2.2
512x512 2560 2064.9 2146.7 1.0 3117.1 15

Table: Comparison of the computational cost on the tensor-product cyclic grid.
Ratios of run times of MVMT and FVFT with respect to FCR are included.
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Adaptable targets
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Reconstruction residual

@ Targets are built from the reconstruction:
P = pi(x) = pi +g - (x—b;) Ve € C(Q).

where p; are density values on the old cells ¢;, g; is a least-squares
approximation of the gradient Vp based on p; from the cells in the
neighborhood N(c;), and b; is the barycenter of ¢;.

@ Use a reconstruction residual to modify the gradient of p(x):
If the exact density is linear there holds

_ fc,- p(x)dV

P = )

=p Vi=1,...,C.

This property prompts the following definition,

ai= > lpj—plby).

JEN(ci)
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Adaptable target definition
@ Consider a family of real valued functions «;(€) such that
ai(§) >1 and «;(0)=1.
@ Define the adaptable density reconstruction as
P () = pi(x) = pi + ai(ar)g; - (x = by).
@ Substitute p” for p to define adaptable OBR target extensions.

@ One example is MVMT-a, where for the given constants 71,7, > 0,

1 if i/ max {qi} <m
ai(4)) = het
1+ q,-/;nfaxc{q,-} otherwise .

Note: Compare with the monotone reconstruction
P () = pF(x) = pi + ai(p, pP")g; - (x = bi),
where a;(p, p"), 0 < ai(p, p") < 1, is a limiting coefficient.
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Transport results
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Planar transport: Combo rotation

Figure: Initial data for the solid-body rotation test.
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Planar transport: Combo rotation
MVMT FCR

i
i
“:“}“‘

i

I

Figure: After one full revolution (810 time steps) on a 128x128 mesh.
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Planar transport: Combo rotation

x=0.50 y=0.75

Initial

Initial
MVMT-a
- - - FCR

0 02 04 06 08 1 0 02 04 06 038 1
y X

Figure: MVMT-a resolves the back side and the cylinder slot better than FCR.

FCR FVFT MVMT MVMT-a
mesh steps L, error rate L, error rate L, error rate L1 error rate
64 x 64 408 3.42e-2 — 3.59e-2 — 3.93e-2 — 3.13e-2 —
128x128 810 1.94e-2 0.82 2.05e-2 080 2.34e-2 0.81 1.73e-2 0.86
256x256 1614 1.12e-2 0.81 1.19e-2 0.80 1.39e-2 0.80 1.12e-2 0.75

Table: Comparison of the L; errors of FCR, FVFT, MVMT and MVMT-a.
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Planar transport: Combo rotation

FCR FVFT MVMT MVMT-a
mesh steps time(sec) time(sec) ratio time(sec) ratio time(sec)  ratio
64 x 64 408 33 63.7 193 34 1.0 3.8 1.1
128x128 810 26.4 496.4 18.8  26.2 1.0 28.8 1.1
256x256 1614 229.1 3464.2 151 2227 1.0 230.9 1.0

Table: Computational cost.

FVFT is not cost-competitive in transport applications.

FCR, MVMT and MVMT-a show nearly identical speeds.
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Planar transport: Cylinder translation

Figure: Initial data for the solid-body translation test. The cylinder is moved
three widths of the domain to the right and three widths to the left.
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Planar transport: Cylinder translation
FCR MVMT-a

§_‘..

—
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Planar transport: Cylinder translation

x=0.50 y=0.50
Initial Initial

1 — fii 1
0.8 0.8
0.6 0.6
04 0.4
0.2 0.2

0 0

0 02 04 06 08 1 0 02 04 06 08 1
Yy X

Figure: Comparison of the qualitative accuracy of MVMT-a and FCR for the
solid-body translation test. MVMT-a resolves the back side and the slot of the
cylinder much better than FCR.

FCR MVMT-a FCR MVMT-a
mesh steps time(sec) time(sec) ratio Lj error rate  Lj error rate
64 %64 546 4.2 4.9 1.2 2.77e-2 — 2.75e-2 —
128x128 1092 35.2 37.8 1.1 1.50e-2  0.80 1.34e-2

256x256 2178 282.2 295.5 1.0 9.45e-3  0.78 6.70e-3
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Spherical transport: Two-cylinder deformation
(Nair/Lauritzen)

Figure: Initial data for the transport tests on the sphere.
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Spherical transport: Two-cylinder deformation

FCR MVMT-a

Figure: Transport results for the deformational flow test on the sphere at a
final time T =5 after 2400 time steps on a 0.75° mesh. The MVMT-a results
appear sharper than the FCR results, particularly for the cylinder on the right.

FCR MVMT-a FCR MVMT-a
mesh  steps time(sec) time(sec) ratio Lj error rate L error rate
3° 600 23.0 24.2 1.1 4.34e-2 — 3.60e-2 —
1.5° 1200 187.7 190.0 1.0 2.85e-2  0.61 2.27e-2 0.66
0.75° 2400 1644.4 1717.7 1.0 1.67e-2 0.69 1.40e-2 0.68
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Spherical transport: Two-cylinder rotation

FCR MVMT-a

Figure: Transport results for the solid-body rotation test on the sphere, for two
revolutions, left to right and back (1920 time steps) on a 0.75° mesh. The
MVMT-a results provide a much better match to the initial data.

FCR MVMT-a FCR MVMT-a
mesh  steps time(sec) time(sec) ratio Lj error rate L error rate
3° 480 17.4 18.2 1.0 3.25e-2 — 2.79e-2 —
1.5° 960 132.5 151.6 1.1 1.99e-2 0.78 1.36e-3
0.75° 1920 1184.5 1379.0 1.2 1.10e-2 0.78 5.41e-3
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Summary

Optimization-based remappers (OBR) are more robust and more
accurate than explicit remappers.

@ The divide-and-conquer strategy separates accuracy concerns from
the preservation of features such as monotonicity.

@ The mass-based OBR algorithm, abbreviated MVMT, is as fast as
flux-corrected remap.

@ The optimization approach allows for specially tuned targets.

@ Dual optimization variables may be used to tune targets.
@ Multi-tracer transport can be done efficiently (in progress).

@ Quadratic+ targets pose an interesting optimization challenge.
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