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Mass-density remap
Given an old mesh C (Ω) and the mean density values ρi on the old mesh
cells ci , find accurate approximations m̃i for the masses on a new mesh
C̃ (Ω), associated with the new cells c̃i :

m̃i ≈ m̃ex
i =

∫
eci

ρ(x)dV , i = 1, . . . ,C ; such that

C1. The total mass is conserved:
∑C

i=1 m̃i =
∑C

i=1 mi = M .
C2. If ρ(x) is a global linear function on Ω, then the remapped masses

are exact:

m̃i = m̃ex
i =

∫
eci

ρ(x)dV , i = 1, . . . ,C .

C3. The approximation of the mean density on the new cells, ρ̃i = emieµi
,

satisfies the local bounds

ρmin
i ≤ ρ̃i ≤ ρmax

i , i = 1, . . . ,C ,

in other words:

m̃min
i := ρmin

i µ̃i ≤ m̃i ≤ ρmax
i µ̃i =: m̃max

i .

,
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A few comments
19xx–2009:

Remap is a well-studied problem.

Important applications in transport (ALE); many others.

The constraints (C1)–(C3) are typically handled by construction:
— a careful choice of variables in the remap scheme;
— a special reconstruction procedure; and
— a particular choice of ‘limiter’ (Wikipedia: 15 slope limiters).

Example: Flux-corrected remap (FCR).

2009–2012:

We use global optimization ideas to reconcile (C1)–(C3).

A mathematically rigorous way to handle constraints.

Elegant theory, and connections to methods like FCR.

Improved accuracy and robustness.

2012–2013:

Optimization-based remap at the cost of conventional remap.

,
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Optimization-based formulations of remap

Generic formulation

Introduce exact mass update operator m̃ex = L(ρ(x)) .

Approximate L(ρ(x)) via Lh(m, u(ρ)), where

m̃ex = Lh(m, u(ρ)) ∀ρ(x) ∈ C ,

i.e., it is exact for a given class C of functions, e.g., linear functions.

Define a target uT such that Lh(m, uT) = m̃ex, ∀ρ(x) ∈ C .
Solve optimization problem:

minimize
1

2
‖û − uT‖2

`2
subject to

Lh(m, uT) = m̃ex ∀ρ(x) ∈ C ; û ∈ Uh

C∑
i=1

mi =
C∑

i=1

(Lh(m, û))i and m̃min ≤ Lh(m, û) ≤ m̃max .

,
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Optimization-based formulations of remap

Flux-variable flux-target (FVFT) formulation

Given the mesh side-to-cell incidence matrix D, define the approximate
mass update operator of the form

m̃ = Lh(m, u(ρ)) := m + Du(ρ) ,

where u(ρ) approximates the exact mass fluxes on the swept regions:

uex
j =

∫
rj

ρ(x)dV j ∈ S(Ω) .

Compute target uT
j :=

∫
rj

ρh(x)dV ; j = 1, . . . ,S ; solve

 minimize
1

2
‖û − uT‖2

`2
subject to

û ∈ Sh
0 and m̃min ≤ m + Dû ≤ m̃max .

,
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Optimization-based formulations of remap
Mass-variable mass-target (MVMT) formulation

Define the approximate mass update operator of the form

m̃ = Lh(m, u(ρ)) := m + u(ρ) ,

where u(ρ) approximates the exact mass increments between the new
cells and old cells:

uex
i =

∫
eci

ρ(x)dV −
∫

ci

ρ(x)dV i ∈ C (Ω) .

Compute target uT
i :=

∫
eci

ρh(x)dV −
∫

ci

ρh(x)dV ; i = 1, . . . ,C ; solve


minimize

1

2
‖û − uT‖2

`2
subject to

û ∈ C h ;
C∑

i=1

ûi = 0 and m̃min ≤ m + û ≤ m̃max .

,
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Optimization-based formulations of remap

Theoretical results

Uniqueness: Under very mild assumptions on mesh connectivity, FVFT
and MVMT are strictly convex quadratic programs with unique solutions.

High-order: Suppose that the barycenter of each new cell is contained
within the convex hull of the barycenters of its old neighbors. Then,
FVFT and MVMT preserve globally linear functions.

Monotone: The feasible set is nonempty; hence, MVMT and FVFT
preserve local bounds.

Big brother: FCR is a “local” version of FVFT, in the sense that its
feasible set is separable, per cell. However, FCR’s feasible set is fully
contained in and generally smaller than FVFT’s feasible set. Hence,
FVFT is provably more accurate.

,
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Optimization-based formulations of remap
FVFT (bu ∈ Sh

0 ≡ RS )8>>><>>>:
minimize

1

2
‖bu − uT‖2

`2
s.t.

emmin ≤ m + Dbu ≤ emmax
CX

i=1

MVMT (bu ∈ C h ≡ RC ) Sh
08>>><>>>:

minimize
1

2
‖bu − uT‖2

`2
s.t.

CX
i=1

bui = 0 ; emmin ≤ m + bu ≤ emmax

Preliminary comparison

The objective functions are structurally identical and quite simple.

The FVFT constraint is a globally coupled inequality constraint; its
stencil is sparse and equivalent to that of the discrete divergence operator.
In Bochev, Ridzal, Scovazzi, Shashkov (2011) the FVFT problem is solved
using a semismooth Newton iteration; requires global linear system solves!

The MVMT inequality constraint is a simple bound constraint; however,
there is a single dense equality constraint that couples all variables!

→ Any advantages?

,
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MVMT Algorithm

We solve 
minimize

1

2
‖û − uT‖2

`2
subject to

C∑
i=1

ûi = 0 and m̃min ≤ m + û ≤ m̃max .

Known as the singly linearly constrained QP with simple bounds, see
Dai, Fletcher (2006, Math. Program.).

Key observation: The related optimization problem without the mass
conservation constraint,

∑C
i=1 ûi = 0, is fully separable!

The related problem can be solved by independently (and concurrently)
solving C one-dimensional quadratic programs with simple bounds.

Goal: Satisfy the second constraint,
∑C

i=1 ûi = 0, “in a few iterations”.

,
D. Ridzal Optimization-based remap and transport 11



Remap OBR Optimization algorithms Remap results Adaptable targets Transport results

MVMT Algorithm
Define Lagrangian functional L : RC × R× RC × RC → R,

L(û, λ, µ1, µ2) =
1

2

C∑
i=1

(ûi − uT
i )2 − λ

C∑
i=1

ûi −

∑C
i=1 µ1,i

(
ûi − m̃min

i + mi

)
−
∑C

i=1 µ2,i

(
m̃max

i −mi − ûi

)
,

where û ∈ RC are the primal optimization variables, and

λ ∈ R, µ1 ∈ RC , and µ2 ∈ RC are the Lagrange multipliers.

Karush-Kuhn-Tucker (KKT) conditions:

ûi = uT
i + λ+ µ1,i − µ2,i ; i = 1, . . . ,C

m̃min
i −mi ≤ ûi ≤ m̃max

i −mi ; i = 1, . . . ,C

µ1,i ≥ 0 , µ2,i ≥ 0; i = 1, . . . ,C

µ1,i

(
ûi − m̃min

i + mi

)
= 0 , µ2,i (−ûi + m̃max

i −mi ) = 0; i = 1, . . . ,C∑C
i=1 ûi = 0

,
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MVMT Algorithm

Idea: We solve the KKT conditions directly.

First, we focus on the conditions in black, separable in the index i . For
any fixed value of λ a solution to the “black” conditions is given by8><>:

bui = uT
i + λ; µ1,i = µ2,i = 0 if emmin

i −mi ≤ uT
i + λ ≤ emmax

i −mibui = emmin
i −mi ; µ2,i = 0, µ1,i = bui − uT

i − λ if uT
i + λ < emmin

i −mibui = emmax
i −mi ; µ1,i = 0, µ2,i = uT

i − bui + λ if uT
i + λ > emmax

i −mi ,

for all i = 1, . . . ,C .

Ignoring µ1 and µ2 and treating ûi as a function of λ yields

ûi (λ) = median(m̃min
i −mi , uT

i + λ, m̃max
i −mi ) , i = 1, . . . ,C .

This is a trivial O(C ) computation.

,
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MVMT Algorithm

Second, we adjust λ in an outer iteration in order to satisfy the “red”

constraint
∑C

i=1 ûi (λ) = 0.

When we find the λ∗ such that
∑C

i=1 ûi (λ
∗) = 0 holds, we will have

solved the full KKT conditions.

The function
∑C

i=1 ûi (λ) is a piecewise linear, monotonically increasing
function of a single scalar variable λ. Therefore, a secant method can
be efficiently employed as the outer iteration.

0

λ

In all our examples, the algorithm requires ≤ 5 secant iterations!

,
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MVMT Algorithm
1 Initialization: Set λ0 ← 0, η ← 10−12 and ∆λFD ← 10−8.
2 Finite difference step:

1 Compute bui (λ0)← median( emmin
i −mi , uT

i + λ0, emmax
i −mi ) ∀i .

Compute residual rp ←
PC

i=1 bui (λ0).

If |rp| < η, then return bui (λ0) ∀i and stop.

2 Set bui (λ0 + ∆λFD )← median( emmin
i −mi , uT

i +λ0 + ∆λFD , emmax
i −mi ) ∀i .

Compute residual rc ←
PC

i=1 bui (λ0 + ∆λFD ).

3 Set α← ∆λFD/(rc − rp).

4 Set λp ← λ0. Set λc ← λp − αrp.

3 While |rc | > η (Secant Iteration)

1 Compute bui (λc )← median( emmin
i −mi , uT

i + λc , emmax
i −mi ) ∀i .

Compute residual rc ←
PC

i=1 bui (λc ).

2 Set α← (λp − λc )/(rp − rc ). Set rp ← rc .

3 Set λp ← λc . Set λc ← λc − αrc .

End While

4 Return bui (λc ) ∀i and stop.

,
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Remap: Shape preservation

Original Density (Old Mesh) FCR Result (New Mesh)
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Figure: FVFT and MVMT preserve the shape of the peak, giving identical
results, while FCR loses accuracy and transforms the peak into a step function.
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Remap: Monotonicity preservation

0 0.5 1
0

0.5

1

−→←−−

0 0.5 1
0

0.5

1

Figure: A 3×3 uniform mesh (left pane) and a “compressed” mesh (right
pane) with a `×`-fold compression, ` = 4, of the middle cell.

` = 5 ` = 6 ` = 7 ` = 14 ` = 15 ` = 16 ` = 100

FVFT yes yes yes yes yes yes yes

MVMT yes yes yes yes yes yes yes

FCR yes yes yes yes no no no

Table: Monotonicity of FVFT, MVMT and FCR, applied to a linear density.
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Remap: Asymptotic accuracy

FVFT MVMT FCR

mesh remaps L1 err rate L1 err rate L1 err rate

64×64 320 1.09e-03 — 1.15e-03 — 1.03e-03 —
128×128 640 2.69e-04 2.03 2.77e-04 2.06 2.81e-04 1.87
256×256 1280 6.71e-05 2.01 6.82e-05 2.04 9.23e-05 1.74
512×512 2560 1.68e-05 2.01 1.69e-05 2.03 3.65e-05 1.60

Table: FVFT, MVMT and FCR errors and convergence rate estimates for the
sine density using a sequence of repeated-repair (“torture”) cyclic meshes.
FVFT and MVMT are second-order accurate; FCR is not.

In summary, optimization-based remappers are more robust and
more accurate than FCR.

The results are similar if FCR is replaced with another non-global
(explicit) remapper.

,
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Remap: Speed
FCR MVMT FVFT

mesh remaps time(sec) time(sec) ratio time(sec) ratio

Sine

64×64 320 4.1 4.1 1.0 6.8 1.7
128×128 640 25.1 24.6 1.0 48.7 1.9
256×256 1280 177.2 173.1 1.0 384.6 2.2
512×512 2560 2049.1 1918.0 0.9 3677.5 1.8

Peak

64×64 320 4.9 4.9 1.0 7.7 1.6
128×128 640 28.0 28.6 1.0 53.9 1.9
256×256 1280 194.5 192.8 1.0 400.8 2.1
512×512 2560 2060.1 2096.5 1.0 4410.5 2.1

Shock

64×64 320 4.6 4.9 1.1 9.0 2.0
128×128 640 27.4 29.1 1.0 85.1 3.1
256×256 1280 192.5 195.6 1.0 414.4 2.2
512×512 2560 2064.9 2146.7 1.0 3117.1 1.5

Table: Comparison of the computational cost on the tensor-product cyclic grid.
Ratios of run times of MVMT and FVFT with respect to FCR are included.
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Reconstruction residual

Targets are built from the reconstruction:

ρh(x)|ci := ρh
i (x) = ρi + gi · (x− bi ) ∀ci ∈ C (Ω) ,

where ρi are density values on the old cells ci , gi is a least-squares
approximation of the gradient ∇ρ based on ρi from the cells in the
neighborhood N(ci ), and bi is the barycenter of ci .

Use a reconstruction residual to modify the gradient of ρh(x):
If the exact density is linear there holds

ρ(bi ) =

∫
ci
ρ(x)dV

µ(ci )
= ρi ∀i = 1, . . . ,C .

This property prompts the following definition,

qi =
∑

j∈N(ci )

|ρj − ρh
i (bj )| .

,
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Adaptable target definition

Consider a family of real valued functions αi (ξ) such that

αi (ξ) ≥ 1 and αi (0) = 1 .

Define the adaptable density reconstruction as

ρA(x)|ci := ρA
i (x) = ρi + αi (qi )gi · (x− bi ) .

Substitute ρA for ρh to define adaptable OBR target extensions.

One example is MVMT-a, where for the given constants γ1, γ2 > 0,

αi (qi ) =

1 if qi/ max
i=1,...,C

{qi} ≤ γ1

1 + γ2 qi/ max
i=1,...,C

{qi} otherwise .

Note: Compare with the monotone reconstruction

ρL(x)|ci := ρL
i (x) = ρi + αi (ρ, ρ

h)gi · (x− bi ) ,

where αi (ρ, ρ
h), 0 ≤ αi (ρ, ρ

h) ≤ 1, is a limiting coefficient.

,
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Planar transport: Combo rotation
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Figure: Initial data for the solid-body rotation test.
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Planar transport: Combo rotation

MVMT FCR

0.2 0.4 0.6 0.8 1

0.2
0.4

0.6
0.8

1
0

0.2
0.4
0.6
0.8

1

xy
0.2 0.4 0.6 0.8 1

0.2
0.4

0.6
0.8

1
0

0.2
0.4
0.6
0.8

1

xy

FVFT MVMT-a

0.2 0.4 0.6 0.8 1

0.2
0.4

0.6
0.8

1
0

0.2
0.4
0.6
0.8

1

xy
0.2 0.4 0.6 0.8 1

0.2
0.4

0.6
0.8

1
0

0.2
0.4
0.6
0.8

1

xy

Figure: After one full revolution (810 time steps) on a 128×128 mesh.
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Planar transport: Combo rotation
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Figure: MVMT-a resolves the back side and the cylinder slot better than FCR.

FCR FVFT MVMT MVMT-a
mesh steps L1 error rate L1 error rate L1 error rate L1 error rate

64×64 408 3.42e-2 — 3.59e-2 — 3.93e-2 — 3.13e-2 —
128×128 810 1.94e-2 0.82 2.05e-2 0.80 2.34e-2 0.81 1.73e-2 0.86
256×256 1614 1.12e-2 0.81 1.19e-2 0.80 1.39e-2 0.80 1.12e-2 0.75

Table: Comparison of the L1 errors of FCR, FVFT, MVMT and MVMT-a.
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Planar transport: Combo rotation

FCR FVFT MVMT MVMT-a
mesh steps time(sec) time(sec) ratio time(sec) ratio time(sec) ratio

64×64 408 3.3 63.7 19.3 3.4 1.0 3.8 1.1
128×128 810 26.4 496.4 18.8 26.2 1.0 28.8 1.1
256×256 1614 229.1 3464.2 15.1 222.7 1.0 230.9 1.0

Table: Computational cost.

FVFT is not cost-competitive in transport applications.

FCR, MVMT and MVMT-a show nearly identical speeds.
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Planar transport: Cylinder translation
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Figure: Initial data for the solid-body translation test. The cylinder is moved
three widths of the domain to the right and three widths to the left.
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Planar transport: Cylinder translation
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Planar transport: Cylinder translation
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Figure: Comparison of the qualitative accuracy of MVMT-a and FCR for the
solid-body translation test. MVMT-a resolves the back side and the slot of the
cylinder much better than FCR.

FCR MVMT-a FCR MVMT-a
mesh steps time(sec) time(sec) ratio L1 error rate L1 error rate

64×64 546 4.2 4.9 1.2 2.77e-2 — 2.75e-2 —
128×128 1092 35.2 37.8 1.1 1.59e-2 0.80 1.34e-2 1.04
256×256 2178 282.2 295.5 1.0 9.45e-3 0.78 6.70e-3 1.02
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Spherical transport: Two-cylinder deformation
(Nair/Lauritzen)

Figure: Initial data for the transport tests on the sphere.

,
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Spherical transport: Two-cylinder deformation

FCR MVMT-a

Figure: Transport results for the deformational flow test on the sphere at a
final time T = 5 after 2400 time steps on a 0.75◦ mesh. The MVMT-a results
appear sharper than the FCR results, particularly for the cylinder on the right.

FCR MVMT-a FCR MVMT-a
mesh steps time(sec) time(sec) ratio L1 error rate L1 error rate

3◦ 600 23.0 24.2 1.1 4.34e-2 — 3.60e-2 —
1.5◦ 1200 187.7 190.0 1.0 2.85e-2 0.61 2.27e-2 0.66
0.75◦ 2400 1644.4 1717.7 1.0 1.67e-2 0.69 1.40e-2 0.68
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Spherical transport: Two-cylinder rotation

FCR MVMT-a

Figure: Transport results for the solid-body rotation test on the sphere, for two
revolutions, left to right and back (1920 time steps) on a 0.75◦ mesh. The
MVMT-a results provide a much better match to the initial data.

FCR MVMT-a FCR MVMT-a
mesh steps time(sec) time(sec) ratio L1 error rate L1 error rate

3◦ 480 17.4 18.2 1.0 3.25e-2 — 2.79e-2 —
1.5◦ 960 132.5 151.6 1.1 1.99e-2 0.78 1.36e-3 1.04
0.75◦ 1920 1184.5 1379.0 1.2 1.10e-2 0.78 5.41e-3 1.18
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Summary

Optimization-based remappers (OBR) are more robust and more
accurate than explicit remappers.

The divide-and-conquer strategy separates accuracy concerns from
the preservation of features such as monotonicity.

The mass-based OBR algorithm, abbreviated MVMT, is as fast as
flux-corrected remap.

The optimization approach allows for specially tuned targets.

Dual optimization variables may be used to tune targets.

Multi-tracer transport can be done efficiently (in progress).

Quadratic+ targets pose an interesting optimization challenge.
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