SAND2011-6434C

Tradeoffs in Targeted Fuzzing of Cyber Systems by
Defenders and Attackers

[Extended Abstract]

Jackson R. Mayo
Sandia National Laboratories
Livermore, California 94551
jmayo@sandia.gov

ABSTRACT

Automated randomized testing, known as fuzzing, is an ef-
fective and widely used technique for detecting faults and
vulnerabilities in digital systems, and is a key tool for se-
curity assessment of smart-grid devices and protocols. It
has been observed that the effectiveness of fuzzing can be
improved by sampling test inputs in a targeted way that re-
flects likely fault conditions. We propose a systematic pre-
scription for such targeting, which favors test inputs that
are “simple” in an appropriate sense. The notion of Kol-
mogorov complexity provides a rigorous foundation for this
approach. Under certain assumptions, an optimal fuzzing
procedure is derived for statistically evaluating a system’s
security against a realistic attacker who also uses fuzzing.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection; C.4 [Computer Sys-
tems Organization]: Performance of Systems—measure-
ment techniques; D.2.5 [Software Engineering]: Testing
and Debugging—testing tools

General Terms

Security, Testing, Measurement

Keywords

fuzzing, Kolmogorov complexity

1. INTRODUCTION

Digital devices and protocols for the smart grid are sub-
ject to the same basic security problem that has plagued
general-purpose computers and other cyber infrastructure.
The fundamental origin of this problem is the combinatorial
complexity of digital systems, which provides a vast space
for unknown faults and vulnerabilities [2]. Designers and

Copyright 2011 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.

CSIIRW 11, October 12-14, Oak Ridge, Tennessee, USA

Copyright 2011 ACM 978-1-4503-0017-9 ...$10.00.

Robert C. Armstrong
Sandia National Laboratories
Livermore, California 94551
rob@sandia.gov

defenders of such systems cannot find and eliminate every
vulnerability, whereas an attacker only needs to find a sin-
gle one. In the face of this problem, possible analytical ap-
proaches for establishing confidence in cyber systems include

e formal methods [8], which require considerable compu-
tational power and can give rigorous assessments for
systems of moderate complexity, and

e analysis of emergent robustness using complexity the-
ory [1], which can give probabilistic assessments of par-
ticular designs even with very high complexity.

While these approaches are promising for cyber infrastruc-
ture such as the smart grid, we focus here on an approach
that is synergistic with them and is even more widely appli-
cable: automated randomized testing, known as fuzzing [11].
Fuzzing can give a probabilistic assessment of reliability and
security for an arbitrarily complex system and, unlike the
analytical approaches above, does not require more than a
black-box view of the system. The tradeoff is that the fea-
sible coverage of combinatorial spaces through fuzzing is in-
creasingly poor as systems become more complex, and thus
the difficulty of finding any particular fault grows rapidly.
Fuzzing has discovered previously unknown vulnerabilities
in smart meters, and is a recommended practice for security
assessment of smart-grid hardware and software, particu-
larly given their dependence on network protocols [4, 7].

A major concern in fuzzing is the distribution of pseudo-
random test inputs that are fed to the system. It is rec-
ognized that fuzzing with uniformly random bit strings is
relatively ineffective [11]. Rather, fuzzing typically takes
into account properties of a realistic system to generate a
more targeted distribution of test inputs, e.g., by mutation
starting from expected inputs [9, 11]. Here we develop a sys-
tematic “wedding cake model”; based on the concept of Kol-
mogorov complexity, for how fuzzing can best be targeted in
the simple setting of a black-box system. This model pro-
vides a basis for future generalizations that can account for
additional information about the system.

2. WHY ASSESSING SECURITY IS HARD

Undecidability results exemplified by the halting problem
and Rice’s theorem [10] arise because a Turing machine has
infinitely many possible states and the number of computa-
tional steps needed to reach a given state cannot be bounded
in general. Real cyber systems have a finite state space that
in principle can be explored exhaustively, and thus questions
about their input-output behavior are not undecidable but

All N-bit inputs

Inputs described
in N—1 bits

nputs described
in N -2 bits

Figure 1: Space of program inputs organized by Kol-
mogorov complexity.

merely combinatorially hard. In practice, the state space
is typically so large that exhaustive exploration is infeasible
and the questions of interest are effectively undecidable.

In this paper we consider the problem of verifying that a
program, given any possible input from a finite (but combi-
natorially large) set, does not exhibit some behavior deemed
a fault. Assume that, for any given input, the presence or ab-
sence of a fault can be determined in a fized time by running
a test. For example, if the program is intended to produce
a particular output, then failure to produce the intended
output within a fixed time is considered a fault even if the
program would eventually produce this output. (This is the
paradigm of real-time systems.) Here the number of states
reachable within the time limit is finite, and the verification
question posed is decidable because each possible input can
be tested. But it is still combinatorially hard because of the
need to cover the vast input space.

The practical impossibility of exhaustive verification for
a generic complex program implies that a defender cannot
gain confidence that no faults occur for untested inputs. As
a result, such a program must always be considered as vul-
nerable to a sufficiently capable attacker, for whom the ex-
istence of a single fault enables, in principle, a successful
compromise. This view — which argues against the utility of
statistical characterization of faults since the attacker’s be-
havior is not assumed to be describable statistically — may
be unduly pessimistic when the computational limits of a
real attacker are accounted for. Through suitable testing, it
may be possible for the defender to characterize faults statis-
tically such that a computationally limited attacker seeking
a fault can do no better than a random search of the input
space. In this way, statistical measures of security can be
meaningful even for an effectively undecidable system.

3. KOLMOGOROV COMPLEXITY AND
THE WEDDING CAKE

The key insight is that the vast majority of inputs in a
large combinatorial space are algorithmically random, i.e.,
the shortest description from which the input can be con-

%y Harder to find
(less serious)

asler to find
(m/oreserious)

Figure 2: Position of faults in input space, and dif-
ficulty of finding them.

structed is not significantly shorter than the input itself. By
“description” we mean a program for generating a bit string;
we refer to it as a “description” to avoid confusion with the
program being fuzzed, to which the bit string is fed as in-
put. The length of the shortest description of a bit string
is known as its Kolmogorov complexity [6]. The choice of
(Turing-complete) language used for the description makes
only an O(1) difference in this complexity measure. If the
possible inputs are strings of N bits, then the vast major-
ity have a Kolmogorov complexity within O(1) of N; see
Figure 1. A priori, without receiving magic information of
at least O(N) bits, an attacker has no way of preferentially
distinguishing any one algorithmically random input from
others. Thus, within the algorithmically random inputs —
which, again, cover the vast majority of the input space — the
attacker is effectively reduced to discovering faults through
testing of uniformly pseudorandom inputs.

The one potentially useful way the attacker can bias his
search in the absence of prior information is to treat sepa-
rately the relatively few possible inputs of low Kolmogorov
complexity. These lie in the small inner rings of Figure 1
(with the very lowest-complexity inputs, such as all 1’s,
found at the center). From the attacker’s perspective, it
is at least possible that faults are more common among this
small subset of inputs and, if so, much can be gained by
sampling them in preference to the high-complexity inputs
— a targeted form of fuzzing. As depicted in Figure 2, an
individual fault is much more susceptible to discovery by
the attacker, and thus of much greater concern to the de-
fender, if it is associated with a low-complexity rather than
a high-complexity input. We hypothesize that faults are in
fact more common among low-complexity inputs in typical
programs. A reason to expect this is the well-known obser-
vation that faults often arise from “corner case” inputs as
opposed to generic ones [9].

A simple example is an ordinary password-checking pro-
gram intended to deny access to attackers. Access is granted
only when the input matches a specific password. The be-
havior upon entering the correct password can be viewed as
a “fault” that is deliberately introduced for the benefit of

authorized users and is designed not to be found by attack-
ers. A good password checker, although fairly simple, is like
a generic Turing-machine program in that it operates as a
black box; even if the code is visible, strong cryptography
permits only brute-force (trial-and-error) attacks. The main
issue is password strength — the low-complexity fault in Fig-
ure 2 corresponds to a weak, easily guessed password, while
the high-complexity fault corresponds to a strong password.
It is known that a password chosen randomly from a large
space has a low, quantifiable probability of brute-force com-
promise. In accordance with the arguments made here, both
defenders and attackers have reason to give special attention
to the small space of low-complexity passwords. Such pass-
words are often employed in practice for user convenience,
and correspondingly attackers benefit greatly by focusing
brute force on them. To be sure, a password checker is not a
generic complex program and may, for example, be formally
verifiable by the defender. But it provides an example of
a system that contains a deterministic fault (i.e., the fault,
once discovered, works every time) and yet possesses statis-
tically quantifiable security against a realistic attacker.

The Kolmogorov complexity of arbitrary bit strings is
known to be non-computable [6]. The “description” used in
the definition of Kolmogorov complexity is a generic Turing-
machine program, for which the halting problem is undecid-
able. Thus, it is generally impossible to know that one has
found the shortest program producing a given string, since
one does not know whether a shorter program eventually
produces it. In practice, because the purpose of invoking in-
put complexity is to promote efficient sampling, a time limit
will be applied and a replacement input will be generated
if a string is not produced in time. The attacker will not
wait indefinitely for a compact but long-running description
to produce a low-complexity N-bit input string — and the
defender need not either.

There is also no need to search for the shortest program;
sampling from descriptions of length k& results in sampling
from inputs of Kolmogorov complexity k or smaller, i.e.,
from the interior of a given circle in Figure 1 (as opposed
to a single ring). This is suitable because low-complexity
inputs should, if anything, be oversampled; nothing signif-
icant can be gained by purposely avoiding low-complexity
inputs, since at their unbiased weight they contribute negli-
gibly to the cost of fuzzing. The combination of such sam-
pling options for various values of k can be visualized as a
three-dimensional “wedding cake” built on top of Figure 1.
Since each sampling “tier” includes low-complexity inputs
(i-e., extends to the center of the space), the tiers pile up
and contribute incremental preferential sampling for such
inputs. We assume that the defender and attacker arrive
at effectively the same procedure for sampling inputs at a
given complexity (same horizontal tier profiles), though they
may of course use different distributions of input complexity
(different tier “heights”) for their respective testing.

4. FUZZING STRATEGIES

How, then, can a defender gain quantified confidence in
the ability of a complex program to withstand attack? The
defender wishes to estimate the probability of success per
trial for an attacker seeking a fault, which is inversely re-
lated to the amount of work required of the attacker per
fault discovered. In the generic Turing-complete regime,
both defender and attacker are limited to fuzzing — option-

ally weighted by input complexity — as a means of finding
faults. (It is possible that some or all of the faults found by
the defender’s fuzzing can be fixed before deployment; in this
case, the goal of fuzzing is not only to evaluate the program
but also to improve it.) The sampling procedure for a given
tier of input complexity defines a statistical ensemble of in-
puts, and the results of fuzzing are a statistical reflection of
the rates at which faults occur in these ensembles. To give
a worst-case confidence estimate, it is assumed that the at-
tacker knows the statistical results of the defender’s fuzzing
and will target his own fuzzing to the most promising tier
of input complexity. Thus, the defender seeks to minimize
the maximum estimated fault rate among the tiers.

We use a Bayesian approach for statistical inference of
fault rates from the outcomes of the defender’s fuzzing. A
simple “uninformative” prior distribution for fault rates is
the uniform distribution between 0 and 1; this prior is con-
servative (i.e., pessimistic) because fault rates in reasonably
well-designed systems are expected to be small. Denote by
fx the fault rate for inputs sampled from the set of descrip-
tions of length k, a set of size 2, for k = 0,1,..., N. Assume
first that the defender’s fuzzing is being done to evaluate the
final version of the system, with no further fixes or other
modifications being made.

Suppose that, at a given stage of fuzzing, Ry descriptions
of length k£ have been tried and Fj of them have been found
to result in faults. Inference of the fault rate fr from these
observations is similar but not identical to inference of a
probability from Bernoulli trials (e.g., a series of biased coin
flips). The difference is that the descriptions are sampled
without replacement from a finite set, and so the posterior
expected probability of a fault, (Fx + 1)/(Rx + 2), applies
only to the untested descriptions [3]. The number of faults
among the Ry tested descriptions is known and need not be
inferred statistically. Thus the posterior expected value of
the fault rate for tier k as a whole is

28 _ Ri Fp+1 Fy 1)
2k Rp+2 ' 2k

(fu) =

Before any observations are made (Rr = Fi = 0), the pes-
simistic estimate (fr) = % is obtained; at the other extreme,
for exhaustive testing (Rx = 2’“)7 the exact value fr = Fk/2’C
is recovered. For large k, where testing can only scratch the
surface, the first term in Eq. (1) dominates, whereas for
small k, where exhaustive or nearly exhaustive testing is
feasible, the second term eventually dominates. In the for-
mer case, in which (fx) ~ (Frx + 1)/(Rr + 2), it is useful
to note that high confidence (low estimated fault rates) can
be established with an amount of fuzzing that is large but
need not scale with the combinatorial size 2¥; for example, if
no faults are found, the estimated fault rate is nonzero but
decreases inversely with the amount of fuzzing performed.
The concrete fuzzing procedure for the defender is then as
follows. Test an input sampled from the complexity tier that
has the largest estimated fault rate (fx) as given by Eq. (1)
based on the results obtained so far. This includes the ini-
tial condition where no observations exist and (fx) = 3 for
all k; ties are broken arbitrarily. Reevaluate the estimated
fault rates based on the accumulated counts Ry and Fj, and
identify the tier for sampling the next test input. Repeat as
long as appropriate, either to obtain a desired maximum es-
timated fault rate or until the time allocated for fuzzing is
exhausted. Early on in this procedure, the estimated fault

rate in a given tier will tend to decrease as more data are
gathered by running tests from that tier, if the true fault
rate is small. Thus, sampling each successive test from the
tier with the current highest estimated fault rate will tend
to reduce the maximum estimated fault rate as fuzzing pro-
ceeds. If the true fault rates are sufficiently small that very
few faults are ever found, then the estimates will remain on
the high or pessimistic side (due to the occurrence of Fj + 1
in the formula) and will continue to decrease slowly; the con-
fidence obtained will be limited by the time available. But,
if any fault rate is large enough that substantial numbers
of faults are discovered, then the procedure will reduce to
refining a precise estimate of the largest fault rate; the esti-
mate will not continue to decrease, and the question is then
whether this fault rate is deemed acceptable.

A slightly different analysis applies if an attempt is made
to fix faults as they are found. Now suppose that, in each
tier k, of the Fj faults observed, Pr have been successfully
patched so that they will not recur. If it is assumed that
patching a given fault does not affect any other behavior
of the program, then the estimated fault rate is obtained
from Eq. (1) by reducing the number of faults among tested
inputs but not among untested inputs, i.e.,

72k—Rk Fr+1 Fr — Py

For large k, where testing can only be very sparse, the effect
of this change is insignificant because the first term domi-
nates. For small k£, however, the effect of P, on confidence
can be substantial; for example, if testing is exhaustive in the
tier (Ry = 2%) and all faults discovered are fixed (P, = F}),
the result (fix) = 0 is as good as if no faults were present
in the tier to start with. Because the program is being im-
proved in the process of fuzzing, estimated fault rates will
tend to decline due to both increasing statistical precision
and elimination of faults. If the true fault rates are ini-
tially highest at small k, then the fuzzing procedure will
tend to focus defender effort on patching faults from these
low-complexity inputs, which is a particularly good invest-
ment because the estimated fault rate can be reduced sub-
stantially by exhaustive patching in smaller combinatorial
spaces. In effect, this can be described as purging the “weak
passwords” from the system.

5. CONCLUSIONS

We present an analysis of fuzzing strategies based on Kol-
mogorov complexity, applicable to smart-grid devices. Our
hypothesis is that low-complexity input is a more likely place
to find faults in typical programs. In a plain-text passphrase,
for example, encodings based on the character set and gram-
mar of the language in which it is written allow for a shorter
representation than its naive ASCII bit representation. De-
scriptions of length k are generating functions for inputs
having complexity at or below k. More generally, the in-
put description can be considered a generating function that
operates within a “base representation” obtained from the
program’s nominal lexical structure or even semantics. In
fact, Kolmogorov complexity can be defined as a measure
of one string relative to another string that provides back-
ground information [5]. This generalization corresponds to
“edit distance” in a Turing-complete editing language.

Such considerations are important when the amount of
pertinent background information is comparable to or larger

than the input complexity. Intuitively, programs should ex-
hibit faults close to their nominal input space. In an SQL
injection attack, for example, alien bit strings are more likely
to be benignly ignored than input generated from SQL gram-
mar. Pragmatically, it is more effective to draw a base rep-
resentation for input descriptions from the “natural” repre-
sentation of the nominal input for the program being fuzzed.
For hypothetical programs for which the input semantics
are completely unknown, no choice can be made for the
proper base representation for input descriptions. Because
there will always be a finite-length program that can trans-
form one base representation into another, the base repre-
sentation is less important for high complexity. The choice of
base representation does not affect the validity of our simple
analysis for asymptotically long inputs since the description
length becomes independent of its representation. However,
because we expect the most fruitful application of fuzzing to
occur at low complexity, pragmatically we expect that the
choice of base representation will be a significant concern.

6. ACKNOWLEDGMENTS

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Mar-
tin Corporation, for the U.S. Department of Energy under
contract DE-AC04-94AL85000.

7. REFERENCES

[1] R. C. Armstrong and J. R. Mayo. Leveraging
complexity in software for cybersecurity. In
Proceedings of the 5th Cyber Security and Information
Intelligence Research Workshop, Oak Ridge, TN, Apr.
2009.

[2] R. C. Armstrong, J. R. Mayo, and F. Siebenlist.
Complexity science challenges in cybersecurity. Sandia
Report SAND2009-2007, Mar. 2009.

[3] E. T. Jaynes. Probability Theory: The Logic of
Science. Cambridge University Press, 2003.

[4] P. Kahlon. Security issues in system development life
cycle of smart grid. Project (M.S.), California State
University, Sacramento, 2011.

[5] M. Li and P. M. B. Vitdnyi. Two decades of applied
Kolmogorov complexity. In Proceedings of the 3rd
Annual Structure in Complexity Theory Conference,
Washington, DC, June 1988.

[6] M. Li and P. M. B. Vitdnyi. An Introduction to
Kolmogorov Complexity and Its Applications.
Springer, third edition, 2008.

[7] S. McLaughlin, D. Podkuiko, S. Miadzvezhanka,

A. Delozier, and P. McDaniel. Multi-vendor
penetration testing in the advanced metering
infrastructure. In Proceedings of the 26th Annual
Computer Security Applications Conference, Austin,
TX, Dec. 2010.

[8] J.-F. Monin. Understanding Formal Methods.
Springer, 2003.

[9] P. Oehlert. Violating assumptions with fuzzing. IEEE
Security and Privacy, 3(2):58-62, 2005.

[10] A. Singh. Elements of Computation Theory. Springer,
2009.

[11] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute
Force Vulnerabilty Discovery. Addison-Wesley
Professional, 2007.

