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Polyhedral	
  Finite-­‐Element	
  Formula6on	
  

•  Applicable	
  to	
  nonlinear	
  solid	
  mechanics	
  	
  
•  General	
  polyhedra:	
  non-­‐convex	
  with	
  non-­‐planar	
  faces	
  
•  Compa6ble	
  with	
  standard	
  trilinear	
  hexahedron	
  
•  Use	
  harmonic	
  shape	
  func6ons	
  	
  
•  “Correct”	
  shape-­‐func6on	
  deriva6ves	
  to	
  pass	
  the	
  patch-­‐test	
  
•  Mean-­‐dila6on	
  formula6on	
  for	
  nearly-­‐incompressible	
  materials	
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Star	
  Convexity	
  
For	
  ease	
  of	
  construc6on,	
  present	
  formula6on	
  assumes	
  star-­‐convexity	
  
with	
  respect	
  to	
  vertex-­‐averaged	
  centroid.	
  

star	
  convex	
   not	
  star	
  convex	
   not	
  star	
  convex	
  

(a) (b) (c) 

Xc Xc

Xc
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How	
  to	
  Fully	
  Specify	
  Face	
  Geometry?	
  

•  Use	
  vertex-­‐averaged	
  centroid.	
  	
  	
  
•  Could	
  also	
  use	
  a	
  bilinear	
  mapping	
  for	
  quadrilateral	
  faces.	
  

(a) (b) 

Xfc
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Define	
  Shape	
  Func6ons	
  Directly	
  on	
  
Ini6al	
  Configura6on	
  

standard	
  trilinear	
  
hexahedral	
  
mapping	
  using	
  a	
  
parent	
  c.s.	
  

present	
  formula6on	
  
defines	
  shape	
  func6ons	
  
directly	
  on	
  ini6al	
  
configura6on.	
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Harmonic	
  Shape	
  Func6ons	
  

A	
  harmonic	
  func6on	
  is	
  a	
  solu6on	
  of	
  Laplace’s	
  equa6on.	
  

example	
  in	
  2D	
  

example	
  in	
  3D	
  

Can	
  solve	
  efficiently	
  using	
  BEM,	
  or	
  can	
  just	
  use	
  FEM.	
  

Note:	
  	
  Only	
  need	
  to	
  store	
  shape	
  func6on	
  values	
  and	
  deriva6ves	
  at	
  the	
  
quadrature	
  points.	
  

r2 = 0
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Harmonic Shape Function Examples 

Only need to store shape functions and derivatives at integration points. 
Discard everything else. 
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Harmonic Shape Function Properties 

par66on	
  of	
  unity	
  

reproduce	
  linear	
  fields	
  

Kronecker-­‐delta	
  property	
  at	
  nodes	
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Hierarchical	
  Construc6on	
  of	
  Harmonic	
  Shape	
  Func6ons	
  	
  
(Joshi,	
  2007)	
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(a) (b) (c) 

Xfc

0

0

0

 a = 1

 a = 0

 a = 0

 a = 1/Nfv = 1/6

Harmonic	
  Shape	
  Func6ons	
  for	
  Non-­‐planar	
  Faces	
  

Can	
  also	
  use	
  other	
  barycentric	
  face	
  mappings.	
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(a) (b) (c) 

r0 r1 r2

How	
  to	
  Solve	
  for	
  Harmonic	
  Shape	
  Func6ons	
  
using	
  FEA	
  

Use	
  a	
  temporary	
  tetrahedral	
  submesh.	
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Accuracy of Harmonic Shape Functions? 

R0 

R1 

Base	
  tetrahedral	
  
subdivision	
  

R2 

1	
  :	
  8	
  subdivision	
  

1	
  :	
  8	
  subdivision	
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Numerical	
  Precision	
  in	
  Reproducing	
  Proper6es	
  

Par66on	
  of	
  Unity	
   Reproduc6on	
  of	
  Linear	
  Fields	
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  (a) (b) 

Xc

Xfc
Xfc

XfcXa

Element	
  Integra6on	
  
•  Due	
  to	
  computa6onal	
  expense	
  of	
  plas6city	
  models,	
  want	
  to	
  minimize	
  the	
  number	
  of	
  
quadrature	
  points.	
  

•  Follow	
  approach	
  of	
  Rashid	
  and	
  Selimotec,	
  2006.	
  
•  Each	
  node	
  is	
  associated	
  with	
  a	
  “tributary”	
  volume.	
  	
  	
  
•  Number	
  of	
  quadrature	
  points	
  is	
  equal	
  to	
  the	
  number	
  of	
  ver6ces.	
  	
  
•  Quadrature	
  weight	
  =	
  volume	
  of	
  tributary	
  volume.	
  
•  First-­‐order	
  accurate,	
  but	
  quadrature	
  weights	
  are	
  posi6ve	
  (avoids	
  Runge’s	
  phenomenon)	
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Patch	
  Test	
  

(a) (b) distorted	
  hex	
  patch	
   random	
  close-­‐packed	
  Voronoi	
  patch	
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(a) (b) 

1.1
�11
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x

Patch	
  Test	
  

patch	
  of	
  elements	
  

Failed patch test! 

stress	
  error	
  >	
  10%	
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Patch	
  Test	
  and	
  Integra6on	
  Consistency	
  

Divergence	
  theorem	
  

Discrete	
  divergence	
  theorem	
  

(error	
  over	
  all	
  shape	
  func6ons	
  and	
  coordinate	
  direc6ons)	
  

Maximum	
  error	
  in	
  integra6on	
  constraint	
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Deriva6ve	
  Correc6on	
  to	
  Pass	
  the	
  Patch	
  Test	
  

•  “Tweak”	
  the	
  shape	
  func6on	
  deriva6ves	
  to	
  sa6sfy	
  the	
  integra6on	
  
consistency	
  condi6on.	
  

•  Maintain	
  the	
  reproducing	
  proper6es	
  of	
  the	
  deriva6ves.	
  
•  Minimize	
  the	
  difference	
  between	
  the	
  new	
  deriva6ves	
  and	
  the	
  old.	
  
•  Local	
  solve	
  at	
  the	
  element	
  level;	
  performed	
  once.	
  
•  Performed	
  for	
  each	
  direc6on	
  and	
  shape	
  func6on	
  independently.	
  

subject	
  to	
  the	
  constraints	
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Deriva6ve	
  Correc6on	
  to	
  Pass	
  the	
  Patch	
  Test	
  

Maximum	
  error	
  in	
  integra6on	
  constraint	
  

(error	
  over	
  all	
  shape	
  func6ons	
  and	
  coordinate	
  direc6ons)	
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(a) (b) 

1.1
�11

1.0

0.9

x

failed	
  patch	
  test	
   successful	
  patch	
  test	
  

Patch	
  Test:	
  Before	
  and	
  Aper	
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Patch	
  Test	
  with	
  Non-­‐Convex	
  Elements	
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  (a) 

x
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z L

2a
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(b) (c) 

Verifica6on	
  Tests	
  

loading:	
  	
  beam	
  bending	
  with	
  shear	
  load	
  

meshes	
  and	
  element	
  formula6ons:	
  
1.  distorted	
  hex	
  mesh,	
  trilinear	
  hex	
  formula6on	
  
2.  distorted	
  hex	
  mesh,	
  poly	
  formula6on	
  
3.  Voronoi	
  mesh,	
  poly	
  formula6on	
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(a) (b) (c) 
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Verifica6on	
  Test:	
  Beam	
  Bending	
  with	
  
Shear	
  Load	
  

trilinear	
  hex	
  formula6on	
   poly	
  formula6on	
   poly	
  formula6on	
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Beam	
  Bending	
  with	
  Shear	
  Load	
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Random	
  Hex	
  Mesh	
  (20	
  realiza6ons)	
  

L2	
  norm	
   Energy	
  Norm	
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Random	
  Voronoi	
  Mesh	
  (20	
  realiza6ons)	
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Near	
  Incompressibility	
  

L2	
  norm	
   Energy	
  Norm	
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Effect	
  of	
  Shape	
  Func6on	
  Accuracy	
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Summary	
  
1.  Presented	
  a	
  polyhedral	
  finite-­‐element	
  formula6on	
  based	
  on	
  harmonic	
  

shape	
  func6ons.	
  

2.  Applicable	
  to	
  non-­‐convex	
  elements	
  with	
  non-­‐planar	
  faces.	
  
3.  Adopted	
  quadrature	
  scheme	
  of	
  Rashid	
  (number	
  of	
  quadrature	
  points	
  =	
  

number	
  of	
  ver6ces.	
  
4.  In	
  order	
  to	
  pass	
  the	
  patch	
  test,	
  needed	
  to	
  use	
  “pseudo-­‐deriva6ves”.	
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