

A Displacement-Based Finite-Element Formulation for General Polyhedra using Harmonic Shape Functions

Joe Bishop

Computational Structural Mechanics and Applications
Sandia National Laboratories
Albuquerque, NM

12th US National Congress on Computational Mechanics
Raleigh, NC, July 22–25, 2013

This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.

Sandia
National
Laboratories

U.S. DEPARTMENT OF
ENERGY

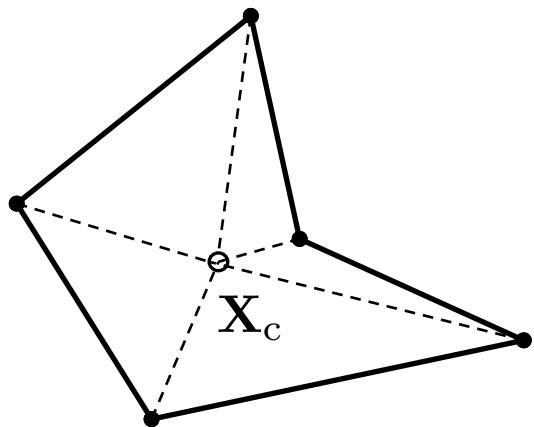
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Polyhedral Finite-Element Formulation

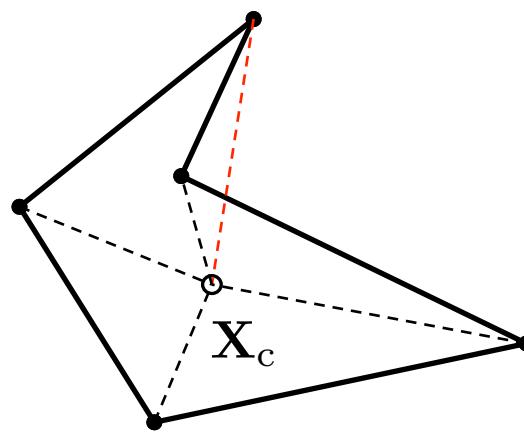
- Applicable to nonlinear solid mechanics
- General polyhedra: non-convex with non-planar faces
- Compatible with standard trilinear hexahedron
- Use harmonic shape functions
- “Correct” shape-function derivatives to pass the patch-test
- Mean-dilation formulation for nearly-incompressible materials

Star Convexity

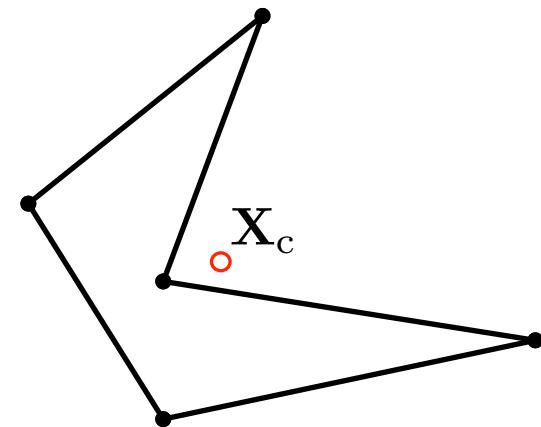
For ease of construction, present formulation assumes star-convexity with respect to vertex-averaged centroid.



star convex



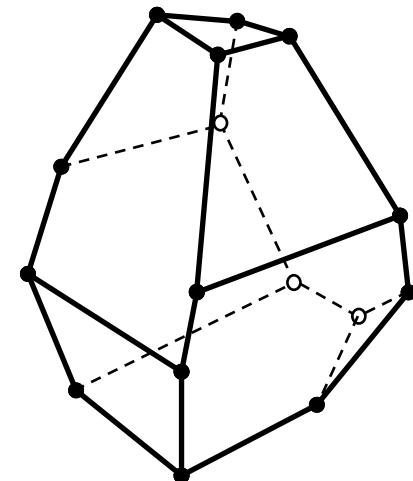
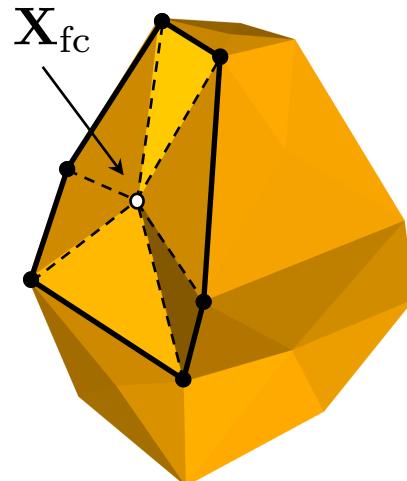
not star convex



not star convex

How to Fully Specify Face Geometry?

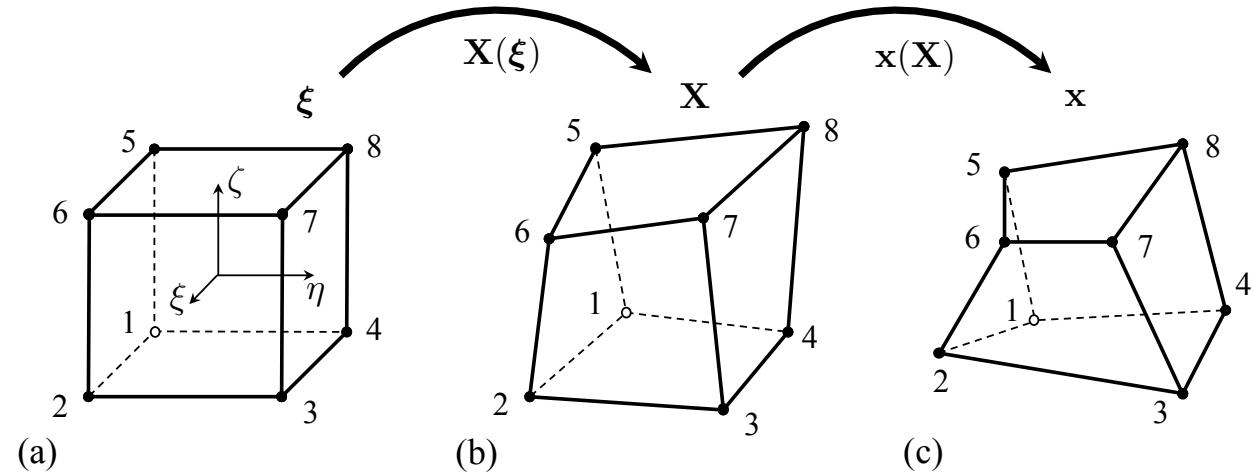
- Use vertex-averaged centroid.
- Could also use a bilinear mapping for quadrilateral faces.



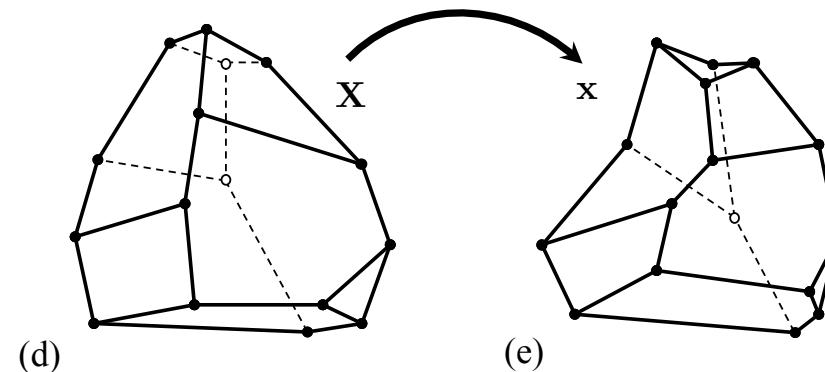
1

Define Shape Functions Directly on Initial Configuration

standard trilinear hexahedral mapping using a parent c.s.



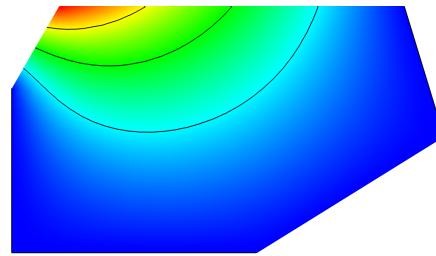
present formulation defines shape functions directly on initial configuration.



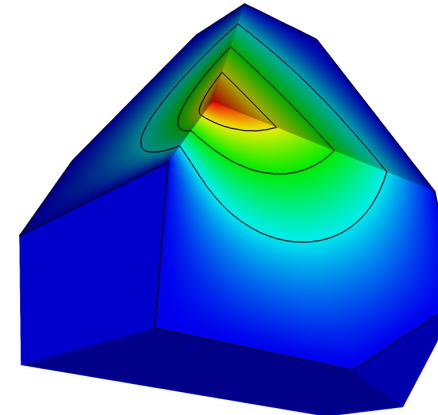
Harmonic Shape Functions

A harmonic function is a solution of Laplace's equation.

$$\nabla^2 \psi = 0 \quad \text{Can solve efficiently using BEM, or can just use FEM.}$$



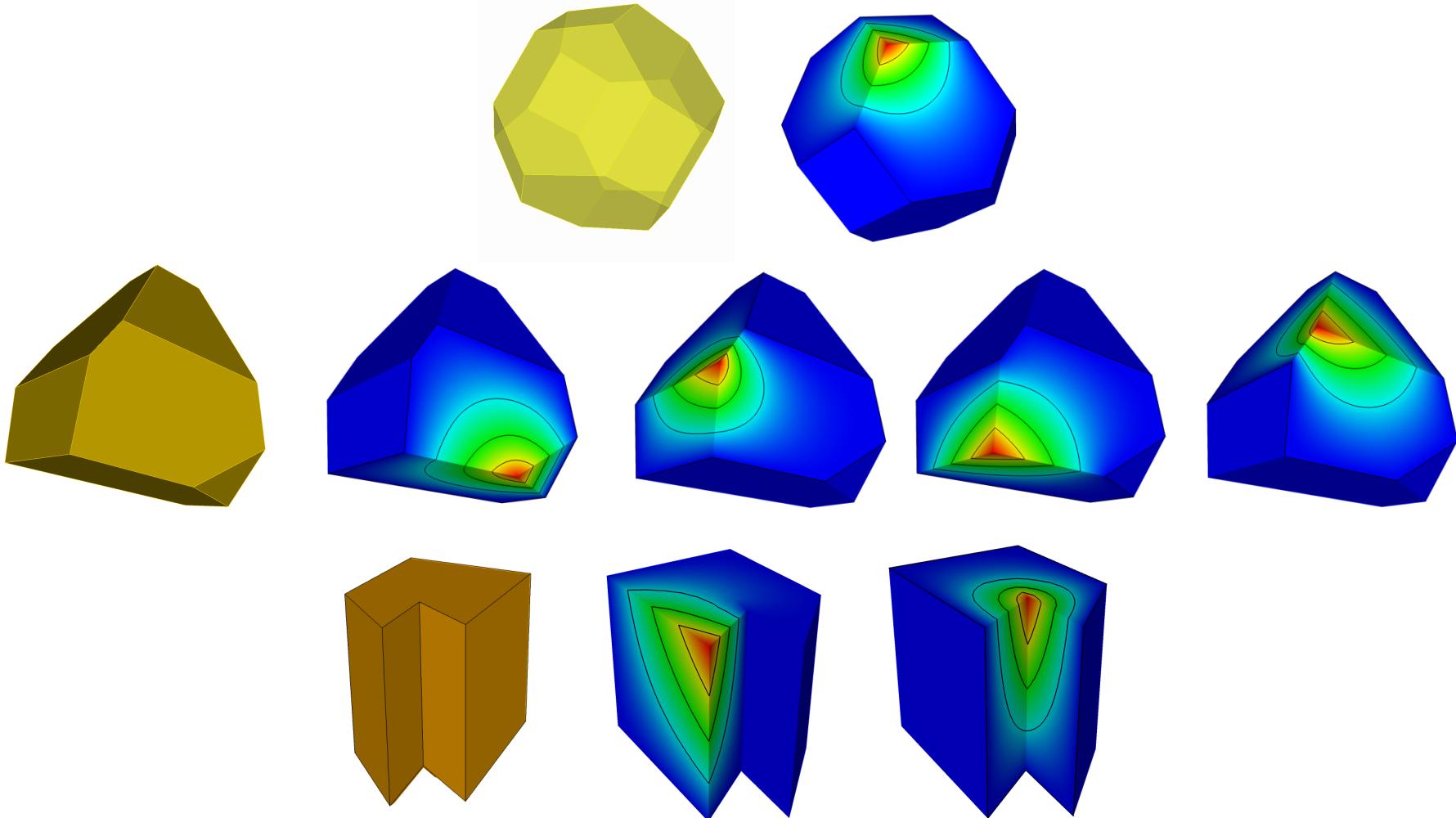
example in 2D



example in 3D

Note: Only need to store shape function values and derivatives at the quadrature points.

Harmonic Shape Function Examples



Only need to store shape functions and derivatives at integration points.
Discard everything else.

Harmonic Shape Function Properties

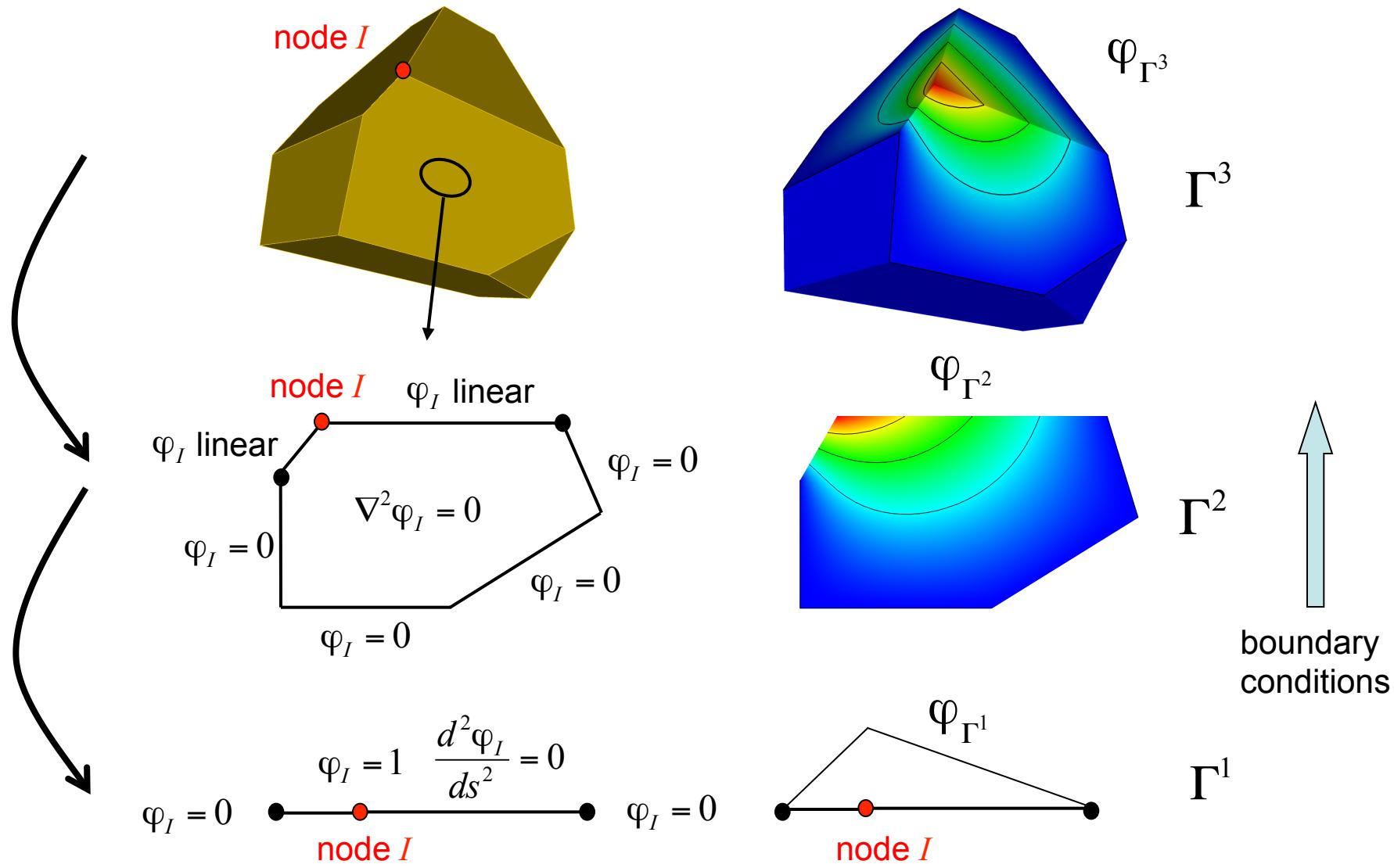
$$\sum_{a=1}^{N_v} \psi^a(\mathbf{X}) = 1, \quad \mathbf{X} \in \Omega_e \quad \text{partition of unity}$$

$$\sum_{a=1}^{N_v} \psi^a(\mathbf{X}) \mathbf{X}^a = \mathbf{X}, \quad \mathbf{X} \in \Omega_e \quad \text{reproduce linear fields}$$

$$\psi^a(\mathbf{X}^b) = \delta_{ab} \quad \text{Kronecker-delta property at nodes}$$

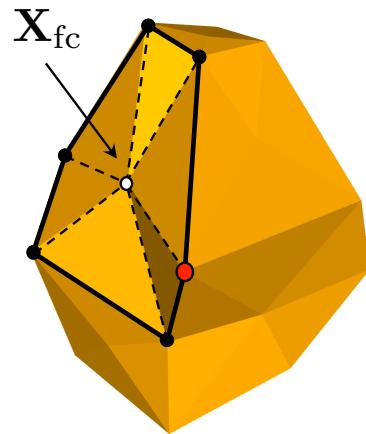
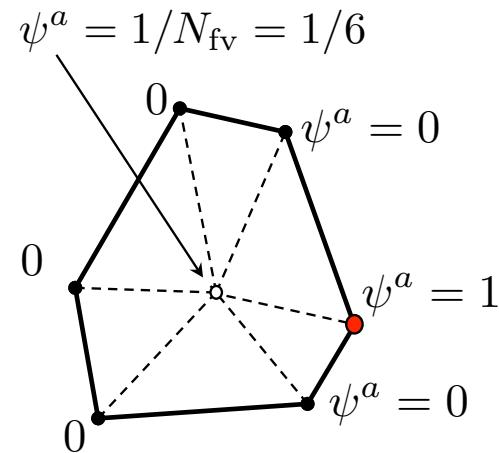
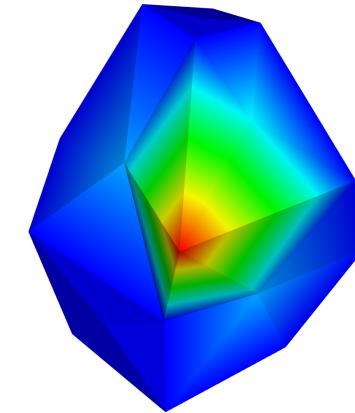
Hierarchical Construction of Harmonic Shape Functions

(Joshi, 2007)



Harmonic Shape Functions for Non-planar Faces

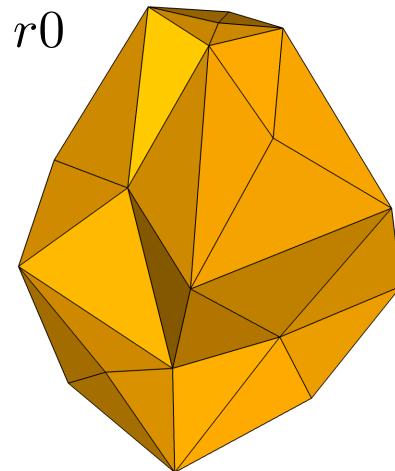
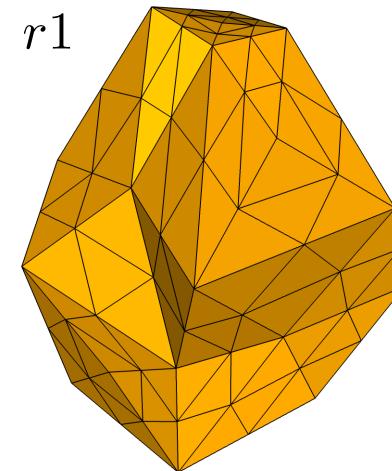
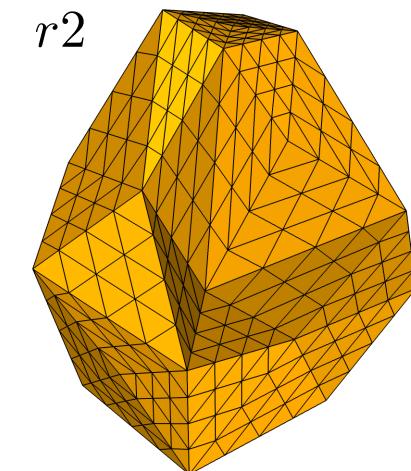
l
al
tories



Can also use other barycentric face mappings.

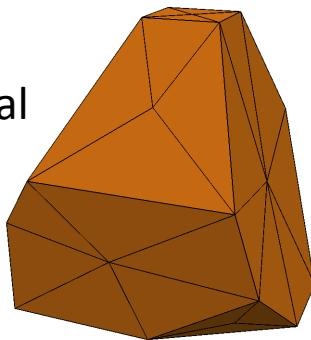
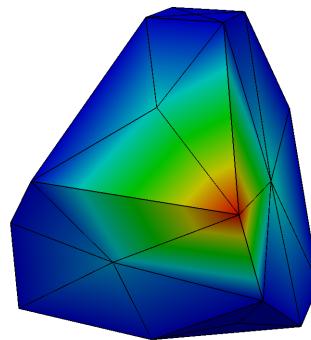
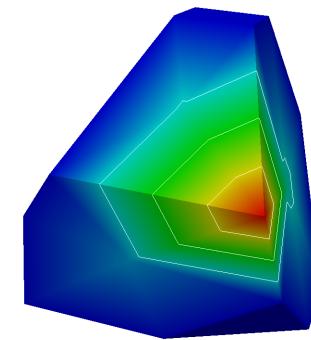
How to Solve for Harmonic Shape Functions using FEA

Use a temporary tetrahedral submesh.



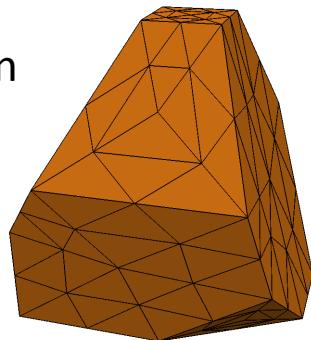
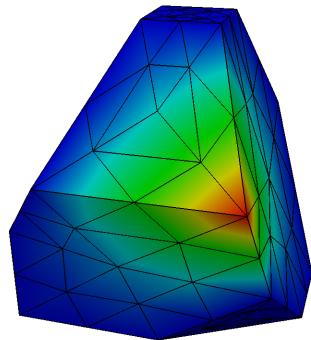
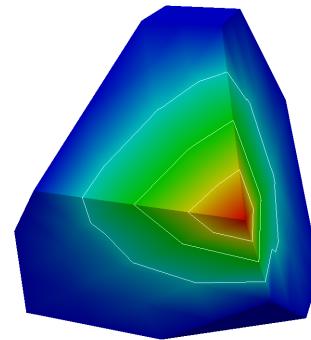
Accuracy of Harmonic Shape Functions?

Base tetrahedral
subdivision



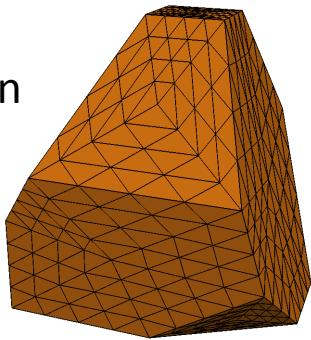
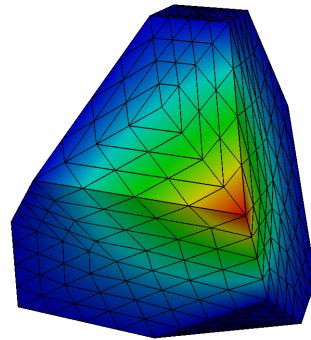
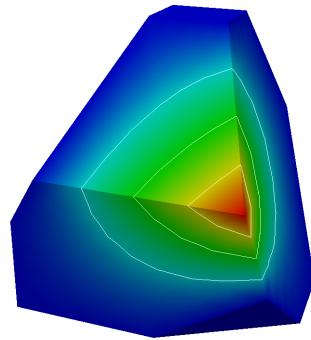
R0

1 : 8 subdivision



R1

1 : 8 subdivision



R2

Numerical Precision in Reproducing Properties

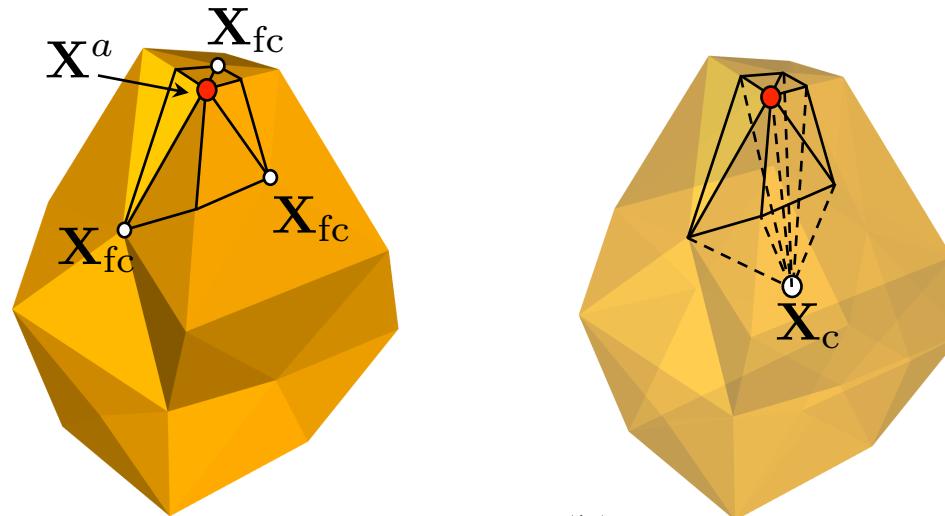
Partition of Unity

Reproduction of Linear Fields

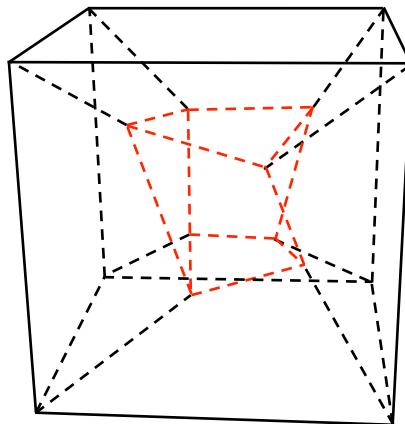
subdivision	$\max_{k \in \{1, \dots, N_{i.p.}\}} \left[\sum_{a=1}^{N_v} \psi^a(\mathbf{X}^k) - 1 \right]$	$\max_{\substack{k \in \{1, \dots, N_{i.p.}\} \\ j \in \{1, 2, 3\}}} \left[\sum_{a=1}^{N_v} \psi^a(\mathbf{X}^k) X_j^a - X_j^k \right]$
$r0$	3.33×10^{-16}	5.55×10^{-16}
$r1$	6.66×10^{-16}	5.55×10^{-16}
$r2$	1.55×10^{-15}	5.55×10^{-16}

Element Integration

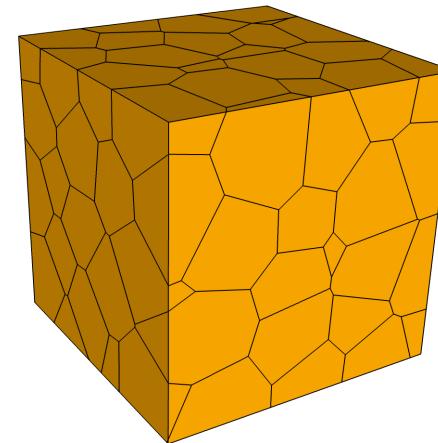
- Due to computational expense of plasticity models, want to minimize the number of quadrature points.
- Follow approach of Rashid and Selimotec, 2006.
- Each node is associated with a “tributary” volume.
- **Number of quadrature points is equal to the number of vertices.**
- Quadrature weight = volume of tributary volume.
- First-order accurate, but quadrature weights are positive (avoids Runge’s phenomenon)



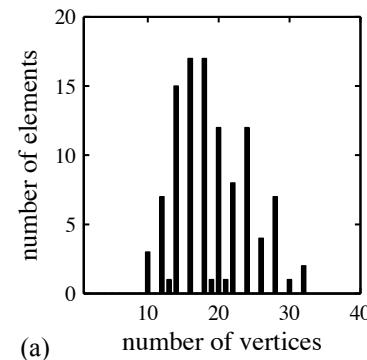
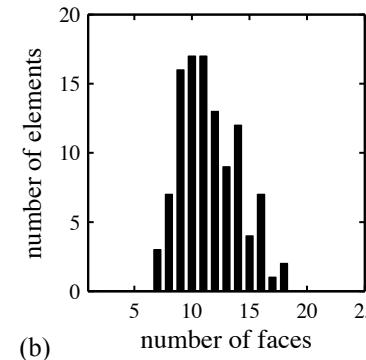
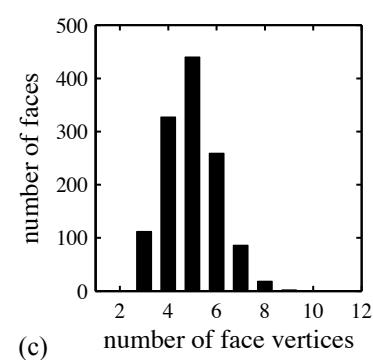
Patch Test



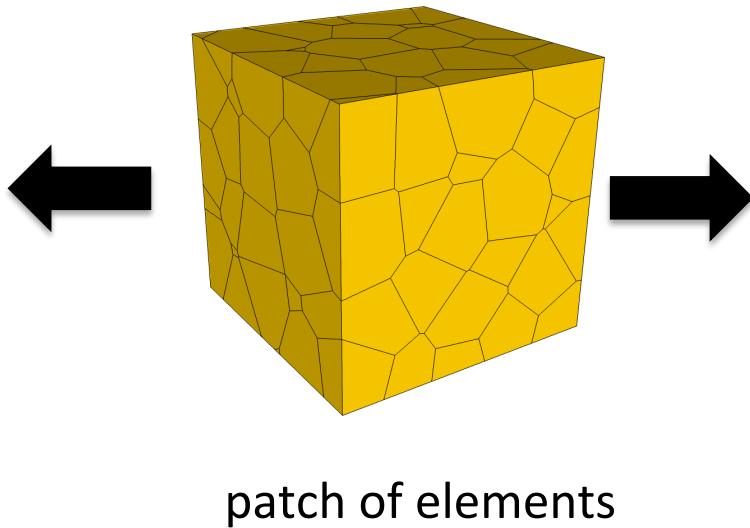
distorted hex patch



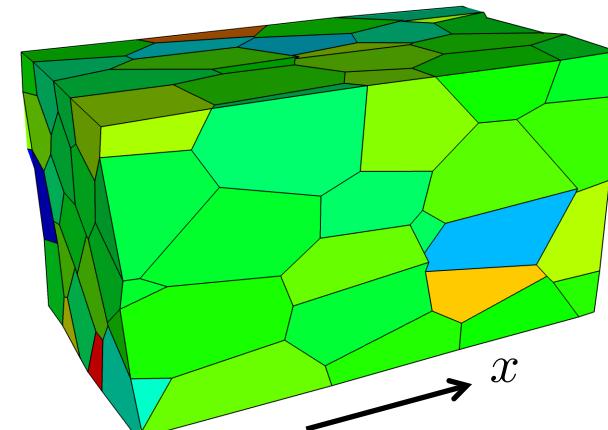
random close-packed Voronoi patch



Patch Test



Failed patch test!



stress error $> 10\%$

Patch Test and Integration Consistency

Divergence theorem

$$\int_{\Omega_e} \psi_{,i}^a d\Omega = \int_{\Gamma_e} \psi^a n_i d\Gamma, \quad a = 1, \dots, N_v, \quad i = 1, 2, 3$$

Discrete divergence theorem

$$\sum_{k=1}^{N_{i,p.}} w_k \psi_{,i}^{ak} = \sum_{l=1}^{N_{i,p.}^\Gamma} w_l^\Gamma \psi^{al} n_i^l, \quad a = 1, \dots, N_v \quad i = 1, 2, 3$$

Maximum error in integration constraint

subdivision	before derivative correction	after derivative correction
$r0$	0.0609	2.77×10^{-17}
$r1$	0.0138	2.77×10^{-17}
$r2$	0.0106	2.77×10^{-17}

(error over all shape functions and coordinate directions)

Derivative Correction to Pass the Patch Test

- “Tweak” the shape function derivatives to satisfy the integration consistency condition.
- Maintain the reproducing properties of the derivatives.
- Minimize the difference between the new derivatives and the old.
- Local solve at the element level; performed once.
- Performed for each direction and shape function independently.

$$\min_{\xi^k \in \Re} \sum_{k=1}^{N_{i,p.}} (\xi^k - \psi_{,i}^{ak})^2 \quad \text{subject to the constraints} \quad \sum_{k=1}^{N_{i,p.}} w_k \xi^k - \sum_{l=1}^{N_{i,p.}^\Gamma} w_l^\Gamma \psi^{al} n_i^l = 0$$

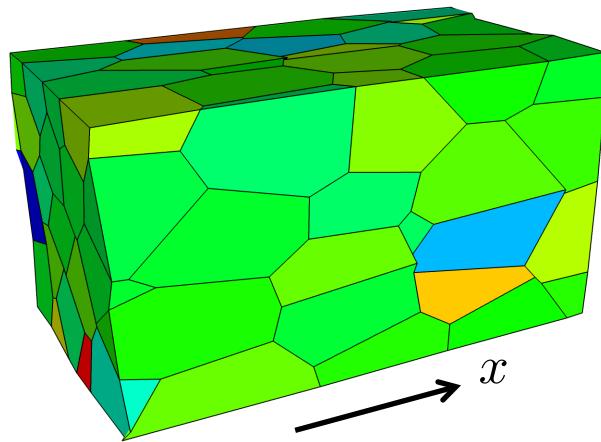
Derivative Correction to Pass the Patch Test

Maximum error in integration constraint

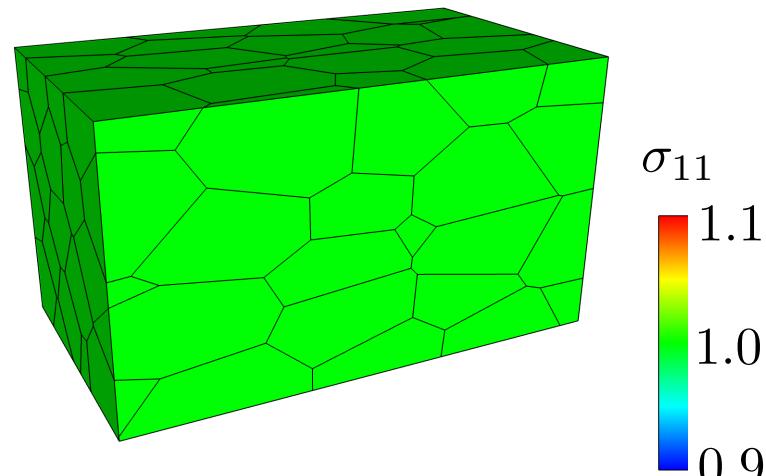
subdivision	before derivative correction	after derivative correction
$r0$	0.0609	2.77×10^{-17}
$r1$	0.0138	2.77×10^{-17}
$r2$	0.0106	2.77×10^{-17}

(error over all shape functions and coordinate directions)

Patch Test: Before and After



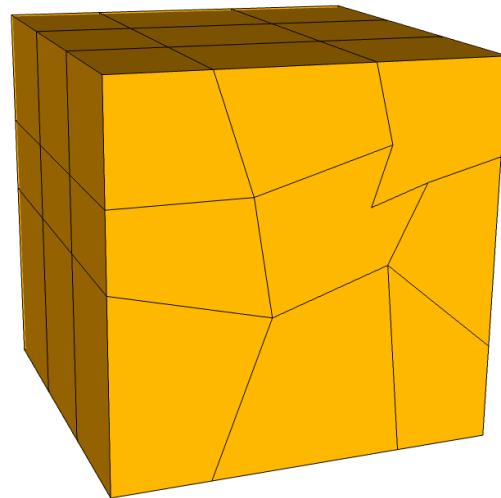
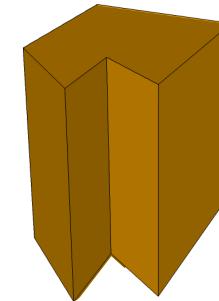
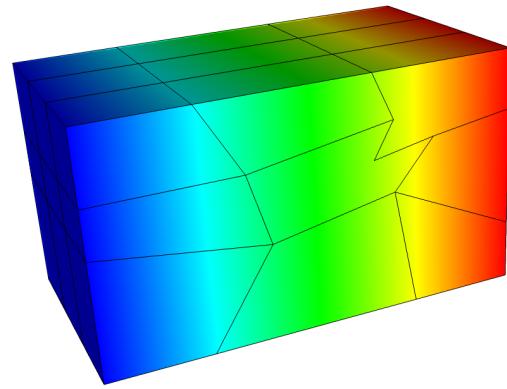
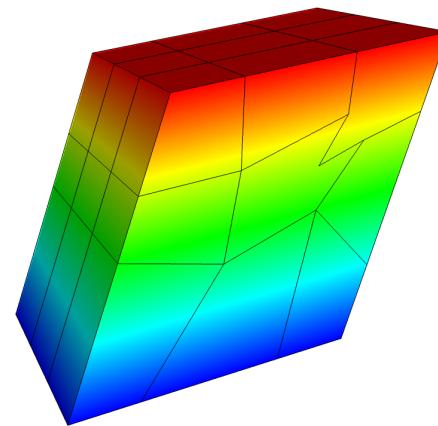
failed patch test



successful patch test

case	without derivative correction	with derivative correction
hex patch, trilinear formulation	1.11×10^{-15}	—
hex patch, poly formulation	0.0863	5.55×10^{-16}
hex patch, trilinear and poly	0.0152	8.88×10^{-16}
random Voronoi patch	0.1844	1.41×10^{-12}

Patch Test with Non-Convex Elements

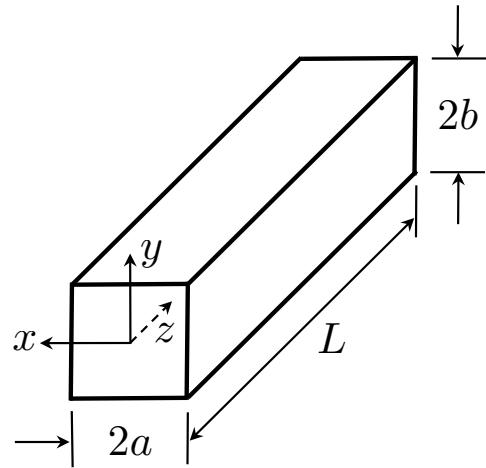
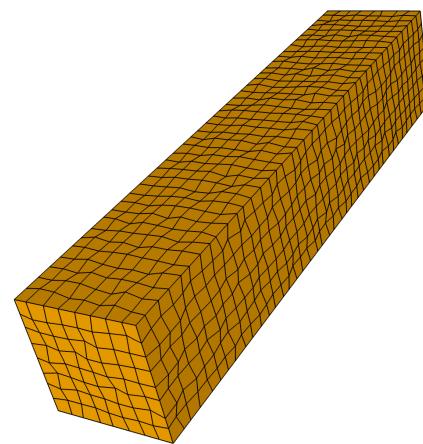
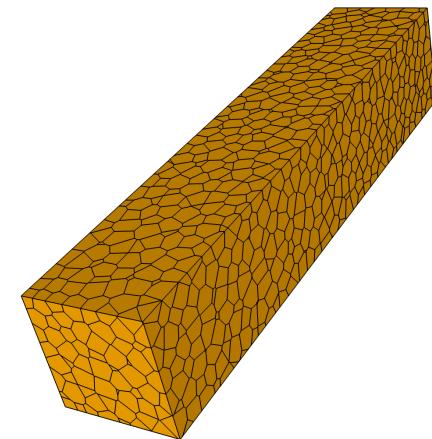


Verification Tests

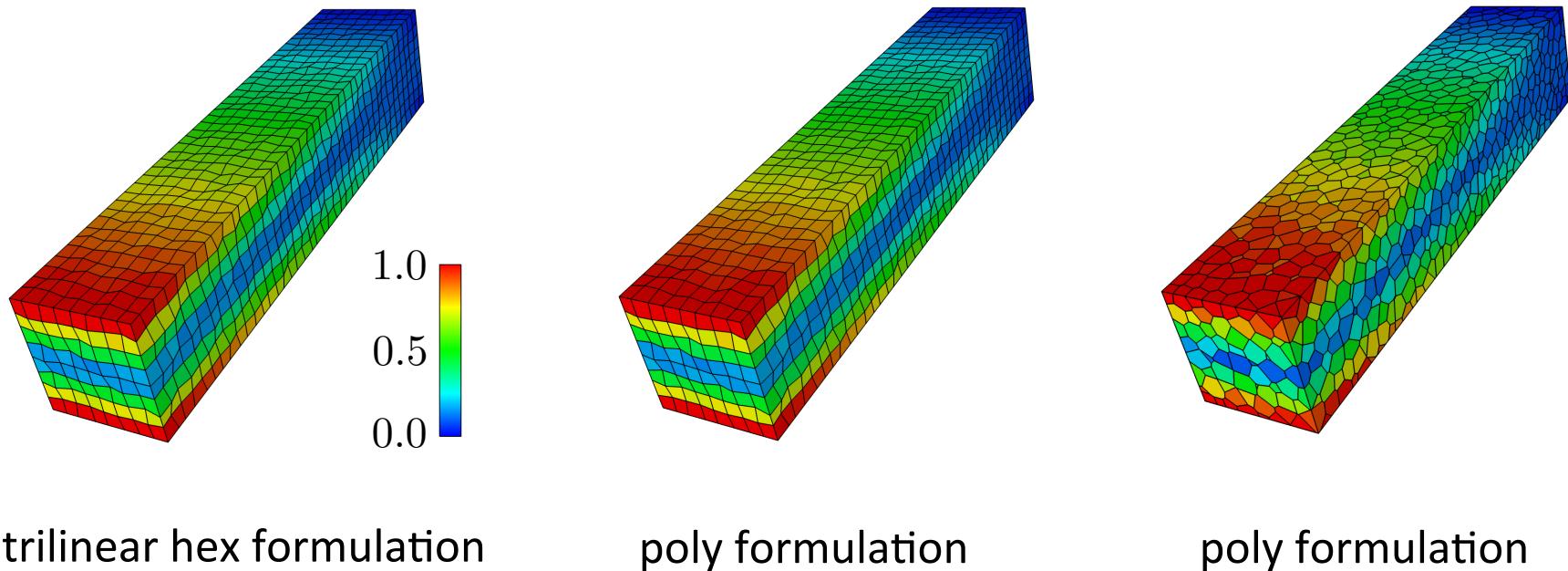
loading: beam bending with shear load

meshes and element formulations:

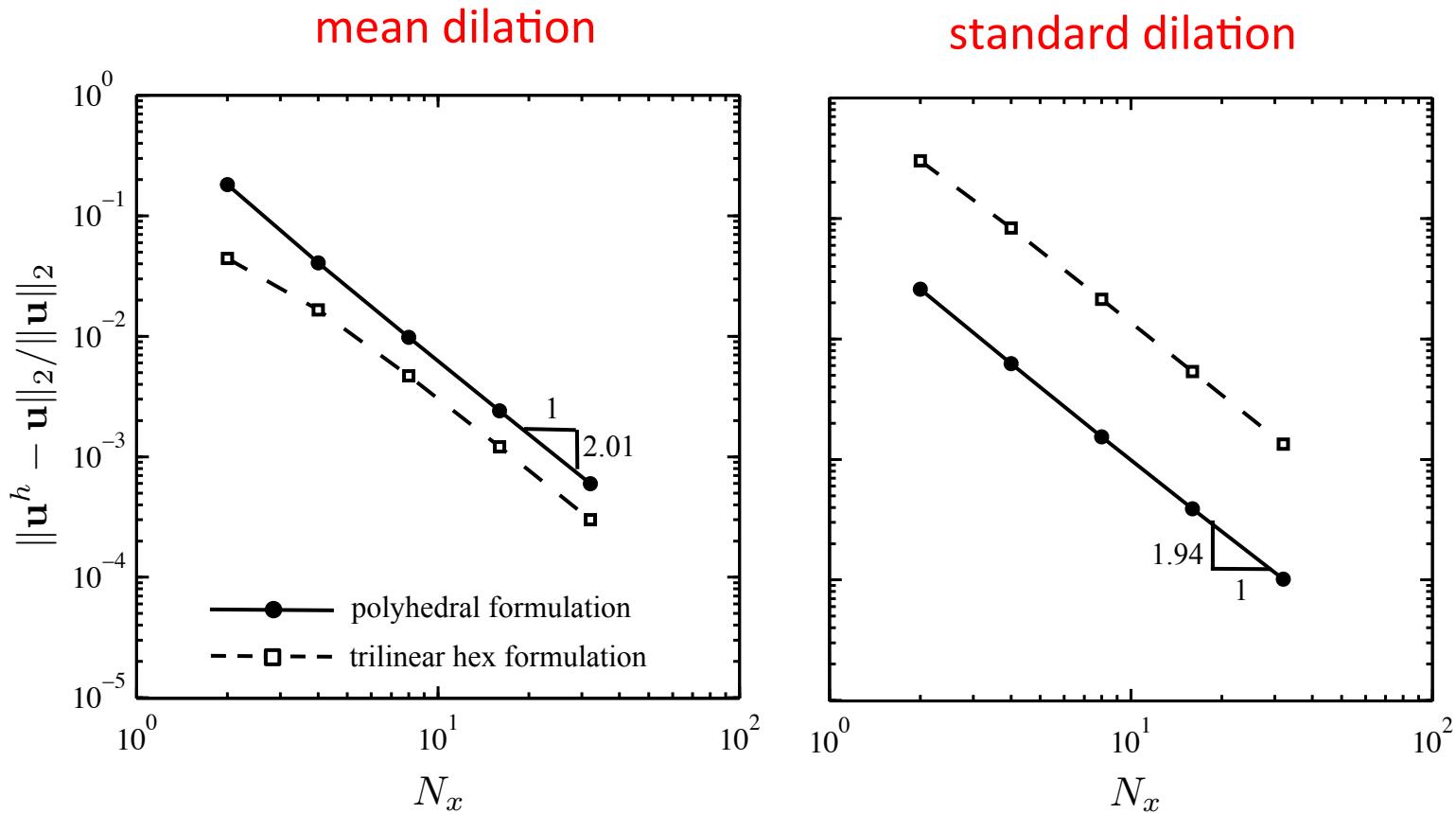
1. distorted hex mesh, trilinear hex formulation
2. distorted hex mesh, poly formulation
3. Voronoi mesh, poly formulation



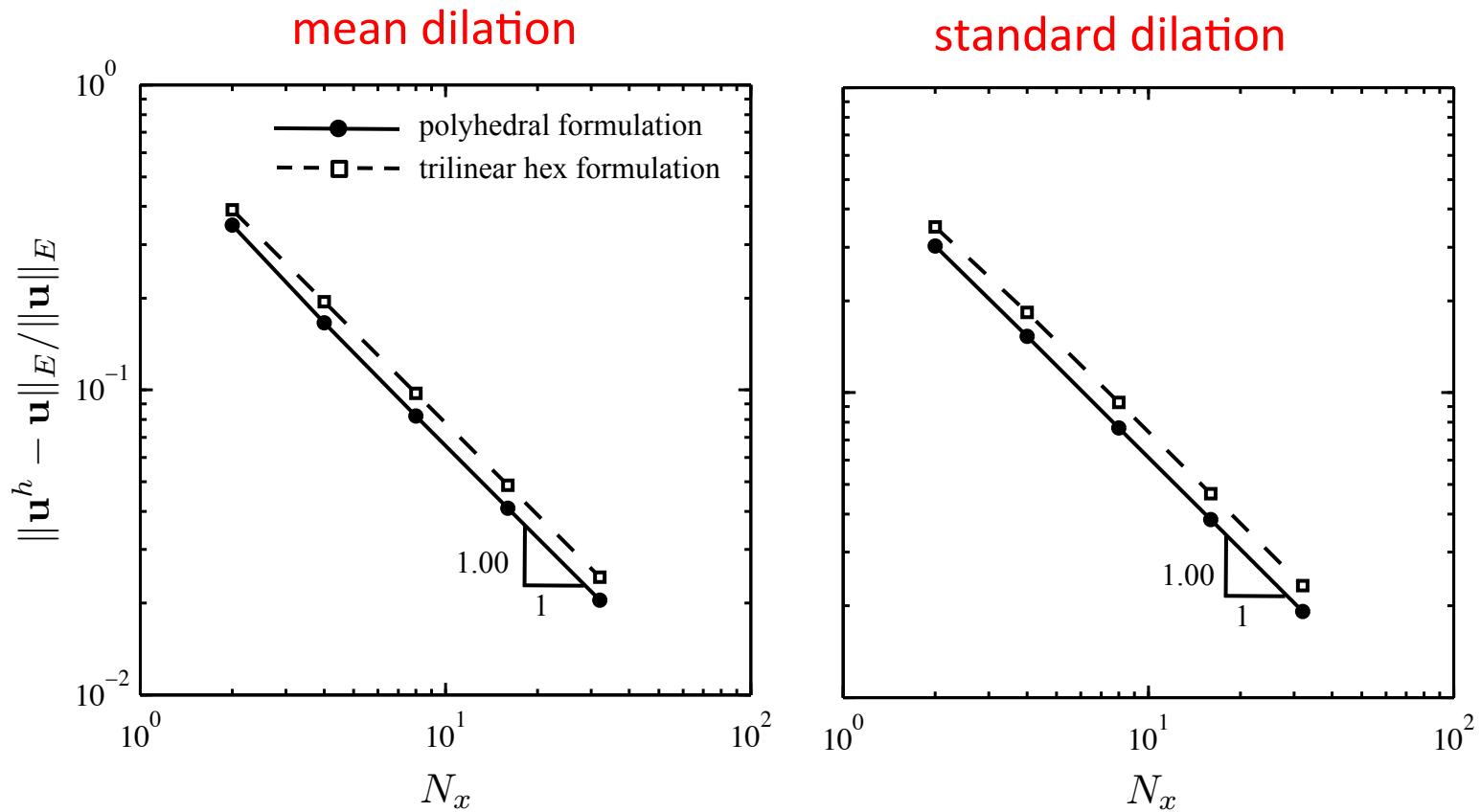
Verification Test: Beam Bending with Shear Load



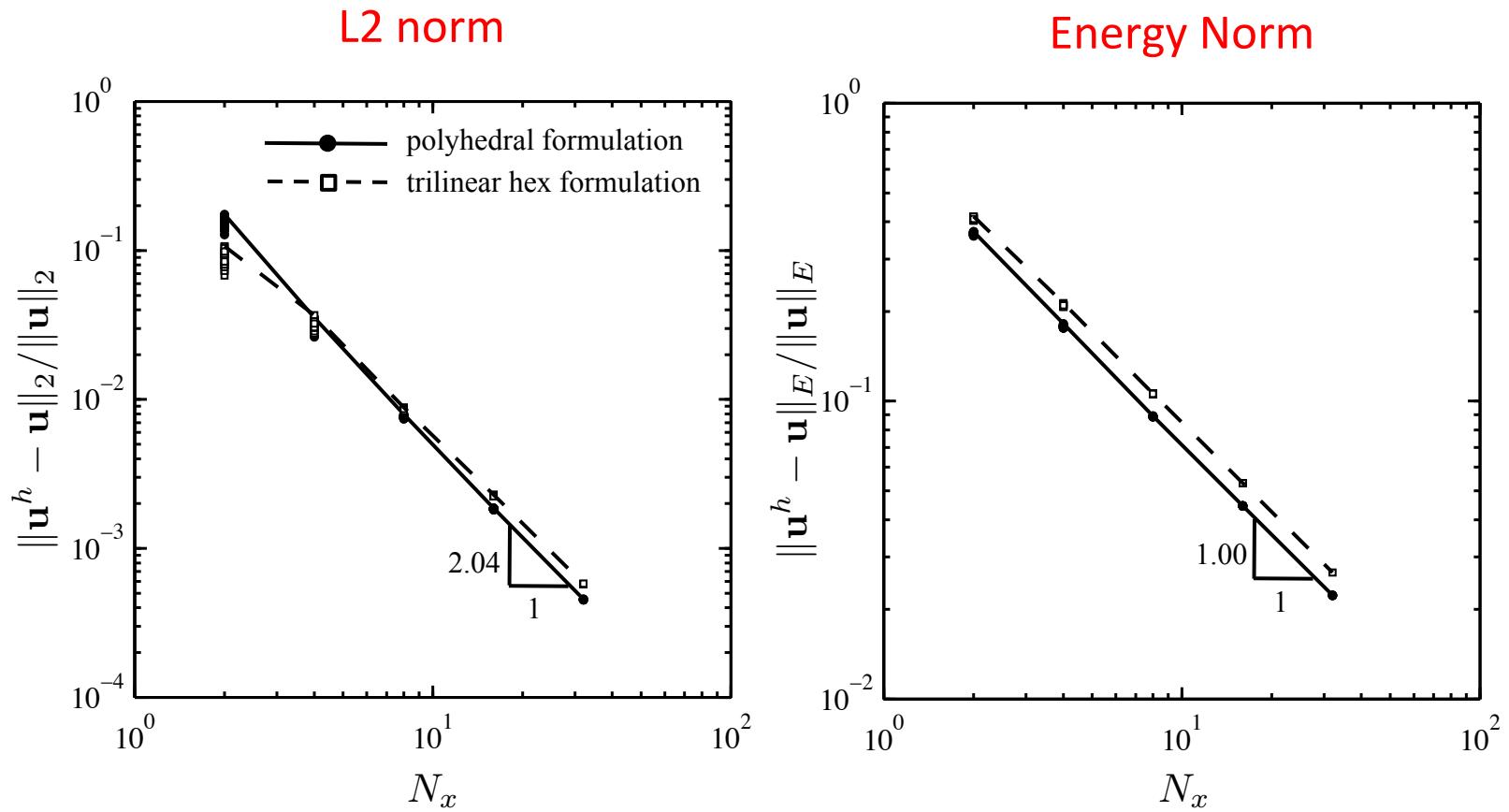
Beam Bending with Shear Load



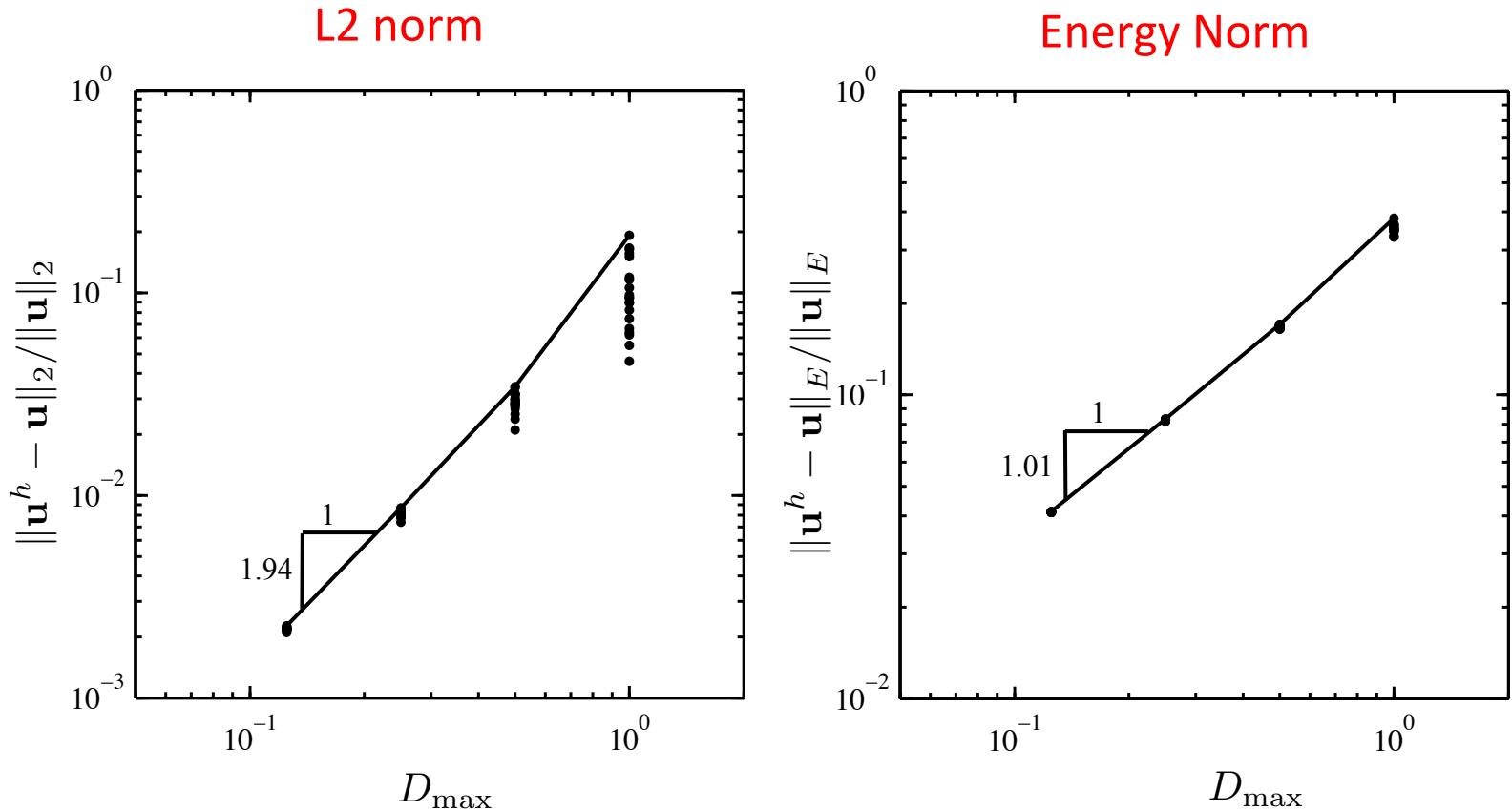
Energy Norm



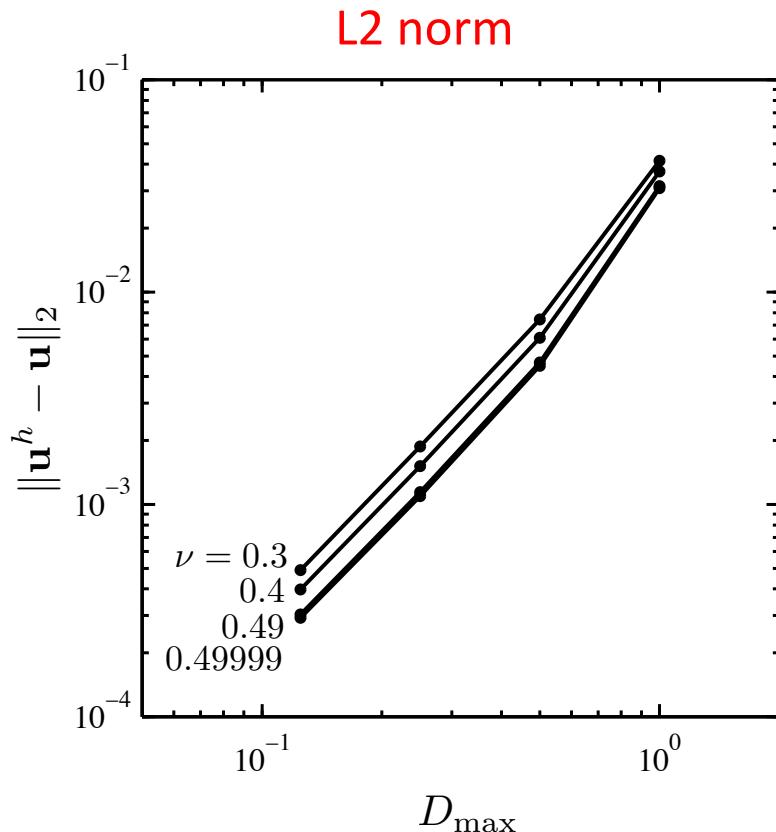
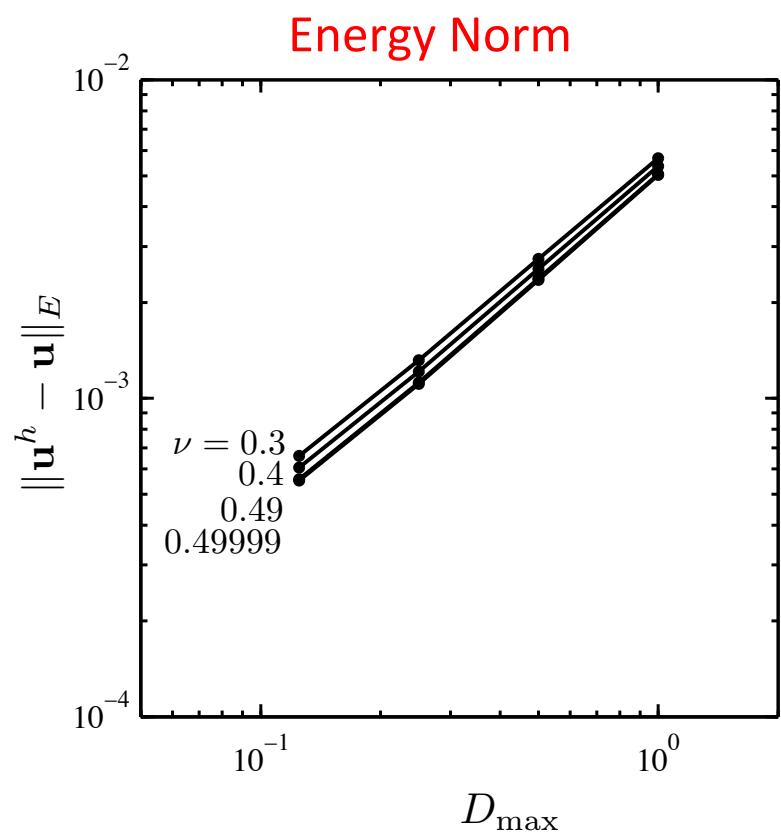
Random Hex Mesh (20 realizations)



Random Voronoi Mesh (20 realizations)

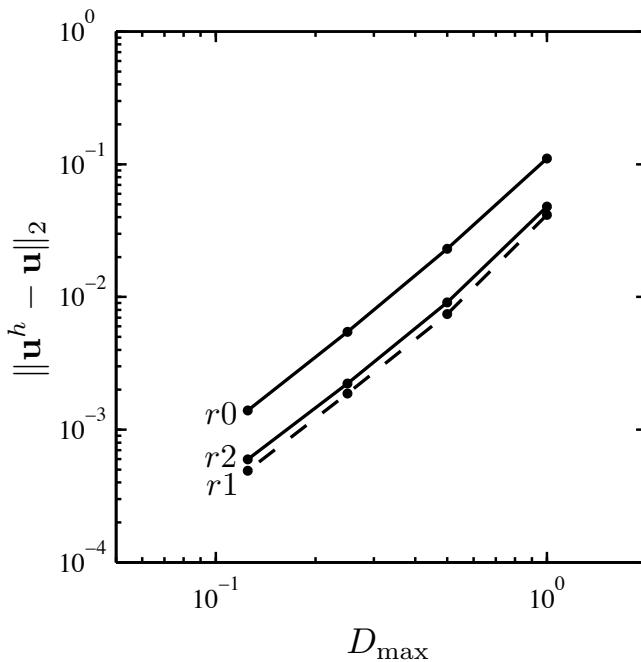


Near Incompressibility

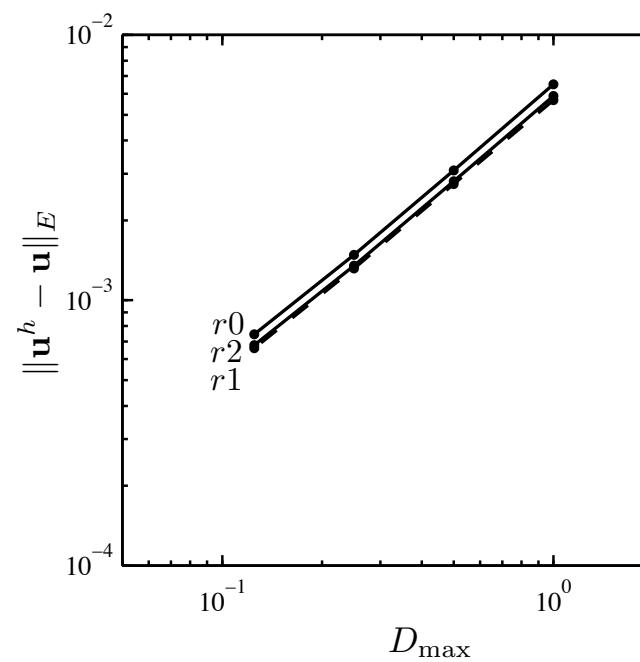
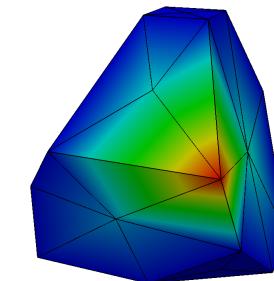


Effect of Shape Function Accuracy

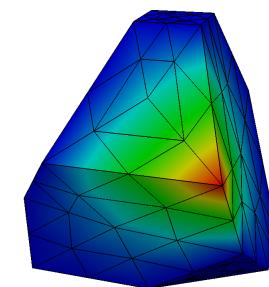
L2 norm



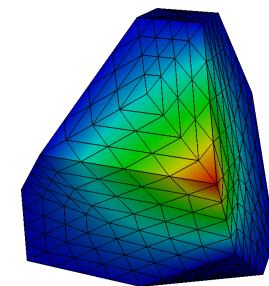
Energy Norm



R0



R1



R2

Summary

1. Presented a polyhedral finite-element formulation based on harmonic shape functions.
2. Applicable to non-convex elements with non-planar faces.
3. Adopted quadrature scheme of Rashid (number of quadrature points = number of vertices).
4. In order to pass the patch test, needed to use “pseudo-derivatives”.

Bishop, J., 2013, “A Displacement-Based Finite Element Formulation for General Polyhedra using Harmonic Shape Functions,” IJNME, (accepted)