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Introduction

Objective: A “valid” means of modeling material localization in

finite element analyses. !

Key Goals of Recent Work:

o Analytical enrichment for a cohesive crack that can capture
response gradients “not represented by the mesh”

o Examination of the bounds of effective application

0 Implementation in a Sandia code (Aria)
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PUFEM Displacement Field Enrichment

o Standard FEM

Global displacement approximations

u(x)= ]-VZ?(Di (x)u,

cohesive zone

a0 PUFEM/XFEM
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Earliest Enrichment Functions
for Fracture
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“My Path to Enrichment”

“I have not failed. I’ve found 10,000 ways that won’t work.” =~ — Thomas Edison
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Formulated simple series that incorporated .
a discontinuity.

Formulated simple functions that had key
features of accurate numerical results.
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Analytically derived enrichment functions
based upon the Muskhelishvili formalism.



Enrichment Functions: An Analytical Source

Muskhelishvili formalism (1953)
Hong & Kim (2003) obtained a series solution to the inverse problem
Zhang & Deng (2007) obtained “asymptotic solutions”
— both assumed linear elastic isotropic material (except for cohesive zone)
Additional analysis was used to:
verify the proposed solutions
extend them for field variables required by the XFEM

Displacements

. 1 ,
+ity = ko(2)-2¢'(2)-y(2)}

where ¢ and v are analytic functions, and z = x+iy.
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Enrichment Functions: An Analytical Source

Qualitative comparison of o,, with fine-scale FEA
= Analytical ~ First terms 1in series for Hong & Kim solution
* “Fine-scale” FEA ~ results for finely meshed FEA with interface el.

Note: problems differ and CZ sizes are not to the same scale.

Analytical ¢ Fine-scale FEA |

Cohesive zone length = 2¢ @ Netoral



Enrichment Functions: An Analytical Source

Zhang & Deng (2007) solve the problems in terms of
elliptic coordinates ()

z =ccosh(w)

Symbolically the inverse map 1s give by
w = cosh™'(z/c)

complex analysis — useful forms.

They (1) adopt a Westergard stress function,
— one unknown analytic function,

(2) express this 1n a series, and

(3) define one term of the series to be the asymptotic solution.
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Solver Approach

Assign equation numbers; Determine storage for K;

Repeat (* time increment loop *)

Re
I

peat (* outer level solver loop -- aka localization loop *)
Update K & R
Reset penalty number to large value when entering a new element, else 0

Repeat (* penalty reduction loop *)
Relax the penalty number
Reset line search
Repeat (* nonlinear iteration loop *)

|
|
|
| Search line for dU,
|
|
|

Until ”R”<Rtoler
Until penalty number is reduced to zero

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
U

N

—_—

til localization is complete

Ui=U + dUge,; dUgepi=0; Uggi= U

Until time stepping is complete
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Initial Simple Test Problems

 Concrete test problems

3G, = 0.1 mJmm? =100 J/m?
* relevant to HDBT
* domain I mx 1 m Gl
* process-zone size ~ O(250 mm) éc
* representative concrete tensile properties ©
0

(except for simplified linear softening) 0
* mode I quasistatic crack propagation

Problem geometry

- YUy
seeeyeees U for problem 1
—@---u for problem 2
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Past Results

0 Quasi-brittle, quasi-static crack propagation
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Key Lingering Questions

1 To what extent are the enrichment functions affecting
the accuracy?

1 What other classes of problems can these enrichment
functions be beneficially applied to?
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Recent Results

0 Field accuracy for an orthotropic material

= Based on earlier model problem

0 Fracture of glass seals
= LMOS glass-fiber seal
= Model problem for glass-metal seal

Sandia
National
Laboratores



Examination of the Model Problem Field Results
Example response 1n the “tip-element”
Fine-scale 81x8

enrichment
region \

Surface plot d

: u, for tip-element
view
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Model Test Problem with a Stationary Crack

Uy,

cohesive zone path

Initial tests excluded crack -- to establish limitations of
approximate reference solution

 Exact reference solution (v=0)

J Approximate reference solution (v=0)

J Approximate reference solution (v=0.17)
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Displacement Field Accuracy
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Relative Errors for
Orthotroplc Elastic Materials
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L.MOS Fiber Seal Problem

S, Max. Principal

(Avg: 75%)
+1.723e+08
+1.530e+08

+9.

+3.727e+07
+1.798e+07
-1.317e+06
-2.061e+07
-3.990e+07
-5.920e+07

Full mesh 2 —— coarse. cubit(360_2.inp): 03/01/2010: 12:23:08
ODB: gtm1i.r2.odb  Abaqus/Standard 6.9-1 Mon Mar 01 16:50:01 MST 201

Y Step: Step-1
Increment  15: Step Time = 2.3630E-03
Primary Var: S, Max. Principal
Deformed Var: U Deformation Scale Factor: +1.000e+00
X



umerical Formulation Issues

Abaqus results which do not “compete cracks™

Fiber optic seal within a package -- 3D

S, Max. Principal
(Avg: 75%)

S, Max_Principal
(Avg: 75%)

-4632e+07

Full mesh 2 —— coarse. cubit(360_2.inp): 03/01/2010: 12:23:08
ODB: gtmi.r3.0db Abaqus/Standard 6.9-1 Mon Mar 01 18:17:27 MST 2010 %

X Step: Step-1 \ ‘\\
increment 27: Step Time = 1.6749E-03 \
Primary Var: 8, Max. Principal
Deformed Var: U~ Deformation Scale Factor: +1.0006+00

Full mesh 2 - coarse. cubit(360_2.inp): 03/01/2010: 12:23:08
ODB: gim1 13.0db  Abaqus/Standard 6.9-1  hon Mar 01 18:17:27 MST 2010

% Step: Step-1
Z increment 27: Step Time = 1.6749E-03

Primary Var: §, Max. Principal

Deformed Var: U Deformation Scale Factor: +1.0002+00



Numerical Formulation Issues

Abaqus results which do not “compete cracks™

Fiber optic seal within a package -- 2D (plane strain)

Package

— (lass solder
— Fiber




(Glass-Metal Seal Model Problem

Work in Progress!

Mesh 2:

Interface elements
used around pin
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Glass-Metal Seal Example Analysis

0 Feasibility questions to address:

= Can we run problems with a relatively small
cohesive zone?

= Can we make the cohesive zone small enough
to provide results for brittle fracture without
requiring an extremely fine mesh?

= Can we seed a crack (provide a “defect”) and
determine the temperature that it might go
unstable at?
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Glass-Metal Seal Model Problem Example

o Temperature drop to produce unstable crack ~ 376° C

a0 Cohesive zone traction just prior to unstable crack growth
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0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

radius (mm)
a Cohesive zone length1s  ~ 1/11 crack length

~ 1/4 element length

0 “Resolution of cohesive zone™ appears to be 1in terms of
Increments across an element — not elements. Sandia
@ Laboratories



A “Global Issue” for the Aria Implementation

Management of enrichment DOFs

Enrichment
field 1




Observations & Conclusions

No free-lunch -- algorithm complexity T with analytical
enrichment

Several open 1ssues and opportunities, e.g.:
= Value of ¢ and its possible adjustment

- How useful 1s this analytical enrichment for materials that
are not homogeneous 1sotropic elastic?

- Preliminary results for an orthotropic elastic material did not
preclude their application.

- Clearly not the best approach for all classes of problems.
Appears to allow relatively coarse meshes 1n some cases

Resolution of cohesive zone appears to be in measured 1n terms
of increments across an element — not elements

0 Refinements are still needed to improve the accuracy
o Analytically enriched XFEM for cohesive zone modeling of

localization has potential.
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Displacement Field Accuracy
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Value of ¢ for 1 series term

Analogy to 1llustrate the point that if only one term of the
series 1s used, adjusting another parameter of the single basis
function can improve the solution.

Consider the approximation of the function y=x, on the interval [0,a].
In this case let the basis be an orthonormal sine series of the form:

=
a a .

=1

Approximation of y/a vs. x/a when keeping a finite number of terms:

1 term it 10 terms 1 20 terms 1 40 terms

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8

Having a basis for the function we can approximate it as closely as desired in

Sl
the sense of the L,-norm, but 1 term is not very accurate. @ Rl



Value of ¢ for 1 series term

Analogy to 1llustrate the point that if only one term of the
series 1s used, adjusting another parameter of the single basis
function can improve the solution.

Consider the approximation of the function y=x, on the interval [0,a].
If we can only keep one term of the series, consider changing a to ¢ and treating it as a
parameter that can be adjusted. Our approximate solution then takes the form:

X J b ~ of the nodal unknown in the FEA. Here it 1s determined

Y= b Sln(? by a least squares fit. ¢ ~ ¢ of the cz analytical solution

Approximation of y/a vs. x/a when adjusting c:

c=a . c=2a . c=10a

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

When only 1 term is retained, increasing ¢ improves the accuracy in the sense

Sandia
of the L,-norm -- obvious from a Taylor series point of view. @ Rl



