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Introduction

Objective: A “valid” means of modeling material localization in 
finite element analyses.

Key Goals of Recent Work:

 Analytical enrichment for a cohesive crack that can capture 
response gradients “not represented by the mesh”

 Examination of the bounds of effective application

 Implementation in a Sandia code (Aria)



PUFEM Displacement Field Enrichment

 Standard FEM

cohesive zone

enriched elements

Global displacement approximations

Element displacement approximations
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“My Path to Enrichment”

“I have not failed.  I’ve found 10,000 ways that won’t work.”       – Thomas Edison

Formulated simple series that incorporated 
a discontinuity.

Formulated simple functions that had key 
features of accurate numerical results.

Analytically derived enrichment functions 
based upon the Muskhelishvili formalism. 

u2

22



Enrichment Functions: An Analytical Source

Muskhelishvili formalism (1953)

Hong & Kim (2003) obtained a series solution to the inverse problem

Zhang & Deng (2007) obtained “asymptotic solutions”

– both assumed linear elastic isotropic material (except for cohesive zone)

Additional analysis was used to: 

verify the proposed solutions

extend them for field variables required by the XFEM

u1  iu2 
1

2
 z  z  z  z  

where  and  are analytic functions, and z = x+iy.

Displacements



Enrichment Functions: An Analytical Source

x/c

Qualitative comparison of 22 with fine-scale FEA
Analytical ~ First terms in series for Hong & Kim solution
 “Fine-scale” FEA ~ results for finely meshed FEA with interface el.

y/c

Analytical Fine-scale FEA

Note: problems differ and CZ sizes are not to the same scale.

Cohesive zone length = 2c



Enrichment Functions: An Analytical Source

Zhang & Deng (2007) solve the problems in terms of
elliptic coordinates ()

z  ccosh  
1

2

Symbolically the inverse map is give by
  cosh1 z c 

complex analysis  useful forms.

They (1) adopt a Westergard stress function, 
 one unknown analytic function,
(2) express this in a series, and
(3) define one term of the series to be the asymptotic solution.



Mode-I Enrichment Functions

 Based upon the asymptotic solutions of Zhang & Deng 
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Solver Approach
Assign equation numbers;   Determine storage for K;
Repeat (* time increment loop *)
| Repeat (* outer level solver loop -- aka localization loop *)
| | Update K & R
| | Reset penalty number to large value when entering a new element, else 0
| | …
| | Repeat (* penalty reduction loop *)
| | | Relax the penalty number
| | | Reset line search
| | | Repeat (* nonlinear iteration loop *)
| | | | Factor K
| | | | Forward eliminate & back substitute to obtain dUiter
| | | | Repeat (* line search loop *)
| | | | | Search line for dUiter

| | | | | …
| | | | Until (||R||<Rtoler) OR (||R||<||Rold||)
| | | | …
| | | Until ||R||<Rtoler

| | Until penalty number is reduced to zero
| | …
| Until localization is complete
| U:= U + dUstep;   dUstep:= 0;   Uold:= U
| …
Until time stepping is complete



Initial Simple Test Problems

 Concrete test problems
• relevant to HDBT
• domain 1 m x 1 m
• process-zone size ~ O(250 mm)
• representative concrete tensile properties
(except for simplified linear softening)

• mode I quasistatic crack propagation

cohesive zone path

Problem geometry
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Past Results

 Quasi-brittle, quasi-static crack propagation
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Key Lingering Questions

 To what extent are the enrichment functions affecting 
the accuracy?

 What other classes of problems can these enrichment 
functions be beneficially applied to?



Recent Results

 Field accuracy for an orthotropic material

 Based on earlier model problem

 Fracture of glass seals

 LMOS glass-fiber seal

 Model problem for glass-metal seal



Examination of the Model Problem Field Results
Example response in the “tip-element”

enrichment
region

ux for tip-element
Surface plot
view

ux for tip-element

XFEM

Fine-scale 81x80



Model Test Problem with a Stationary Crack

Initial tests excluded crack -- to establish limitations of 
approximate reference solution

 Exact reference solution (=0)
Approximate reference solution (=0)
Approximate reference solution (=0.17)

cohesive zone path



Displacement Field Accuracy
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Displacement Field Accuracy
“cz tip” ~ center-line

0.78%  1.1%

Reduced region
of integration

~ 2%

~ 0.8%
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Relative Errors for
Orthotropic Elastic Materials
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LMOS Fiber Seal Problem

fiber

glass solder

section of package wall



Numerical Formulation Issues

Abaqus results which do not “compete cracks”

Fiber optic seal within a package -- 3D 



Analysis
Take I
Analysis
Take II

Zooming in near the fiber

Numerical Formulation Issues

Abaqus results which do not “compete cracks”

Fiber optic seal within a package -- 2D (plane strain) 

Initial
Mesh

Fiber

Glass solder

Package



Glass-Metal Seal Model Problem

Mesh 2:
Work in Progress!

Interface elements
used around pin



Glass-Metal Seal Example Analysis 

 Feasibility questions to address:

 Can we run problems with a relatively small 
cohesive zone?

 Can we make the cohesive zone small enough 
to provide results for brittle fracture without 
requiring an extremely fine mesh? 

 Can we seed a crack (provide a “defect”) and 
determine the temperature that it might go 
unstable at?



Glass-Metal Seal Model Problem Example
 Temperature drop to produce unstable crack ~ 376° C

 Cohesive zone traction just prior to unstable crack growth

 Cohesive zone length is ~ 1/11 crack length
~ 1/4 element length

 “Resolution of cohesive zone” appears to be in terms of 
increments across an element – not elements. 
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A “Global Issue” for the Aria Implementation

Management of enrichment DOFs



Observations & Conclusions

 No free-lunch -- algorithm complexity  with analytical 
enrichment

 Several open issues and opportunities, e.g.:
 Value of c and its possible adjustment
 How useful is this analytical enrichment for materials that 

are not homogeneous isotropic elastic?
• Preliminary results for an orthotropic elastic material did not 

preclude their application.
• Clearly not the best approach for all classes of problems.

 Appears to allow relatively coarse meshes in some cases
 Resolution of cohesive zone appears to be in measured in terms 

of increments across an element – not elements
 Refinements are still needed to improve the accuracy

 Analytically enriched XFEM for cohesive zone modeling of 
localization has potential.
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Back-up slides referenced:



Displacement Field Accuracy
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Displacement Field Accuracy

Approximate reference: 
81x80
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Value of c for 1 series term

Consider the approximation of the function y=x, on the interval [0,a].
In this case let the basis be an orthonormal sine series of the form:

Analogy to illustrate the point that if only one term of the 
series is used, adjusting another parameter of the single basis 
function can improve the solution.

2
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Approximation of y/a vs. x/a when keeping a finite number of terms:
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Having a basis for the function we can approximate it as closely as desired in 

the sense of the L2-norm, but 1 term is not very accurate.
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Value of c for 1 series term

Consider the approximation of the function y=x, on the interval [0,a].
If we can only keep one term of the series, consider changing a to c and treating it as a 
parameter that can be adjusted.  Our approximate solution then takes the form:

Analogy to illustrate the point that if only one term of the 
series is used, adjusting another parameter of the single basis 
function can improve the solution.

Approximation of y/a vs. x/a when adjusting c:
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When only 1 term is retained, increasing c improves the accuracy in the sense 

of the L2-norm -- obvious from a Taylor series point of view.
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b ~ of the nodal unknown in the FEA.  Here it is determined 
by a least squares fit.  c ~ c of the cz analytical solution

c=2a


