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Overview

= Lagrangian hydrodynamics of two materials in 1-D
* Two material, one-velocity model leads to a closure problem.

" Three different staggered-mesh discretizations
° The approaches used in computations are presented.

= Several different closure models
* All use pressure relaxation in the mixed cell as a physically-
motivated assumption.

= Comparison of computational results
* Pressure equilibration behavior for two test problems

= Conclusions
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Two-material Lagrangian hydrodynamics in
1-D presents several open issues.

= Conservation laws govern the flow of inviscid, non-heat-
conducting, compressible fluids in the Lagrangian frame:

Dt Jdu
Mass: o0 == -2 =0 T =1/p
Dt ox
0 —
Momentum: ol Du P _ o7 = PO
Dt ox = p(xt=0)
De 0
Energy: o9 =—— + —(Pu) = 0 e=¢+ (12)u?
Dt ox' '
Equation of State: P = P(ex) Specific Internal
(EOS) Energy (SIE)

= With 1-D equations, we can:
* Test — rigorously — fundamental algorithms
° Quantitatively evaluate algorithm performance
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We make some simplifying assumptions.

= There are two materials.

* Two materials cells (almost) certainly occur during the remap
of a multi-material ALE calculation.

* Modeling of two materials requires much more care than one
material simulations.

* Modeling of two materials does not imply an unambiguous
method for model three (or more) materials.

" These two materials are described by one velocity.
* This implies — either implicitly or explicitly — that a sub-grid
model describes the mixing of the materials within each cell.
* This differs from more sophisticated, multiple velocity-field
models that are used, e.q., for two-phase flow.
" We focus on closure models for pressure equilibration.

* We do not discuss here the important issue of artificial viscosity
models for multiple-material cells.
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Algorithm I uses the following predictor-
corrector approach®.

4 itions: xtLE L Afeu
. Edge positions: i+1/2 " Tixl)2 i+1/2
@) - n+lx _ yn+lx _ yn+lx®
s < Cell volumes: % FASTH xXihs = X
S _ TP n+l,* _ n /
Qq% Edge-velocities: AT z+1/2 At(p! +4: 1 =P7=4;) ) M 10 node
__ Cell pressure: P =plt - x At Pl (e ) v-ul
 Node mass: LYY
B i+1/2 n(ide n o icell At i+1, Cf]l L L L
Edge-velocities: u”+1 = W= S PR e - gt
n
S +pl+1 ql+1_p 4, )/Mz+1/2n0de
S | Time-center: ul e = Sl it
-
S < Edge positions: i+1/2 " iel2" O 2
Cell volumes: Vl”’c’glll = l”++1}2 - xl"_+1}2
T n+1 n+1 n+l _ n+l
Cell density. o M,V > s 1/p] ! :
. n+ n+
Cell SIE: el =gt - (At/ pp) ) (pil +CI"+ )(( b=V (At l+1/2)
Cell pressure: p{‘” P(e"+1 l’”l) Full EOS call

* Yanilkin, Yu.V., Study and Implementation of Multi-Material Pressure Relaxation Methods for
SAND2011-xxxxc Lagrangian Hydrodynamics, Los Alamos National Laboratory report LA-UR-10-06664, 2010.



This algorithm changes for multiple materials.

= Denote the volume fraction of material « as: f, =V, /V

a

= In the predictor, the change is to the pressure update.

* The pressure of material o at " is evaluated: p” =P(€fa, T )

9

° : . n+l,* _ ,n  _ Af O" n 2V' n
Pressure predictor update: Pl =Pl % tpi’a(cs,i’a) u!

* With the following relations, Bondarenko & Yanilkin* showed
that total energy is conserved in this approach:

n+l x _ n+l % n+l % _ n+l x
PRV, Pl G = 3 vy G
where ¥, is determined by the closure model.

= In the corrector, additional modifications are required.

* The node mass becomes:
=;2 (M; o+ M where M. =f p V

i+Lor o “iolia i

i+1/2,node

* Bondarenko, Yu.A., Yanilkin, Yu.V., “Computation of thermodynamical parameters of the mixed cells in gas dynamics,”
o VANT (Mathematical Modeling of Physical Processes) 2000;4:12-25 (in Russian).
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Additional changes in the corrector are needed.

= Updated values for material o are as follows:

Volume: yntl_yn L A yntly. M’”l
i,a Lo I,o 1

. n+l _ n+l n+1 n+

Density: pre =M, c?ua/vi', - Y =1/pf
. +1 _ n+ n+
Volume Fraction: flna - V /V
. n+l _ _ n+l* 4  n+l*

SIE: gi,a i,a ( /’Oi,oc)(pi Qo +qi Qo )

x (1/2) (Vaul +V-ulit™)
° In the above expressions, the following quantities are still undefined:
artificial viscosity ¢, , velocity divergence V- u? , , parameter v,
= We impose the following constraints:
(1) Volume: V = EVa = Efa =1 and AV = E‘SVa : Efav-ua = V-u

(2) SIE: £ = EYaga with Y,=f 0,0, P= gfapa

Assume velocity dlvergence is modeled as: V-u,=2xr,Vu
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Algorithm 1II uses a different approach®.

Node mass: M, e = V2XM; e My cer)
Time steps: Att = il A o= gl
_ inge  n+l/2 _ =172 _ 4 AP +gn .~ ph_gh

Edge-velocities: u iy = A2)A+A) (P +a0 - P =9 M node

-y . n+l _ yn +. yn+1/2
Edge positions:  x*) = Xt At ut i

. n+l _ yn+l _ yn+l

Cell volumes: Vien = X4n — X

ity - n+l _ n+l n+l — 1/ Hnl
Cell density.: prl= M, /Vi,cell = o+l =1/p,
Cell SIE: en+l = et - (1)2) (pplagit —pit - q) (v+l-11)
Cell pressure:  pi+l = Pt o™y Fungos can

l l l

These are implicit, nonlinear equations in gll’“fl and pl.’“f1 that
are solved with an iterative solution procedure.

== " For multiple materials, Alg. IT changes similarly to Alg. I

* Yanilkin, Yu.V., Study and Implementation of Multi-Material Pressure Relaxation Methods for

SAND2011-XXXXC Lagrangian Hydrodynamics, Los Alamos National Laboratory report LA-UR-10-06664, 2010.



Algorithm III is similar to the first algorithm®.

& Edge positions:  x™/2_x" 4+ (At/2) u"
S l+1{ > 1+1{ 3 1/2 z+1/2
= | Cellvolumes: V" o x"/=_x™
5< zcel} z+1/2 i-1/2
@ T . 2 n+1/2/
& Cell specific vol.: T Vzcell i cell
: n+1/2 _ o ' o0 2/ n n+1/2/ n
_ Cell pressure: ~ p'*= = p! ((cs’l.) 7|0V, |%
Edge-velocities: u'*! —u' -~ AL (pmHlz grlz_prHiz_ gz
] i+1/2 i+1/2 Ml+1/2 node l l
Edge positions:  x™' —x" 4Az(u",  +ut! /2
9e P i+1/2 " i+1/2 ( +1/2 +1/2)
. n+l _ yn+l _ yn+l
S< Cell volumes: Vi,cell = Xt = X
"G e . n+l _ n+1/
0 Cell specific vol.: T Vzceu i cell
o
S | cell sIE: el - g _[ prgt| oV /Ml Ceu]
) n+l n+l _n+l
kCeII pressure: piT = PETTT)

* Kamm J.R., Shashkov M.J., Rider, W.J., “A new pressure relaxation closure model for one-dimensional two-

- material Lagrangian hydrodynamics, Eur. Phys. J. Web Conf. 2011, doi:10.1051/epjconf/201010000038.
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With Alg. I, several closure models for pressure
equilibration can be examined.

@® Equal compressibility*: V-u, =V-u so A, =1, y,=f,
* Assume this is valid at the predictor step: V- u+1/2 = v. 3 +1/2
* Easy to implement; computationally efficient: p=2f,p,
° Physically incorrect—with questionable results—Iin many situations.
— E.g., cell with gas (highly compressible) and metal (low compressibility).

@ Equal pressure™: p, =p, and ¢, =g¢q,
* This is the result of instantaneous (i.e., over Ar) pressure equilibration.
* Leads to coupled equations: one must solve for AE_, AV, p"*12 in:
M E_+AE
AEa= (pn+1/2+qn) u AV. . AV =3 A‘{x : pn+1/2= P(VOF}.FZVOC, aA';a a)

where  u=(V-u"+V-u"™HVnar/(2AV)
* These imply expressions for updated SIE and volume fraction:
etl2 = ¢ +(AE, /M ), fI+V2 = (V_+AV )/(V+AV)

» Bakhrakh, S., Spiridonov, V., Shanin, A., “A method for computing gas-dynamic flows of inhomogeneous medium in Lagrangian
oy, Eulerian coordinates,” DAN SSR 1984,;276:829-833 (in Russian; translated in Sov. Phys. Doklady 1984;29:443-445).
i T Harlow, F., "The particle-in-cell computing method for fluid dynamics," in Alder, B., Fernbach, S., Rotenberg, M., eds., Methods in
Computational Physics, Vol. 3; New York: Academic Press; 1964, 319-343; Zharova, G.V., Yanilkin, Yu.V. "The EGAK code mixed
%ressure equilibration algorithm," VANT (Mathematical Modeling of Physical Processes) 1993;3:77—-81 (in Russian).

cell
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Equal-increment models can also be formulated.

@ Equal pressure increments* (AP ):
* Assume that the general acoustic approximation is valid:

IP/dt = (IP/9p)(dp/dt) = p c2 V- u
* Assume that this quantity has the same value for all materials:
pey Vouy = pe3Vou,

* This leads to the following closed-form expressions: n -1
V-ou = A V-u” where A = 1 3> p
o o 0/ pZ(CZ)Z pZ(CZ)Z

@ Equal velocity incrementst (Av):
* One velocity per cell, so equal velocity increments is plausible.
* Acoustic approximation implies: V-'u = —(5pa)/(paAt) ~ —(5ua)/(caAt)
° This leads to the following closed-form expressions:

Z(f/;1 / C/';)

» Bondarenko, Yu.A., Yanilkin, Yu.V., “Computation of thermodynamical parameters of the mixed cells in gas
dynamics,” VANT (Mathematical Modeling of Physical Processes) 2000;4:12—25 (in Russian).
T Goncharov, E.A., Yanilkin, Yu.V., “New method for computations of thermodynamical states of the materials in

- mixed cells,” VANT (Mathematical Modeling of Physical Processes) 2004;3:16-30 (in Russian).
SAND2011-XXXXC
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With Alg. IT, a linearized Riemann problem* (LRP) used.

® Consider a Riemann problem in the mixed cell:

° Riemann invariants imply the well-known —+ +—
linearized contact velocity expression: u, O » © u,

u.
n. n+l/2 n. n+l/2 n n intfc
intf
o (ocy)) +(Pcy )
From Algorithm II, the I 1 _af '

following update T i
for the density follows: P P

* Combining these equations gives updates for each material implies:
1 _1 _ At (Pcs)z 2 nel2y Pf‘P;
ot ol MylGpe)r (o)) T T (e (pe)))

n+1/2 un+1/2

1 1 At (PCS)IL Y2 _ynelizy Pf-l?;
pl o M) (pe)y T T (pe) e (pe )]

: * Delov, V., Sadchikov, V.V., “Comparison of several models for computation of thermodynamical parameters for
SAN2011 XXXr;(ecterogeneous Lagrangian cells,” VANT (Mathematical Modeling of Physical Processes) 2005;1:57—70 (in Russian).




The LRP* method also involves additional equations.

°* From V-u =AV/(VAt) , the individual + $_
velocity divergences are obtained: U, O » 0 u,
n _ N\\7.,, 1 n_ n n pny]. nl-1
=&/ fHV-u" + o [P - (2 D (pe)]
where

Py =5y . (o = o +peny] . A =1-[5(pc)/(po)g] .

with h” a characterlstlc mesh size and @” |mproves stability:
o= (o) +(po) ]} "1 o1 mm{f1 7|

* From the velocity divergence equation, the volume change is:

n+l_yn — n+l_yn n n_ n nl-1
VIRV =2 (VHLVY) + AtV h) (" - pD(po)]

* After some algebra, this implies that the energy update for
material o is modified by an additional term:

A"l = [(@" D)/ ("W |, [P - P2+ PP - P [(po)i !

* Delov, V., Sadchikov, V.V., “Comparison of several models for computation of thermodynamical parameters for

- heterogeneous Lagranglan cells,” VANT (Mathematical Modeling of Physical Processes) 2005;1:57—70 (in Russian).
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Kamm & Shashkov* (KS) break the pressure
equilibration assumption of Desprést using
local Riemann problem solutions.

m Pressure relaxation in the mixed cell reduces to the
solution of a minimization problem in =+l g+l g+l gn+l

. 1 1 2 72
n+l nf—llll n+l n+1 f() = ||P1n+1_p1P” + ”Pn+1_p2P”
{rl £ ,172 £,
(0 = f1 =c T+ ¢ T - o
SUbjeCt< 0 = f =c "l 4 o entl _ gntl
to: 2 171 2 72
0=/ = el — e+ P (x/-T!)
n+1 n+1 n
a. d —[8 —8+P(‘L’ -T2 )] 4. b
1 1 2 I2I<—2|
%ﬁ 2
Imix lmlx+1 Im|x l o lmlx;1

= Complicated — and untested for realistic problems in multi-D.
, * Kamm J.R., Shashkov M.J., Comm. Comput. Phys., 2010; 7:927-976.
SAND2011-XXXXC T Despres, B., Lagoutiere, F., Prog. Comput. Fluid Dyn. 2007; 7:295-310.




RRRT—].

Kamm, Shashkov & Rider* (KSR) also 4 il o
propose a linearized Riemann model. u @ > @ u,

U

Intic

= Inspired by VNIIEF work, KSR used the linearized Riemann problem

to update the materials’ volumes, volume fractions, and SIEs.
" There is a problem: this SIE update is not consistent with the total work
done on the mixed cell, i.e., E M, dei+s = —pi*  dvi
i +1/2 i +1/2

m Let d€ be the change in SIE that guarantees consistency:

Consistent [8Z+1]= [8]?*1’ ]+ [dek] Known + Unknown

" Assume that the pressure change due to d?:k : (1) is the same for both
materials, and (2) depends only on the energy (not on the density).

" Using the expression for the total SIE discrepancy and the
thermodynamic derivatives (9P, /§8k)pk, one can solve for the
corrections to the SIEs and then update the pressures:

8£+1 _ EIZHL* + dgk and n+1 _ P(8n+1 n+1)

« Kamm J.R., Shashkov M.J., Rider, W.J., “A new pressure relaxation closure model for one-dimensional two-

N material Lagrangian hydrodynamics, Eur. Phys. J. Web Conf. 2011, doi:10.1051/epjconf/201010000038.
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Tipton’s method is a widely used, robust multi-
material, pressure relaxation for multi-D.

m Assumption #1: Predictor pressure based on adiabatic update:

n+l/2 — pn _ (A2 [ n n+1/2| yyn)
Py Pr = 11%%) /Tk oV, i

)
_ Unknown _
= Assumption #2: There is a relaxation term added to each material’s

pressure, so that these sums are all equal:
Unknown

I N Ry AN 2 (WA n+1/2| y/n)
where R = cs, /th LL /(SzfJ L5vk 4 |

= Assumption #3: Volume changes add up correctly:

; 5Vl:z+1/2 _ Vn+1/2

= One can solve for| p"+1/2| and 6V£+1/2 in closed form.

" The second step of a two-step time-integrator uses this
information to obtain the final updated values.
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The initializations of the pure-material and

mixed-cell test problems are as follows.

m The test problems were run similarly:
®* N, zoneson x

<xX<X, With Ax,=h,i#]

mix

min

* One mixed cell for i =i, with Ax;  =2h

Mixed
‘mix | ximix” N TN
< 1] >ie 0 >
PUrE e ——————— e ——
1M Fimix ximix+1ximix+2 Nt N2
* The fictitious mixed-cell * We compare these results
interface is at the center of with pure-material
mixed cell of width 2h, with calculations that have

no explicit mass-matching. the actual interface.
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Test Problem #1: Modified Sod Shock Tube

* Two-gas, low Mach number shock tube initial conditions:
(1.0, 2.0,0.0,2.0), 0=x<0.5,
(p.pey) = {(0.125,0.1, 0.0, 1.4), 0.5 < x< 1.0, Material 2
® Final-time snapshots show the standard shock-tube evolution.

0.12

" |n the following slides, we

= present time-histories in the
| 'g  single mixed cell.
© = Results for all of the methods

L

"o ez oe ws o5 ooz oe os os 1 mentioned are presented.
Posmon Position
* All methods have been

demonstrated to be about
05 o first-order accurate on this
- problem.

B
O 0.2 0.4 0.6 0.8 1

=0.2

tfinal

©
o

Density
10443
Pressu re

N
~

100 cells

A
JJ SIE
5>
o - N w B (4] (]
Joug

T

10413 °
VeIOC|ty

?

0 02 04 06 08 1'

Position Position

“Closed-form” — Computed = Error
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., 1 Pure
&J 15
-]
@,
@
| -
D_ 0.5
./ Material 2
0 0.05 0.1 0.15 0.2
,  II Pure
[ORK]
| -
S
@
@
| -
D_O.S
0
0 0.05 0.1 0.15 0.2
,. IIT Pure
QD 15
| -
-]
@
@
| -
D_ 0.5

0
0.05 0.1 0.15 0.2

0
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Modified Sod Pressure History

2
15
1
0.5
0
0 0.05 0.1 0.15 0.2
15
|
0.5
0
0 0.05 0.1 0.15 0.2
2 KS
15
|
0.5
0
0 0.05 0.1 0.15 0.2

I Av
: = All methods:
* Equilibrate
' * Obtain the
correct final
Ve pressure

= All methods exhibit pressure
oscillations, also.

®= Among mixed cell methods,
KSR and Tipton look
heuristically the “nicest.”

ITT KSR

2 2

Tipton

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2



Modified Sod Density History

. I Pure ; I AP 1 I Av " The “pure”

methods come
>
= closest to the
G o ! ! * correct values at
O 0.2 /\,Materia| 2 0.2 } \ 0.2/ the flnal tlme-

:O[SI EurES 0.2 0 0405::[ 0.|1_R$15 0.2 0 0.05 0.1 0.15 0.2
| = All mixed cell methods

> undershoot the final values.
c | = Which method looks heuristically
GJ 0.4 0.4 “ .
= © the "best™?

 III Pure . KS ~ III KSR . Tipton
bos 0.8 L 0.8 0.8
(7) 0.6 0.6 0.6 0.6
% 0.4 0.4 T 0.4 f 0.4
- 0.2 /\ﬁ | 02 /\/ | 0.2 /\f 0.2/¥

0
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Modified Sod Specific Internal Energy History

7 I Pure 7 I AP 7 I Av =" For ,
: : : all methods
U1 . Material 2 ) ) perform about
D ' : ' C © equally well,
f f f ~and get the
00 0.05 0.1 0.15 0.2 0O 0.05 0.1 0.15 0.2 00 0.05 0.1 0.15 0.2 CorreCt reSUIt-
, 11 Pure - L IRP = For material 2, both linearized
j j Riemann problem methods
Ll « : overshoot significantly.
) s 3 . .
C ) = Tipton overshoots a little, too.
) ) = KS heuristically the “best’?
~ III Pure . KS ~ III KSR . Tipton
|_|_J 4 4 4 4

0
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Test Problem #2: the Water-Air Shock Tube

= Water-air shock tube™ initial conditions:
(1.6+3,1.6+9,0.0,4.4,6.6+8), 0<x<0.7, p = (y=D)pe—yp,,
(0-P1-P=) =9 (5.041,1.0+6,0.0,1.4,00), 0.7<x<1.0, Material 2 [ 1, = 2.2e-4

" Final-time snapshots show the stronger shock-tube evolution.

" = |n the following slides, we
> E— L «  present time-histories in the
57 '8 g 3 single mixed cell.
7 o = Results for all of the methods
R R T TR S mentioned are presented.
O \ Position . Position
3 * All methods have been
N o . demonstrated to be about
w | = S s first-order accurate on this
a5t 3w b problem.
b 0 L 400
S p;4siﬁogn v S sz;iﬁo.;n v * R. Saurel & R. Abgrall, “A Multiphase Godunov Method for
“Closed-form” — Computed = Error ggsl;r;?rless(s)i:?llzesl\_/lrét;fluid and Multiphase Flows,” J. Comput. Phys.
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. I Pure
1x10

o

Efmo8 HZO

w -

3 Air

| -

o Negative
pressure

-5x10°
0 5x10° 1x10™ 1.5x10™ 2x10* 2.5x10*

IT Pure

-5x10°
0 5x10° 1x10™ 1.5x107* 2x10™* 2.5x10°

IIT Pure

1x10°

e

Ss5x10°

0 .
14 Negative
pressure

Pressu

-5x10°
0 5x10° 1x10™* 1.5x10™* 2x10* 2.5x10*
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Water-Air Pressure History

I AP

1x10°

-t | Material 1
Material 2
Positive
pressure

-5x10°

0 5x10° 1x10™ 1.5x10™ 2x10* 2.5x10™

IT LRP

1x107
5x108
Positive
pressure
-5x10°

0 5x10° 1x10™ 1.5x107* 2x10™* 2.5x10°

KS

1x10°
5x10°
0 . .
Positive
pressure
-5x10°

0 5x10° 1x10™* 1.5x10™* 2x10* 2.5x10™*

I Av = All methods:

* Equilibrate
* Obtain the

correct final
pressure

1x10°

5x10°

0
I Negative
pressure

-5x10°
0 5x10° 1x10™ 1.5x10™ 2x10™ 2.5x10

= Some pure and mixed cell
methods have negative pressure.

* The mixed cell methods based
on Riemann problems have
no negative pressure.

IIT KSR Tipton

1x10° 1x10°
5x10° 5x10°
0 o
Positive Negative
pressure pressure
-5x108 -5x10°

0 5x10° 1x10™ 1.5x10°* 2x10™ 2.5x10 0 5x10° 1x10™ 1.5x10 2x10™* 2.5x10™



w0  Material 2 ,
/,

0  5x10° 1x10™ 1.5x10™* 2x10* 2.5x10*

IT Pure

1200

. Air

0 5x10° 1x10™ 1.5x107* 2x10™* 2.5x10°

IIT Pure

1200

Density

0 5x10° 1x10™ 1.5x10™ 2x10™ 2.5x10™
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Water-Air Density History

I AP I Av

900 L 900
600 600
300 300

0
0 5x10° 1x10™ 1.5x10™ 2x10* 2.5x10* 0  5x10° 1x10™ 1.5x10™* 2x10* 2.5x10™

IT LRP

" For material 2,
consistently undershoot final
values more than pure methods.

* Which method looks heuristically

900 \

600
300
° I14 ”»
: the “best”?
0 0 5x10° 1x10™ 1.5x107* 2x10™* 2.5x10°
KS _ III KSR
900& 900 \
600 600
300 300
T | |
0

0 5x10° 1x10™ 1.5x10* 2x10™ 2.5x10™

0 5x10° 1x10™ 1.5x10* 2x10™ 2.5x10™

" The “pure”
methods come
closest to the
correct values at
the final time.

mixed cell methods

Tipton

1200

900
°

600

300

N

0
0 5x10° 1x10™ 1.5x10* 2x10™* 2.5x10°




Water-Air Specific Internal Energy History

s« Material 2
0 r
0 5x10° 1x10™ 1.5x107 2x10™ 2.5x10

IT Pure

2.5x10°

5x10° A[r

0
0 5x10° 1x10™ 1.5x10* 2x10 2.5x10™

IIT Pure

2.5x10°

0 5x10° 1x10™ 1.5x10™ 2x10* 2.5x10™
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I AP

0 5x10° 1x10™ 1.5x107* 2x10™ 2.5x10

oo 1L LRP

5x10°

0
0 5x10° 1x10™ 1.5x10* 2x10 2.5x10™
2.5x10° KS

2x10°

1.5x10°

1x10°

5x10°

=

0 5x10° 1x10™ 1.5x10™ 2x10™ 2.5x10

I Av

2.5x10°

" For material 1,
all methods are

1.5x10° abOUt the Same,
- close to the

A exact final value.

0  5x10° 1x10™ 1.5x10™ 2x10™* 2.5x10*

®" For material 2, both linearized
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Summary of these results

Pure Material:
* Basic algorithm with no mixed cell; straightforward for ideal problems.

@ No mixed cell assumptions. @ No mixed cell assumptions.

= Equal AP:
* Acoustic approximation, assumed to be equal for all materials.

@ Closed-form expressions, 2-D. @ Sometimes oscillatory, less accurate SIE.

= Equal Av:
* Single velocity — equal velocity increments is a plausible assumption.

@ Closed-form expressions, 2-D. @ Sometimes oscillatory, negative pressure.

= Linearized Riemann Problem (LRP):
* Linearized Riemann problem in mixed cell is used as conservative closure.

@ “Physics-based”, 2-D. @ Questionable SIE, volume fractions.
Kamm & Shashkov (KS):
* Full Riemann problem in mixed cell — “optimal” pressure of each material.
@ Physics-based. @ Complicated. 2-D? Strength?
Kamm, Shashkov & Rider (KSR):
* Linearized Riemann problem in mixed cell is used as conservative closure.
@ “Physics-based”, 2-D. @ Questionable SIE, volume fractions.

Tipton:
* Relaxation term — equal pressures: solve exactly for this term.

@ Robust, fast, 2-D & strength. @ Rough & ready assumptions, good results.
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Conclusions

= Multi-material Lagrangian cells remain an important issue.
* The 1-D case allows rigorous testing of closure models.
= Several different closure models were described.

* Some are simple & fast (e.g., equal compressibility), while
others are complex & slow (e.g., using the full Riemann problem).
" There is no clear “winner” among the methods
* In some aspects, simple methods look good (e.g., AP)
* In other aspects, Riemann-based methods do not (e.g., SIE)

* Other test problems? Strong expansions, very stronger shocks,
near-void initial conditions...

= Many of these approaches can be extended:
* 2 2 materials, with some assumptions about material ordering.
e 2-D/3-D: VNIIEF (Yanilkin et al.) and KSR (Harrison et al.).

= Open issues:
* 2-D comparison problems? » Artificial viscosity (VNIIEF)
* Examine the entropy differences among methods
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