

Multi-Material Closure Models for 1-D Lagrangian Hydrodynamics

**Yu.V. Yanilkin, E.A. Goncharov,
V.Yu. Kolobyanin, V.V. Sadchikov**

All-Russian Research Institute of Experimental Physics, Sarov, Russia

J.R. Kamm, W.J. Rider

Sandia National Laboratories, Albuquerque, USA

M.J. Shashkov

Los Alamos National Laboratory, Los Alamos, USA

Six Lab Conference on Engineering & Materials at Extreme Conditions
23–28 October 2011
Barcelona, Spain

Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Overview

- **Lagrangian hydrodynamics of two materials in 1-D**
 - Two material, one-velocity model leads to a closure problem.
- **Three different staggered-mesh discretizations**
 - The approaches used in computations are presented.
- **Several different closure models**
 - All use pressure relaxation in the mixed cell as a physically-motivated assumption.
- **Comparison of computational results**
 - Pressure equilibration behavior for two test problems
- **Conclusions**

Two-material Lagrangian hydrodynamics in 1-D presents several open issues.

- Conservation laws govern the flow of inviscid, non-heat-conducting, compressible fluids in the Lagrangian frame:

$$\text{Mass: } \rho^0 \frac{D\tau}{Dt} - \frac{\partial u}{\partial x} = 0$$

$$\text{Momentum: } \rho^0 \frac{Du}{Dt} + \frac{\partial P}{\partial x} = 0$$

$$\text{Energy: } \rho^0 \frac{De}{Dt} + \frac{\partial}{\partial x}(Pu) = 0$$

$$\text{Equation of State: } (EOS) \quad P = \mathcal{P}(\varepsilon, \tau)$$

$$\tau \equiv 1/\rho$$

$$\rho^0 \equiv \rho^0(x) \equiv \rho(x, t=0)$$

$$e \equiv \varepsilon + (1/2) u^2$$

Specific Internal Energy (SIE)

- With 1-D equations, we can:
 - Test — *rigorously* — fundamental algorithms
 - Quantitatively evaluate algorithm performance

We make some simplifying assumptions.

- **There are two materials.**

- Two materials cells (almost) certainly occur during the remap of a multi-material ALE calculation.
- Modeling of two materials requires much more care than one material simulations.
- Modeling of two materials does not imply an unambiguous method for model three (or more) materials.

- **These two materials are described by one velocity.**

- This implies — either implicitly or explicitly — that a sub-grid model describes the mixing of the materials within each cell.
- This differs from more sophisticated, multiple velocity-field models that are used, e.g., for two-phase flow.

- **We focus on closure models for pressure equilibration.**

- We do not discuss here the important issue of artificial viscosity models for multiple-material cells.

Algorithm I uses the following predictor-corrector approach*.

Predictor

Edge positions:	$x_{i+1/2}^{n+1,*} = x_{i+1/2}^n + \Delta t \cdot u_{i+1/2}^n$	<i>Artificial viscosity</i>
Cell volumes:	$V_{i,\text{cell}}^{n+1,*} = x_{i+1/2}^{n+1,*} - x_{i-1/2}^{n+1,*}$	
Edge-velocities:	$u_{i+1/2}^{n+1,*} = u_{i+1/2}^n - \Delta t (p_{i+1}^n + q_{i+1}^n - p_i^n - q_i^n) / M_{i+1/2,\text{node}}^n$	
Cell pressure:	$p_i^{n+1,*} = p_i^n - \chi \Delta t \rho_i^n (c_{s,i}^{n+1,*})^2 \nabla \cdot u_i^n$	<i>Adiabatic update</i>

Corrector

Node mass:	$M_{i+1/2,\text{node}} = \frac{1}{2} (M_{i,\text{cell}} + M_{i+1,\text{cell}})$	
Edge-velocities:	$u_{i+1/2}^{n+1} = u_{i+1/2}^n - \frac{\Delta t}{2} (p_{i+1}^{n+1,*} + q_{i+1}^{n+1,*} - p_i^{n+1,*} - q_i^{n+1,*} + p_{i+1}^n + q_{i+1}^n - p_i^n - q_i^n) / M_{i+1/2,\text{node}}$	
Time-center:	$u_{i+1/2}^{n+1/2} = \frac{1}{2} (u_{i+1/2}^n + u_{i+1/2}^{n+1})$	
Edge positions:	$x_{i+1/2}^{n+1} = x_{i+1/2}^n + \Delta t \cdot u_{i+1/2}^{n+1/2}$	
Cell volumes:	$V_{i,\text{cell}}^{n+1} = x_{i+1/2}^{n+1} - x_{i-1/2}^{n+1}$	
Cell density:	$\rho_i^{n+1} = M_{i,\text{cell}} / V_{i,\text{cell}}^{n+1} \Rightarrow \tau_i^{n+1} = 1 / \rho_i^{n+1}$	
Cell SIE:	$\varepsilon_i^{n+1} = \varepsilon_i^n - (\Delta t / \rho_i^n) (p_i^{n+1,*} + q_i^{n+1,*}) \left((V_{i+1/2}^{n+1} - V_{i+1/2}^n) / (\Delta t V_{i+1/2}^{n+1}) \right)$	
Cell pressure:	$p_i^{n+1} = \mathcal{P}(\varepsilon_i^{n+1}, \tau_i^{n+1})$	Full EOS call

* Yanilkin, Yu.V., *Study and Implementation of Multi-Material Pressure Relaxation Methods for Lagrangian Hydrodynamics*, Los Alamos National Laboratory report LA-UR-10-06664, 2010.

This algorithm changes for multiple materials.

- Denote the volume fraction of material α as: $f_\alpha = V_\alpha/V$

- In the predictor, the change is to the pressure update.

- The pressure of material α at t^n is evaluated: $p_{i,\alpha}^n = \mathcal{P}(\varepsilon_{i,\alpha}^n, \tau_{i,\alpha}^n)$
- Pressure predictor update: $p_{i,\alpha}^{n+1,*} = p_{i,\alpha}^n - \chi \Delta t \rho_{i,\alpha}^n (c_{s,i,\alpha}^n)^2 \nabla \cdot u_i^n$
- With the following relations, Bondarenko & Yanilkin* showed that total energy is conserved in this approach:

$$p_i^{n+1,*} = \sum_{\alpha} \psi_{\alpha} p_{i,\alpha}^{n+1,*} \quad q_i^{n+1,*} = \sum_{\alpha} \psi_{\alpha} q_{i,\alpha}^{n+1,*}$$

where ψ_{α} is determined by the closure model.

- In the corrector, additional modifications are required.

- The node mass becomes:

$$M_{i+1/2,\text{node}} = \frac{1}{2} \sum_{\alpha} (M_{i,\alpha} + M_{i+1,\alpha}) \quad \text{where} \quad M_{i,\alpha} \equiv f_{i,\alpha} \rho_{i,\alpha} V_i$$

* Bondarenko, Yu.A., Yanilkin, Yu.V., "Computation of thermodynamical parameters of the mixed cells in gas dynamics," *VANT (Mathematical Modeling of Physical Processes)* 2000;4:12–25 (in Russian).

Additional changes in the corrector are needed.

- Updated values for material α are as follows:

Volume: $V_{i,\alpha}^{n+1} = V_{i,\alpha}^n + \Delta t V_{i,\alpha}^{n+1} \nabla \cdot u_{i,\alpha}^{n+1}$

Density: $\rho_{i,\alpha}^{n+1} = M_{i,\text{cell},\alpha} / V_{i,\alpha}^{n+1} \Rightarrow \tau_{i,\alpha}^{n+1} = 1 / \rho_{i,\alpha}^{n+1}$

Volume Fraction: $f_{i,\alpha}^{n+1} = V_{i,\alpha}^{n+1} / V_i^{n+1}$

SIE: $\varepsilon_{i,\alpha}^{n+1} = \varepsilon_{i,\alpha}^n - (\Delta t / \rho_{i,\alpha}^n) (p_{i,\alpha}^{n+1,*} + q_{i,\alpha}^{n+1,*})$
 $\times (1/2) (\nabla \cdot u_{i,\alpha}^n + \nabla \cdot u_{i,\alpha}^{n+1,*})$

- In the above expressions, the following quantities are still undefined:
artificial viscosity $q_{i,\alpha}^n$, velocity divergence $\nabla \cdot u_{i,\alpha}^n$, parameter ψ_α

- We impose the following constraints:

(1) Volume: $V = \sum_\alpha V_\alpha \Rightarrow \sum_\alpha f_\alpha = 1$ and $\Delta V = \sum_\alpha \delta V_\alpha$, $\sum_\alpha f_\alpha \nabla \cdot u_\alpha = \nabla \cdot u$

(2) SIE: $\varepsilon = \sum_\alpha Y_\alpha \varepsilon_\alpha$ with $Y_\alpha \equiv f_\alpha \rho_\alpha / \rho$, $\rho = \sum_\alpha f_\alpha \rho_\alpha$

- Assume velocity divergence is modeled as: $\nabla \cdot u_\alpha \equiv \lambda_\alpha \nabla \cdot u$
such that $\psi_\alpha \equiv f_\alpha \lambda_\alpha$

Algorithm II uses a different approach*.

Node mass: $M_{i+1/2,\text{node}} = (1/2)(M_{i,\text{cell}} + M_{i+1,\text{cell}})$

Time steps: $\Delta t^+ \equiv t^{n+1} - t^n, \quad \Delta t^- \equiv t^n - t^{n-1}$

Edge-velocities: $u_{i+1/2}^{n+1/2} = u_{i+1/2}^{n-1/2} - (1/2)(\Delta t^+ + \Delta t^-)(p_{i+1}^n + q_{i+1}^n - p_i^n - q_i^n) / M_{i+1/2,\text{node}}$

Edge positions: $x_{i+1/2}^{n+1} = x_{i+1/2}^n + \Delta t^+ \cdot u_{i+1/2}^{n+1/2}$

Cell volumes: $V_{i,\text{cell}}^{n+1} = x_{i+1/2}^{n+1} - x_{i-1/2}^{n+1}$

Cell density.: $\rho_i^{n+1} = M_{i,\text{cell}} / V_{i,\text{cell}}^{n+1} \Rightarrow \tau_i^{n+1} = 1 / \rho_i^{n+1}$

Cell SIE: $\varepsilon_i^{n+1} = \varepsilon_i^n - (1/2)(p_i^{n+1} + q_i^{n+1} - p_i^n - q_i^n) (\tau_i^{n+1} - \tau_i^n)$

Cell pressure: $p_i^{n+1} = \mathcal{P}(\varepsilon_i^{n+1}, \tau_i^{n+1})$ *Full EOS call*

These are implicit, nonlinear equations in ε_i^{n+1} and p_i^{n+1} that are solved with an iterative solution procedure.

- For multiple materials, Alg. II changes similarly to Alg. I

Algorithm III is similar to the first algorithm*.

Predictor

Edge positions:	$x_{i+1/2}^{n+1/2} = x_{i+1/2}^n + (\Delta t/2) u_{i+1/2}^n$	<i>Adiabatic update</i>
Cell volumes:	$V_{i,\text{cell}}^{n+1/2} = x_{i+1/2}^{n+1/2} - x_{i-1/2}^{n+1/2}$	
Cell specific vol.:	$\tau_i^{n+1/2} = V_{i,\text{cell}}^{n+1/2} / M_{i,\text{cell}}$	
Cell pressure:	$p_i^{n+1/2} = p_i^n - \left((C_{s,i}^n)^2 / \tau_i^n \right) \left(\delta V_i^{n+1/2} / V_i^n \right)$	

Corrector

Edge-velocities:	$u_{i+1/2}^{n+1} = u_{i+1/2}^n - \frac{\Delta t}{M_{i+1/2,\text{node}}} (p_i^{n+1/2} + q_i^{n+1/2} - p_i^{n+1/2} - q_i^{n+1/2})$	<i>Artificial viscosity</i>
Edge positions:	$x_{i+1/2}^{n+1} = x_{i+1/2}^n + \Delta t (u_{i+1/2}^n + u_{i+1/2}^{n+1}) / 2$	
Cell volumes:	$V_{i,\text{cell}}^{n+1} = x_{i+1/2}^{n+1} - x_{i-1/2}^{n+1}$	
Cell specific vol.:	$\tau_i^{n+1} = V_{i,\text{cell}}^{n+1} / M_{i,\text{cell}}$	
Cell SIE:	$\varepsilon_i^{n+1} = \varepsilon_i^n - \left((p_i^{n+1} + q_i^{n+1}) \delta V_i^{n+1} / M_{i,\text{cell}} \right)$	
Cell pressure:	$p_i^{n+1} = \mathcal{P}(\varepsilon_i^{n+1}, \tau_i^{n+1})$	

* Kamm J.R., Shashkov M.J., Rider, W.J., "A new pressure relaxation closure model for one-dimensional two-material Lagrangian hydrodynamics, *Eur. Phys. J. Web Conf.* 2011, doi:10.1051/epjconf/201010000038.

With Alg. I, several closure models for pressure equilibration can be examined.

① Equal compressibility*: $\nabla \cdot u_\alpha = \nabla \cdot u$ so $\lambda_\alpha = 1$, $\psi_\alpha = f_\alpha$

- Assume this is valid at the predictor step: $\nabla \cdot u_\alpha^{n+1/2} = \nabla \cdot u^{n+1/2}$
- Easy to implement; computationally efficient: $p = \sum f_\alpha p_\alpha$
- Physically incorrect—with questionable results—in many situations.
 - E.g., cell with gas (highly compressible) and metal (low compressibility).

② Equal pressure[†]: $p_1 = p_2$ and $q_1 = q_2$

- This is the result of instantaneous (i.e., over Δt) pressure equilibration.
- Leads to coupled equations: one must solve for ΔE_α , ΔV , $p^{n+1/2}$ in:
$$\Delta E_\alpha = (p^{n+1/2} + q^n) \mu \Delta V_\alpha, \quad \Delta V = \sum \Delta V_\alpha, \quad p^{n+1/2} = \mathcal{P}\left(\frac{M_\alpha}{V_\alpha^n + \Delta V_\alpha}, \frac{E_\alpha + \Delta E_\alpha}{M_\alpha}\right)$$
where $\mu \equiv (\nabla \cdot u^n + \nabla \cdot u^{n+1}) V^n \Delta t / (2 \Delta V)$
- These imply expressions for updated SIE and volume fraction:

$$\varepsilon_\alpha^{n+1/2} = \varepsilon_\alpha + (\Delta E_\alpha / M_\alpha), \quad f_\alpha^{n+1/2} = (V_\alpha + \Delta V_\alpha) / (V + \Delta V)$$

- Bakhraev, S., Spiridonov, V., Shanin, A., "A method for computing gas-dynamic flows of inhomogeneous medium in Lagrangian-Eulerian coordinates," *DAN SSR* 1984;**276**:829–833 (in Russian; translated in *Sov. Phys. Doklady* 1984;**29**:443–445).

[†] Harlow, F., "The particle-in-cell computing method for fluid dynamics," in Alder, B., Fernbach, S., Rotenberg, M., eds., *Methods in Computational Physics*, Vol. 3; New York: Academic Press; 1964, 319–343; Zharova, G.V., Yanilkin, Yu.V. "The EGAK code mixed cell pressure equilibration algorithm," *VANT (Mathematical Modeling of Physical Processes)* 1993;**3**:77–81 (in Russian).

Equal-increment models can also be formulated.

③ Equal pressure increments* (ΔP):

- Assume that the general acoustic approximation is valid:

$$\partial P / \partial t = (\partial P / \partial \rho)(\partial \rho / \partial t) = \rho c^2 \nabla \cdot u$$

- Assume that this quantity has the same value for all materials:

$$\rho_1 c_1^2 \nabla \cdot u_1 = \rho_2 c_2^2 \nabla \cdot u_2$$

- This leads to the following closed-form expressions:

$$\nabla \cdot u_\alpha^n = \lambda_\alpha \nabla \cdot u^n \quad \text{where} \quad \lambda_\alpha \equiv \frac{1}{\rho_\alpha^n (c_\alpha^n)^2} \left(\sum \frac{f_\beta^n}{\rho_\beta^n (c_\beta^n)^2} \right)^{-1}$$

④ Equal velocity increments[†] (Δv):

- One velocity per cell, so equal velocity *increments* is plausible.
- Acoustic approximation implies: $\nabla \cdot u_\alpha \approx -(\delta \rho_\alpha) / (\rho_\alpha \Delta t) \approx -(\delta u_\alpha) / (c_\alpha \Delta t)$
- This leads to the following closed-form expressions:

$$\nabla \cdot u_\alpha^n = \lambda_\alpha \nabla \cdot u^n \quad \text{where} \quad \lambda_\alpha \equiv \frac{1}{c_\alpha^n} \left(\sum (f_\beta^n / c_\beta^n) \right)^{-1}$$

* Bondarenko, Yu.A., Yanilkin, Yu.V., "Computation of thermodynamical parameters of the mixed cells in gas dynamics," *VANT (Mathematical Modeling of Physical Processes)* 2000;4:12–25 (in Russian).

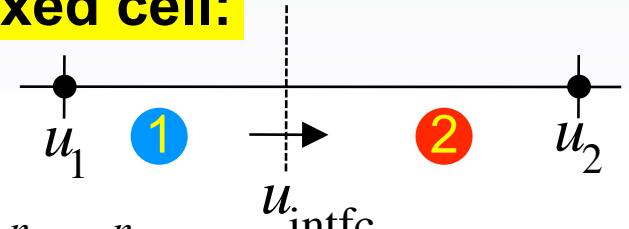
† Goncharov, E.A., Yanilkin, Yu.V., "New method for computations of thermodynamical states of the materials in mixed cells," *VANT (Mathematical Modeling of Physical Processes)* 2004;3:16–30 (in Russian).

With Alg. II, a linearized Riemann problem* (LRP) used.

⑤ Consider a Riemann problem in the mixed cell:

- Riemann invariants imply the well-known linearized contact velocity expression:

$$u_{\text{intfc}}^{n+1/2} = \frac{(\rho c_s)_1^n u_1^{n+1/2} + (\rho c_s)_2^n u_2^{n+1/2} + (p_1^n - p_2^n)}{(\rho c_s)_1^n + (\rho c_s)_2^n}$$



- From Algorithm II, the following update for the density follows:

$$\frac{1}{\rho^{n+1}} - \frac{1}{\rho^n} = \Delta t^+ \frac{u_i^{n+1/2} - u_{i-1}^{n+1/2}}{M}$$

- Combining these equations gives updates for each material implies:

$$\frac{1}{\rho_1^{n+1}} - \frac{1}{\rho_1^n} = \frac{\Delta t}{M_1} \left[\frac{(\rho c_s)_2^n}{(\rho c_s)_1^n + (\rho c_s)_2^n} (u_i^{n+1/2} - u_{i-1}^{n+1/2}) + \frac{p_1^n - p_2^n}{(\rho c_s)_1^n + (\rho c_s)_2^n} \right]$$

$$\frac{1}{\rho_2^{n+1}} - \frac{1}{\rho_2^n} = \frac{\Delta t}{M_2} \left[\frac{(\rho c_s)_1^n}{(\rho c_s)_1^n + (\rho c_s)_2^n} (u_i^{n+1/2} - u_{i-1}^{n+1/2}) - \frac{p_1^n - p_2^n}{(\rho c_s)_1^n + (\rho c_s)_2^n} \right]$$

- Delov, V., Sadchikov, V.V., "Comparison of several models for computation of thermodynamical parameters for heterogeneous Lagrangian cells," *VANT (Mathematical Modeling of Physical Processes)* 2005;1:57–70 (in Russian).¹²

The LRP* method also involves additional equations.

- From $\nabla \cdot u \approx \Delta V / (V \Delta t)$, the individual velocity divergences are obtained:

$$\nabla \cdot u_{\alpha}^n = (\lambda_{\alpha} / f_{\alpha}^n) \nabla \cdot u^n + \omega^n \left[(p_{\alpha}^n - p_{\Sigma}^n) / (f_{\alpha}^n h^n) \right] \cdot [(\rho c)_{\Sigma}^n]^{-1}$$

where

$$p_{\Sigma}^n \equiv \frac{1}{2}(p_1^n + p_2^n), \quad (\rho c)_{\Sigma}^n \equiv \frac{1}{2}[(\rho c)_1^n + (\rho c)_2^n], \quad \lambda_{\alpha} \equiv 1 - \left[\frac{1}{2}(\rho c)_1^n / (\rho c)_{\Sigma}^n \right],$$

with h^n a characteristic mesh size and ω^n improves stability:

$$\omega^n \equiv \left\{ \frac{1}{2}[(\rho c)_1^n + (\rho c)_2^n] \right\}^2 \left\{ \rho^n [(\rho c^2)_1^n + (\rho c^2)_2^n] \right\}^{-1} \min \left\{ f_1^n, f_2^n \right\}$$

- From the velocity divergence equation, the volume change is:

$$V_{\alpha}^{n+1} - V_{\alpha}^n = \lambda_{\alpha} (V_{\alpha}^{n+1} - V_{\alpha}^n) + (\omega \Delta t V^n / h) (p_{\alpha}^n - p_{\Sigma}^n) [(\rho c)_{\Sigma}^n]^{-1}$$

- After some algebra, this implies that the energy update for material α is modified by an additional term:

$$\Delta \varepsilon_{\alpha}^{n+1} = [(\omega^n \tau) / (\rho^n h^n)] f_{\alpha} [p_1^n (p_1^n - p_{\Sigma}^n) + p_2^n (p_2^n - p_{\Sigma}^n)] [(\rho c)_{\Sigma}^n]^{-1}$$

- Delov, V., Sadchikov, V.V., "Comparison of several models for computation of thermodynamical parameters for heterogeneous Lagrangian cells," *VANT (Mathematical Modeling of Physical Processes)* 2005;1:57–70 (in Russian).¹³



Kamm & Shashkov* (KS) break the pressure equilibration assumption of Després† using local Riemann problem solutions.

- Pressure relaxation in the mixed cell reduces to the solution of a minimization problem in $\tau_1^{n+1}, \varepsilon_1^{n+1}, \tau_2^{n+1}, \varepsilon_2^{n+1}$

$$\min_{\{\tau_1^{n+1}, \varepsilon_1^{n+1}, \tau_2^{n+1}, \varepsilon_2^{n+1}\}} f_0 = \|\mathcal{P}_1^{n+1} - p_1^{RP}\| + \|\mathcal{P}_2^{n+1} - p_2^{RP}\|$$

subject to:

$$\begin{cases} 0 = f_1 \equiv c_1 \tau_1^{n+1} + c_2 \tau_2^{n+1} - \tau^{n+1} \\ 0 = f_2 \equiv c_1 \varepsilon_1^{n+1} + c_2 \varepsilon_2^{n+1} - \varepsilon^{n+1} \\ 0 = f_3 \equiv \varepsilon_1^{n+1} - \varepsilon_1^n + P_1 (\tau_1^{n+1} - \tau_1^n) \\ \quad \quad \quad - [\varepsilon_2^{n+1} - \varepsilon_2^n + P_2 (\tau_2^{n+1} - \tau_2^n)] \end{cases}$$

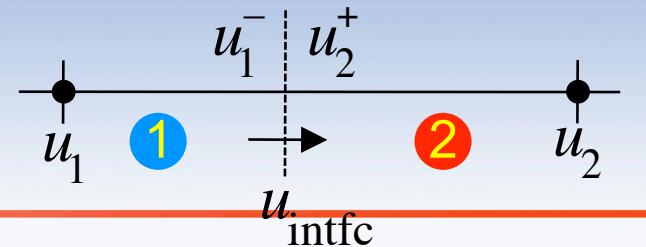
Mixed-cell Riemann Problem

- Complicated — and untested for realistic problems in multi-D.

- Kamm J.R., Shashkov M.J., *Comm. Comput. Phys.*, 2010; 7:927–976.

† Després, B., Lagoutière, F., *Prog. Comput. Fluid Dyn.* 2007; 7:295–310.

Kamm, Shashkov & Rider* (KSR) also propose a linearized Riemann model.



- Inspired by VNIIIEF work, KSR used the linearized Riemann problem to update the materials' volumes, volume fractions, and SIEs.
- There is a problem: this SIE update is *not consistent* with the total work done on the mixed cell, i.e., $\sum_k M_k d\varepsilon_k^{n+1,*} \neq -p_{i_{\text{mix}}+1/2}^{n+1/2} dV_{i_{\text{mix}}+1/2}^{n+1}$
- Let $d\tilde{\varepsilon}_k$ be the change in SIE that guarantees consistency:

Consistent $\boxed{\varepsilon_k^{n+1}} = \boxed{\varepsilon_k^{n+1,*}} + \boxed{d\tilde{\varepsilon}_k}$ *Known + Unknown*

- Assume that the pressure change due to $d\tilde{\varepsilon}_k$: (1) is the same for both materials, and (2) depends *only* on the energy (*not* on the density).
- Using the expression for the total SIE discrepancy and the thermodynamic derivatives $(\partial p_k / \partial \varepsilon_k)_{\rho_k}$, one can solve for the corrections to the SIEs and then update the pressures:

$$\varepsilon_k^{n+1} = \varepsilon_k^{n+1,*} + d\tilde{\varepsilon}_k \quad \text{and} \quad p_k^{n+1} = \mathcal{P}_k(\varepsilon_k^{n+1}, \tau_k^{n+1})$$

- Kamm J.R., Shashkov M.J., Rider, W.J., "A new pressure relaxation closure model for one-dimensional two-material Lagrangian hydrodynamics, *Eur. Phys. J. Web Conf.* 2011, doi:10.1051/epjconf/201010000038.

Tipton's method is a widely used, robust multi-material, pressure relaxation for multi-D.

- **Assumption #1:** Predictor pressure based on adiabatic update:

$$p_k^{n+1/2} = p_k^n - \left[(c s_k^n)^2 / \tau_k^n \right] \left(\delta V_k^{n+1/2} / V_k^n \right)$$

Unknown

- **Assumption #2:** There is a relaxation term added to each material's pressure, so that these sums are all equal:

Predictor pressure of k-th material $p_k^{n+1/2} + R_k$ *Overall predictor pressure*

Unknown

where $R_k = - \left(c s_k^n / \tau_k^n \right) \left(L^n / \delta t \right) \left(\delta V_k^{n+1/2} / V_k^n \right)$ *Relaxation term for k-th material*

- **Assumption #3:** Volume changes add up correctly:

$$\sum_k \delta V_k^{n+1/2} = V^{n+1/2}$$

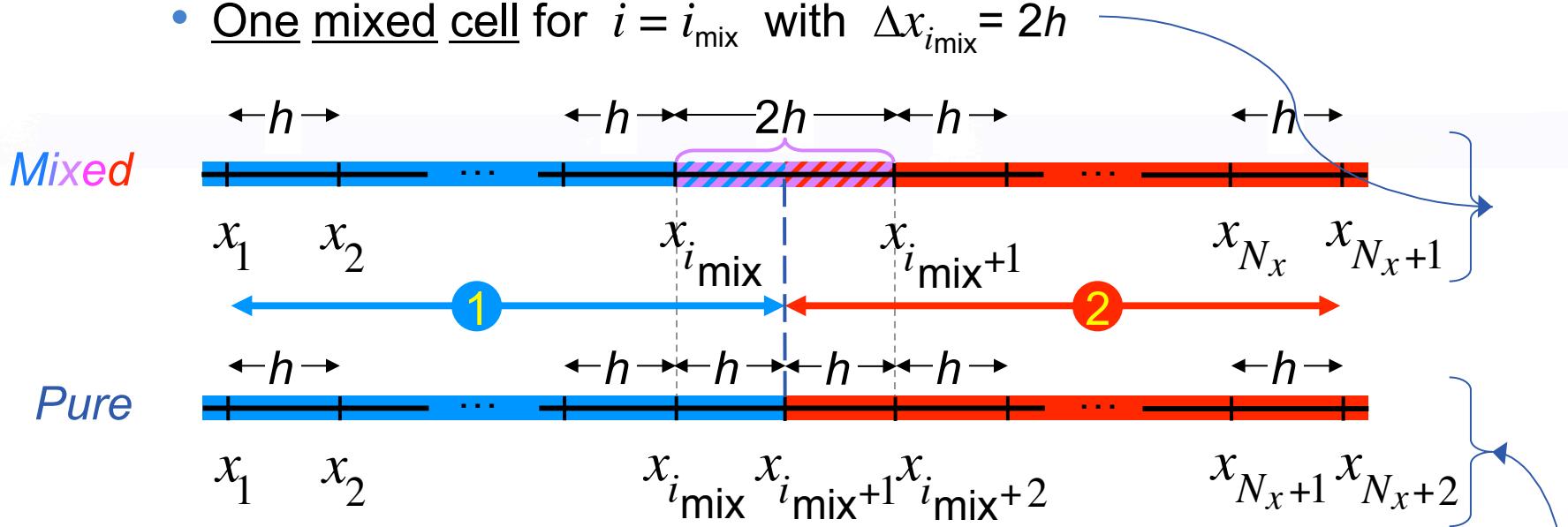
Total predictor volume change is known from standard algorithm

- One can solve for $\hat{p}^{n+1/2}$ and $\delta V_k^{n+1/2}$ in closed form.
- The second step of a two-step time-integrator uses this information to obtain the final updated values.

The initializations of the pure-material and mixed-cell test problems are as follows.

- The test problems were run similarly:

- N_x zones on $x_{\min} \leq x < x_{\max}$ with $\Delta x_i = h$, $i \neq i_{\text{mix}}$
- One mixed cell for $i = i_{\text{mix}}$ with $\Delta x_{i_{\text{mix}}} = 2h$



- The fictitious **mixed**-cell interface is at the center of mixed cell of width $2h$, with no explicit mass-matching.

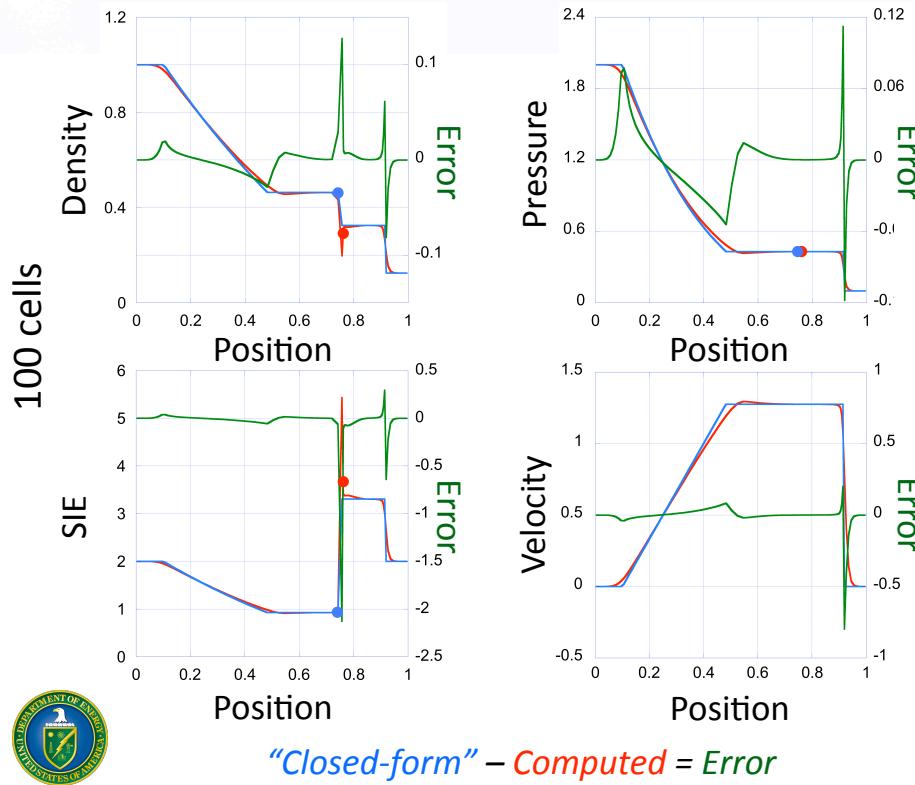
- We compare these results with **pure**-material calculations that have the actual interface.

Test Problem #1: Modified Sod Shock Tube

- Two-gas, low Mach number shock tube initial conditions:

$$(\rho, p, u, \gamma) = \begin{cases} (1.0, 2.0, 0.0, 2.0), & 0 \leq x < 0.5, \text{ Material 1} \\ (0.125, 0.1, 0.0, 1.4), & 0.5 < x \leq 1.0, \text{ Material 2} \end{cases} \quad t_{\text{final}} = 0.2$$

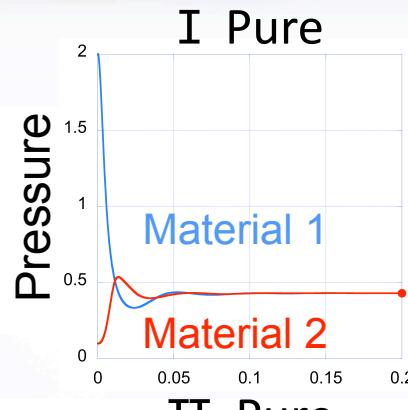
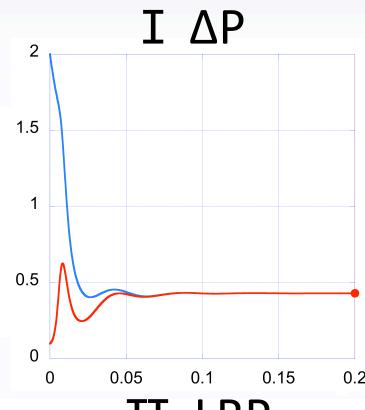
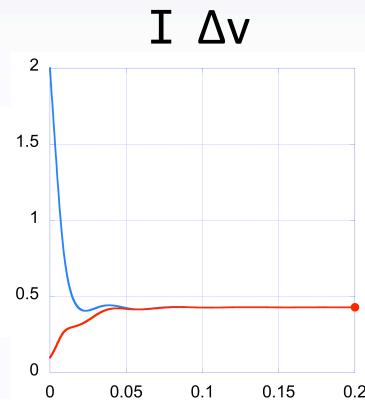
- Final-time snapshots show the standard shock-tube evolution.



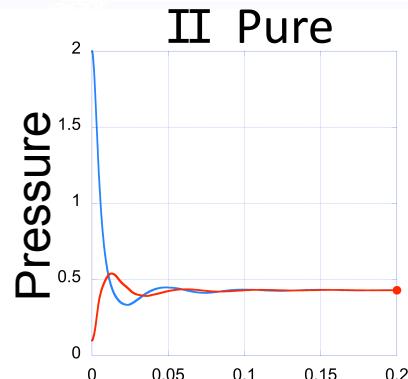
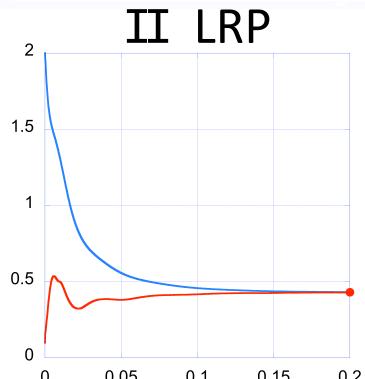
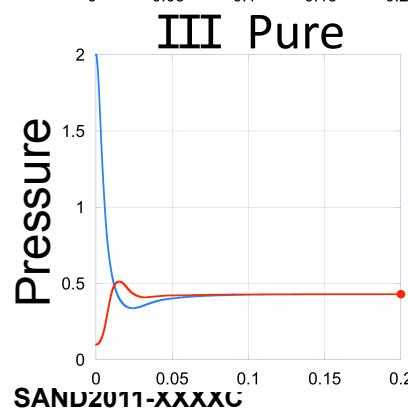
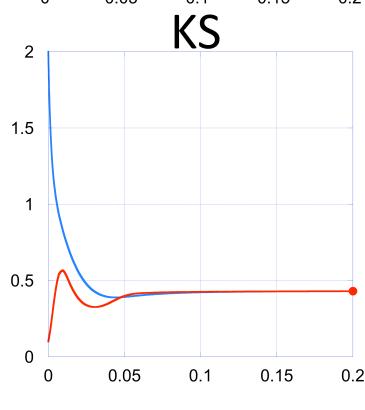
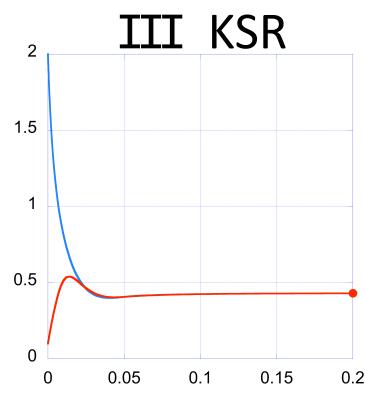
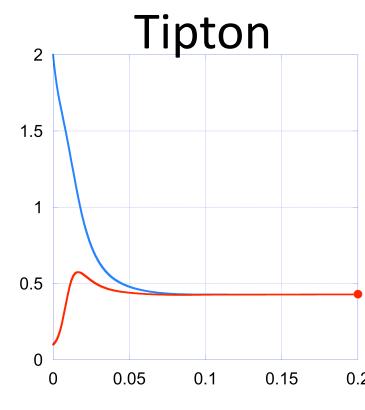
- In the following slides, we present time-histories in the single **mixed** cell.
- Results for all of the methods mentioned are presented.

- All methods have been demonstrated to be about first-order accurate on this problem.

Modified Sod Pressure History

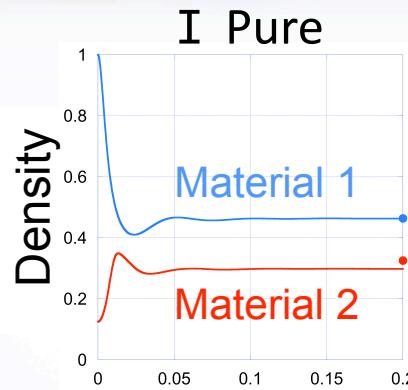
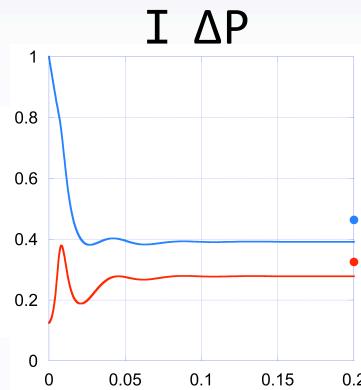
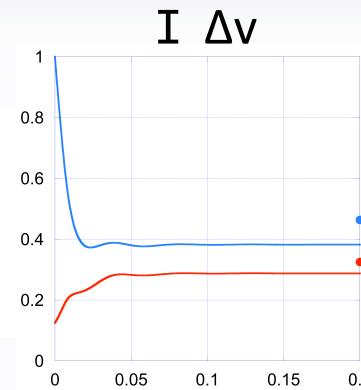


- All methods:
 - Equilibrate
 - Obtain the correct final pressure

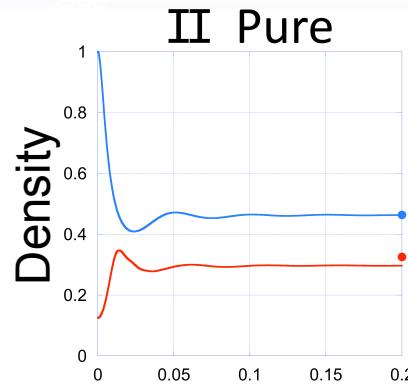
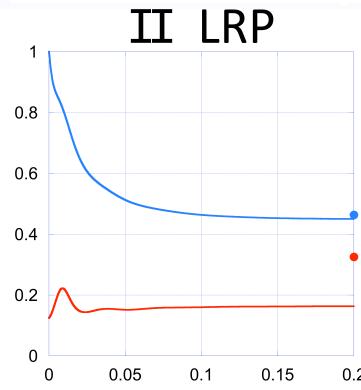


- All methods exhibit pressure oscillations, also.
- Among **mixed** cell methods, KSR and Tipton look heuristically the “nicest.”

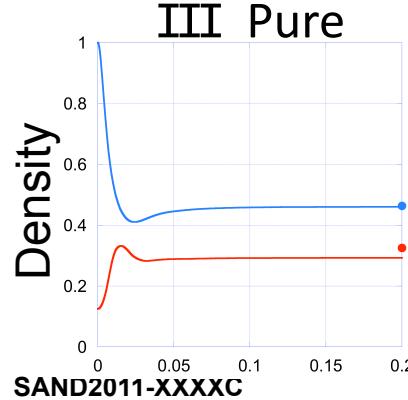
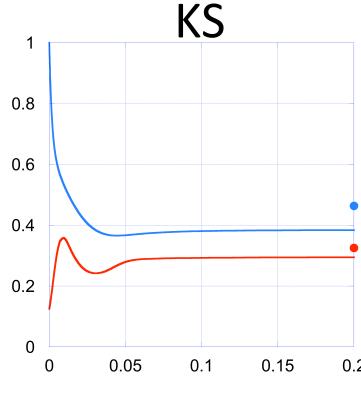
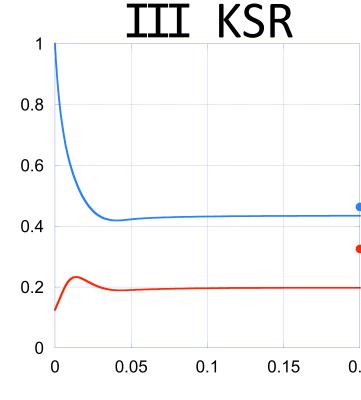
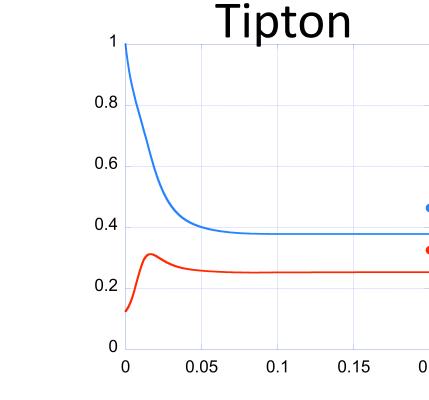
Modified Sod Density History



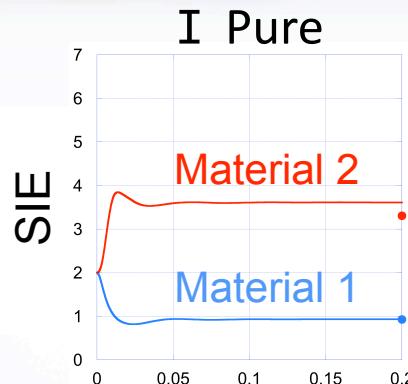
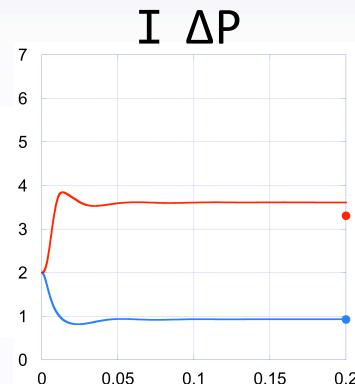
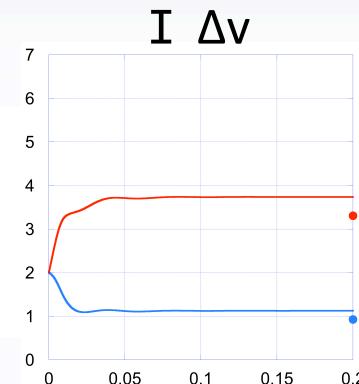
- The “pure” methods come closest to the correct values at the final time.



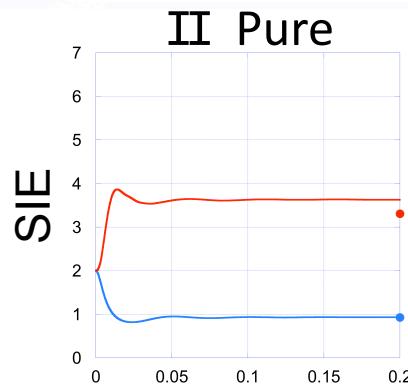
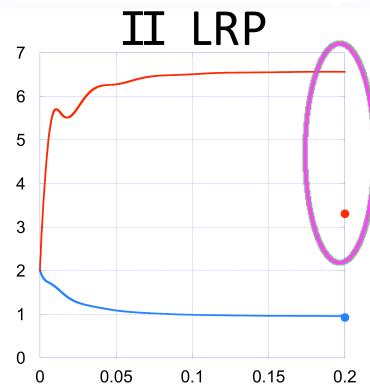
- All mixed cell methods undershoot the final values.
- Which method looks heuristically the “best”?



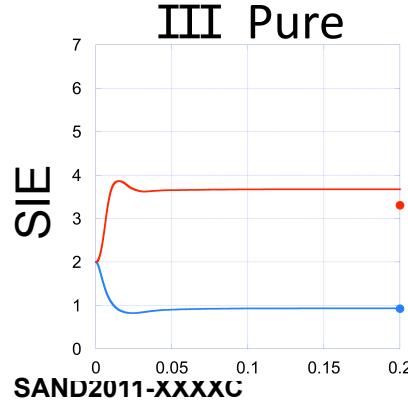
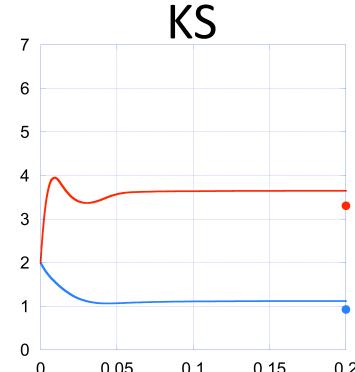
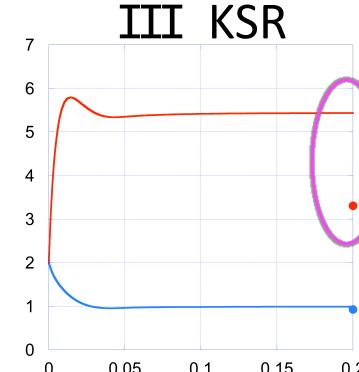
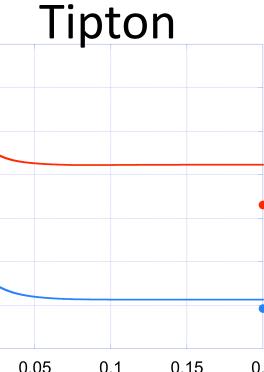
Modified Sod Specific Internal Energy History



- For material 1, all methods perform about equally well, and get the correct result.



- For material 2, both linearized Riemann problem methods overshoot significantly.
- Tipton overshoots a little, too.
- KS heuristically the “best”?

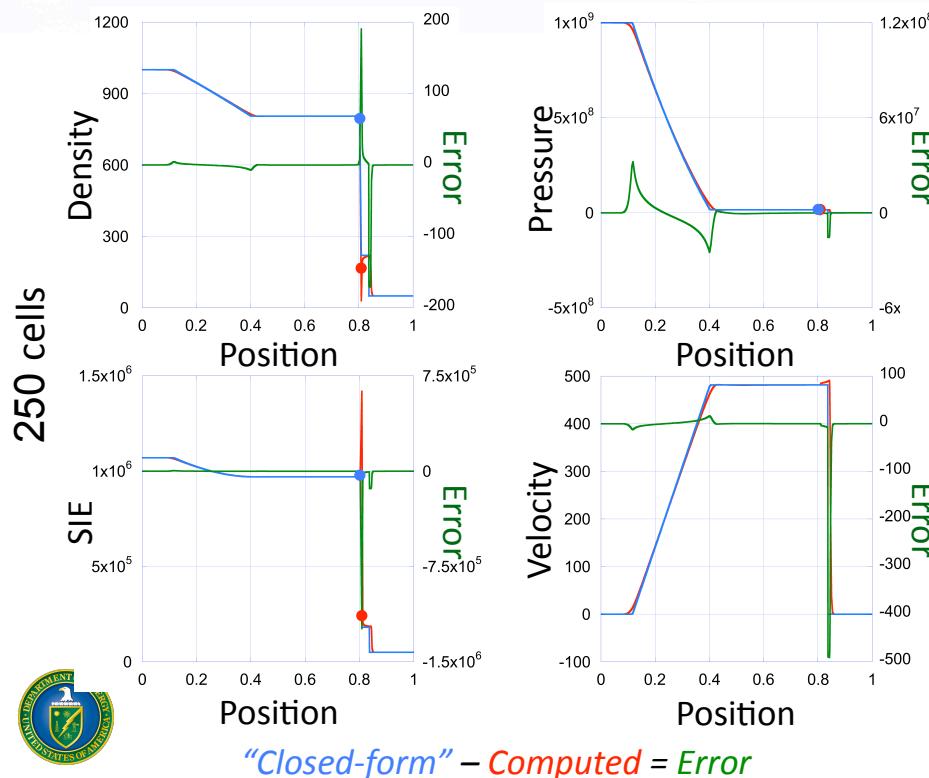


Test Problem #2: the Water-Air Shock Tube

- Water-air shock tube* initial conditions:

$$(\rho, p, u, \gamma, p_\infty) = \begin{cases} (1.e+3, 1.e+9, 0.0, 4.4, 6.e+8), & 0 \leq x < 0.7, \text{ Material 1} \\ (5.e+1, 1.e+6, 0.0, 1.4, 0.0), & 0.7 < x \leq 1.0, \text{ Material 2} \end{cases} \quad \begin{aligned} p &= (\gamma-1)\rho\varepsilon - \gamma p_\infty \\ t_{\text{final}} &= 2.2e-4 \end{aligned}$$

- Final-time snapshots show the stronger shock-tube evolution.

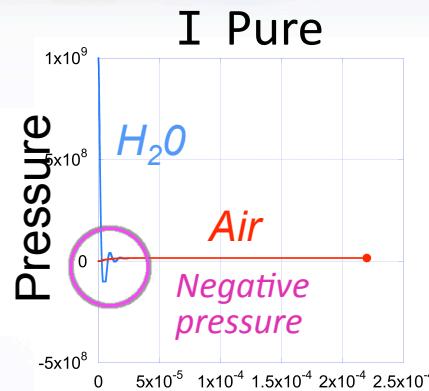
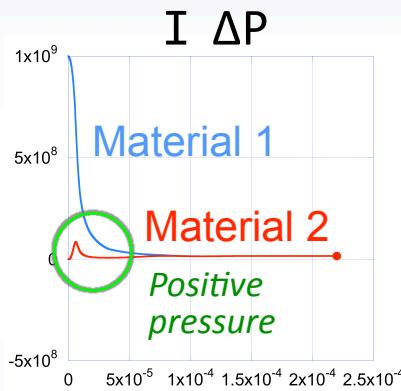
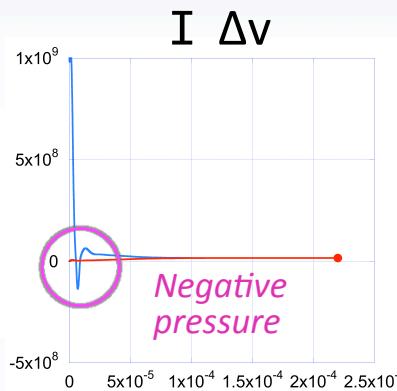
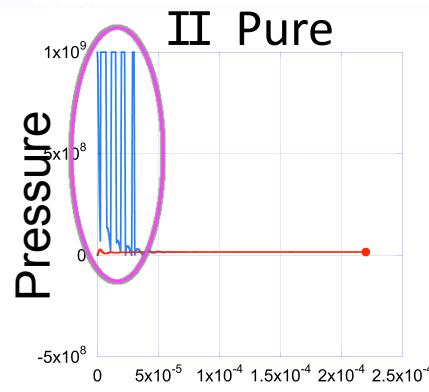
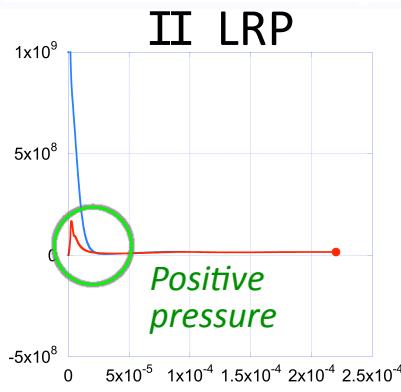
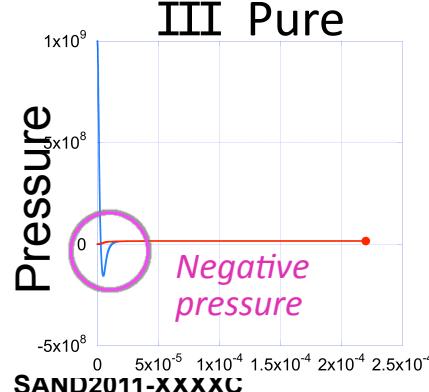
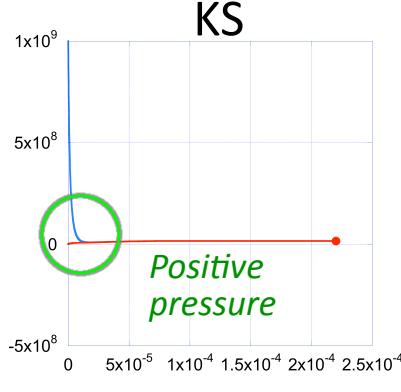
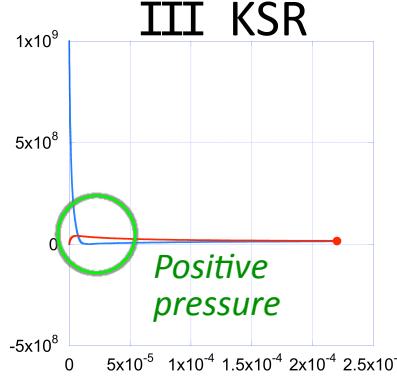


- In the following slides, we present time-histories in the single **mixed** cell.
- Results for all of the methods mentioned are presented.

- All methods have been demonstrated to be about first-order accurate on this problem.

* R. Saurel & R. Abgrall, “A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows,” *J. Comput. Phys.* 1999; **150**:425–467. 22

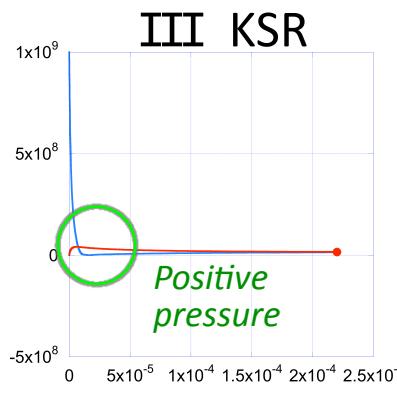
Water-Air Pressure History



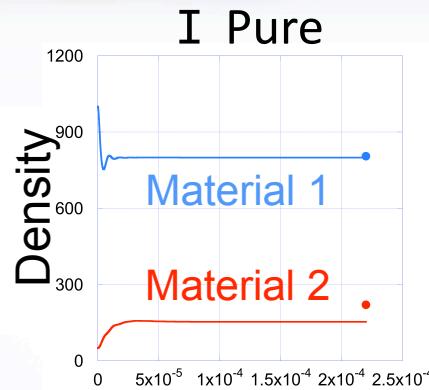
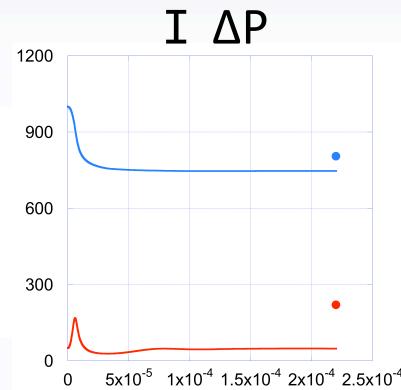
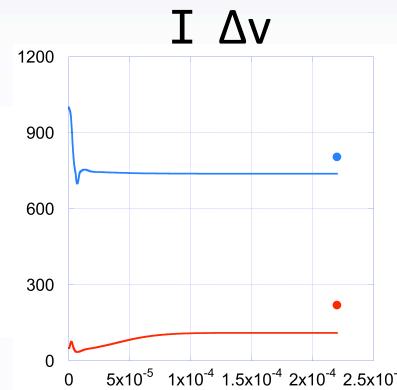
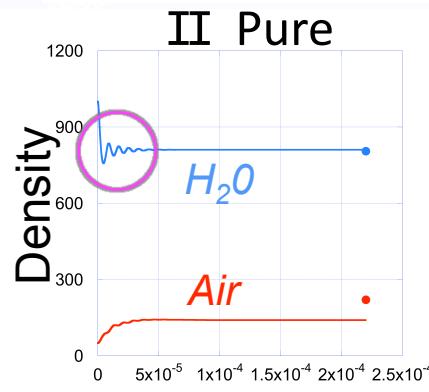
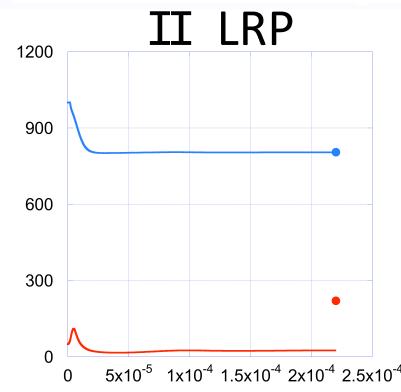
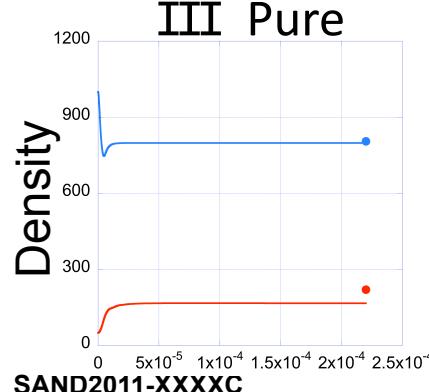
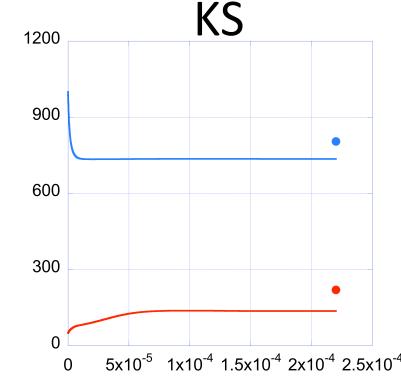
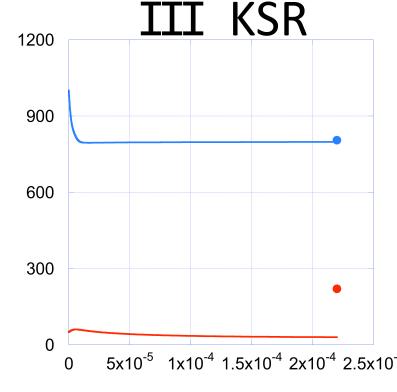
SAND2011-XXXXC

- All methods:
 - Equilibrate
 - Obtain the correct final pressure

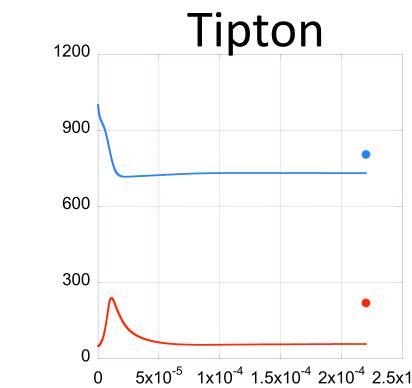
- Some **pure** and **mixed** cell methods have negative pressure.
- The **mixed** cell methods based on Riemann problems have no negative pressure.



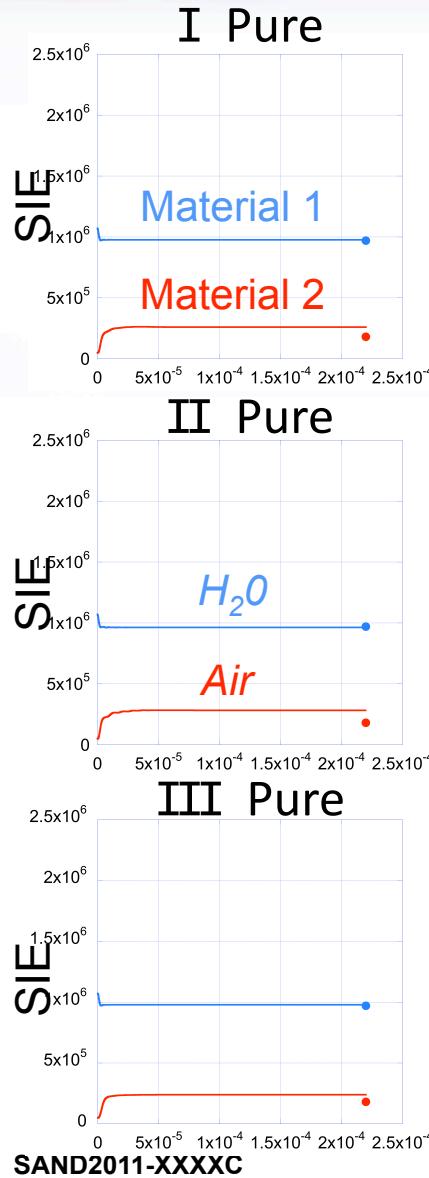
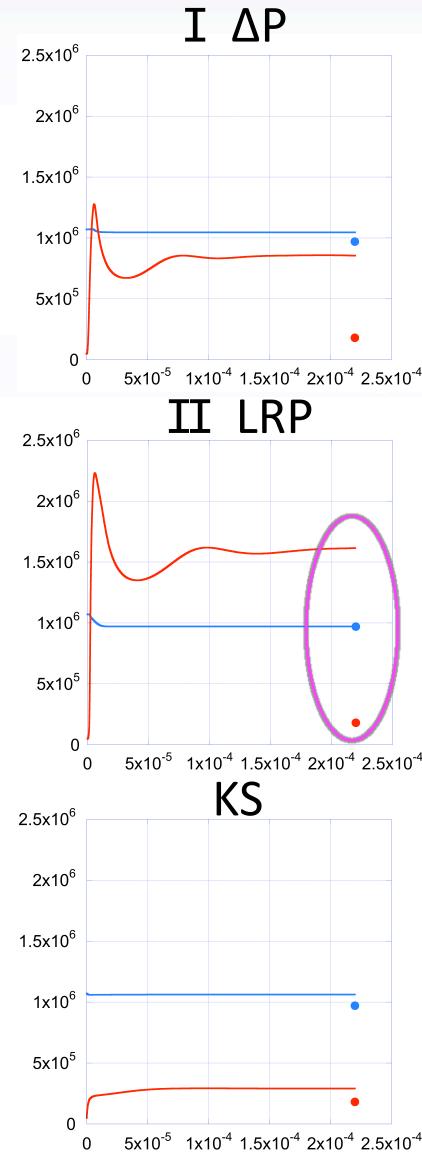
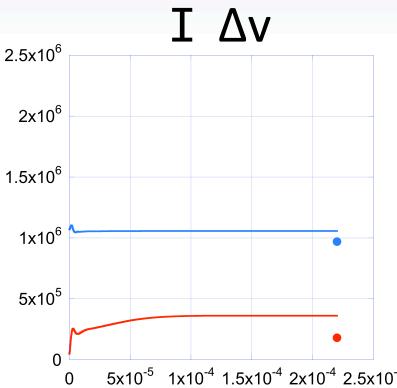
Water-Air Density History



- The “pure” methods come closest to the correct values at the final time.
- For material 2, mixed cell methods consistently undershoot final values more than pure methods.
- Which method looks heuristically the “best”?



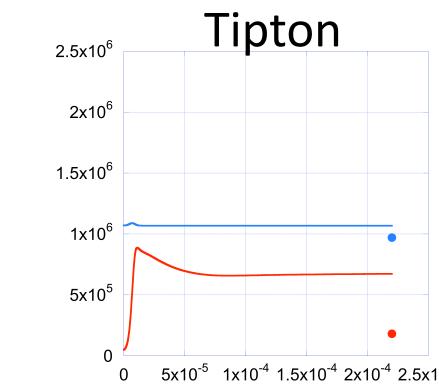
Water-Air Specific Internal Energy History



- For material 1, all methods are about the same, close to the exact final value.

- For material 2, both linearized Riemann problem methods overshoot seriously.

- Tipton, ΔP overshoot material 2.
- KSR has volume fraction “flip.”



Summary of these results

- **Pure Material:**
 - Basic algorithm with no mixed cell; straightforward for ideal problems.
 - + No mixed cell assumptions. - No mixed cell assumptions.
- **Equal ΔP :**
 - Acoustic approximation, assumed to be equal for all materials.
 - + Closed-form expressions, 2-D. - Sometimes oscillatory, less accurate SIE.
- **Equal Δv :**
 - Single velocity \rightarrow equal velocity increments is a plausible assumption.
 - + Closed-form expressions, 2-D. - Sometimes oscillatory, negative pressure.
- **Linearized Riemann Problem (LRP):**
 - Linearized Riemann problem in mixed cell is used as conservative closure.
 - + “Physics-based”, 2-D. - Questionable SIE, volume fractions.
- **Kamm & Shashkov (KS):**
 - Full Riemann problem in mixed cell \rightarrow “optimal” pressure of each material.
 - + Physics-based. - Complicated. 2-D? Strength?
- **Kamm, Shashkov & Rider (KSR):**
 - Linearized Riemann problem in mixed cell is used as conservative closure.
 - + “Physics-based”, 2-D. - Questionable SIE, volume fractions.
- **Tipton:**
 - Relaxation term \rightarrow equal pressures: solve *exactly* for this term.
 - + Robust, fast, 2-D & strength. - Rough & ready assumptions, good results.

Conclusions

- **Multi-material Lagrangian cells remain an important issue.**
 - The 1-D case allows rigorous testing of closure models.
- **Several different closure models were described.**
 - Some are simple & fast (e.g., equal compressibility), while others are complex & slow (e.g., using the full Riemann problem).
- **There is no clear “winner” among the methods**
 - In some aspects, simple methods look good (e.g., ΔP)
 - In other aspects, Riemann-based methods do not (e.g., SIE)
 - Other test problems? Strong expansions, very stronger shocks, near-void initial conditions...
- **Many of these approaches can be extended:**
 - ≥ 2 materials, with some assumptions about material ordering.
 - 2-D/3-D: VNIIIF (Yanilkin et al.) and KSR (Harrison et al.).
- **Open issues:**
 - 2-D comparison problems?
 - Artificial viscosity (VNIIIF)
 - Examine the entropy differences among methods

References (1/2)

- Bakhrahh, S., Spiridonov, V., Shanin, A., “A method for computing gas-dynamic flows of inhomogeneous medium in Lagrangian-Eulerian coordinates,” *DAN SSR* 1984;276:829–833 (in Russian; translated in *Sov. Phys. Doklady* 1984;29:443–445).
- Bondarenko, Yu.A., Yanilkin, Yu.V., “Computation of thermodynamical parameters of the mixed cells in gas dynamics,” *VANT (Mathematical Modeling of Physical Processes)* 2000;4:12–25 (in Russian).
- Delov, V., Sadchikov, V.V., “Comparison of several models for computation of thermodynamical parameters for heterogeneous Lagrangian cells,” *VANT (Mathematical Modeling of Physical Processes)* 2005;1:57–70 (in Russian).
- Després, B., Lagoutière, F., “Numerical resolution of a two-component compressible fluid model with interfaces,” *Prog. Comput. Fluid Dyn.* 2007;7:295–310.
- Goncharov, E.A., Yanilkin, Yu.V., “New method for computations of thermodynamical states of the materials in mixed cells,” *VANT (Mathematical Modeling of Physical Processes)* 2004;3:16–30 (in Russian).
- Goncharov, E.A., Kolobyanin, V.Yu., Yanilkin, Yu.V., “A closure model for Lagrangian gasdynamics in mixed cells based on the assumption of equal constituent velocities,” *VANT (Mathematical Modeling of Physical Processes)* 2006;4:100–105 (in Russian).
- Goncharov, E.A., Kolobyanin, V.Yu., Yanilkin, Yu.V., “On the way of finding artificial viscosities for materials in mixed cells,” *VANT (Mathematical Modeling of Physical Processes)* 2010;2:15–29 (in Russian).
- Harlow, F., “The particle-in-cell computing method for fluid dynamics,” in Alder, B., Fernbach, S., Rotenberg, M., eds., *Methods in Computational Physics*, Vol. 3; New York: Academic Press; 1964, 319–343.
- Harrison, A.K., Shashkov M.J., Fung, J., Kamm J.R., Canfield, T.R., “Development of a sub-scale dynamics model for pressure relaxation of multi-material cells in Lagrangian hydrodynamics,” *Eur. Phys. J. Web Conf.* 2011, doi:10.1051/epjconf/201010000039.

References (2/2)

- Kamm J.R., Shashkov M.J., "A Pressure Relaxation Closure Model for One-Dimensional, Two-Material Lagrangian Hydrodynamics Based on the Riemann Problem," *Comm. Comput. Phys.*, 2010;7:927–976.
- Kamm J.R., Shashkov M.J., Fung, J., Harrison, A.K., Canfield, T.R., "Comparative study of various pressure relaxation closure models for one-dimensional two-material Lagrangian hydrodynamics," *Int. J. Num. Meth. Fluids* 2011;65:1311-1324, doi:10.1002/fld.2354.
- Kamm J.R., Shashkov M.J., Rider, W.J., "A new pressure relaxation closure model for one-dimensional two-material Lagrangian hydrodynamics, *Eur. Phys. J. Web Conf.* 2011, doi:10.1051/epjconf/201010000038.
- R. Saurel, R., Abgrall, R., "A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows," *J. Comput. Phys.* 1999; **150**:425–467.
- Yanilkin, Yu.V., Study and Implementation of Multi-Material Pressure Relaxation Methods for Lagrangian Hydrodynamics, Los Alamos National Laboratory report LA-UR-10-06664, 2010.
- Zharova, G.V., Yanilkin, Yu.V. "The EGAK code mixed cell pressure equilibration algorithm," *VANT (Mathematical Modeling of Physical Processes)* 1993;3:77–81 (in Russian).

