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Overview 

 Lagrangian hydrodynamics of two materials in 1-D 
•  Two material, one-velocity model leads to a closure problem. 

 Three different staggered-mesh discretizations 
•  The approaches used in computations are presented. 

 Several different closure models 
•  All use pressure relaxation in the mixed cell as a physically-

motivated assumption. 

 Comparison of computational results 
•  Pressure equilibration behavior for two test problems 

 Conclusions 
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Two-material Lagrangian hydrodynamics in 
1-D presents several open issues. 

 Conservation laws govern the flow of inviscid, non-heat-
conducting, compressible fluids in the Lagrangian frame: 

Mass: 

Momentum: 

Energy: 

Equation of State: 
(EOS) 

•  Test — rigorously — fundamental algorithms 
•  Quantitatively evaluate algorithm performance 
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 With 1-D equations, we can: 
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We make some simplifying assumptions. 

 There are two materials. 
•  Two materials cells (almost) certainly occur during the remap 

of a multi-material ALE calculation. 
•  Modeling of two materials requires much more care than one 

material simulations. 
•  Modeling of two materials does not imply an unambiguous 

method for model three (or more) materials.  
 These two materials are described by one velocity. 

•  This implies — either implicitly or explicitly — that a sub-grid 
model describes the mixing of the materials within each cell. 

•  This differs from more sophisticated, multiple velocity-field 
models that are used, e.g., for two-phase flow. 

 We focus on closure models for pressure equilibration. 
•  We do not discuss here the important issue of artificial viscosity 

models for multiple-material cells. 
4 
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Algorithm I uses the following predictor-
corrector approach*. 
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Cell volumes:  
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* Yanilkin, Yu.V., Study and Implementation of Multi-Material Pressure Relaxation Methods for 
Lagrangian Hydrodynamics, Los Alamos National Laboratory report LA-UR-10-06664, 2010. 

Adiabatic 
update 
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  In the predictor, the change is to the pressure update. 

This algorithm changes for multiple materials. 
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•  With the following relations, Bondarenko & Yanilkin*  showed 
that total energy is conserved in this approach: 
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•  Pressure predictor update:  
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*  Bondarenko, Yu.A., Yanilkin, Yu.V., “Computation of thermodynamical parameters of the mixed cells in gas dynamics,” 
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 Updated values for material      are as follows: 

Additional changes in the corrector are needed.  

•  In the above expressions, the following quantities are still undefined: 
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Algorithm II uses a different approach*. 

Edge-velocities:  

Time steps:  
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* Yanilkin, Yu.V., Study and Implementation of Multi-Material Pressure Relaxation Methods for 
Lagrangian Hydrodynamics, Los Alamos National Laboratory report LA-UR-10-06664, 2010. 
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 For multiple materials, Alg. II  changes similarly to Alg. I   
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Algorithm III is similar to the first algorithm*. 

Cell volumes:  

Cell specific vol.:  

Cell pressure: 

Adiabatic update 
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* Kamm J.R., Shashkov M.J., Rider, W.J., “A new pressure relaxation closure model for one-dimensional two-
material Lagrangian hydrodynamics, Eur. Phys. J. Web Conf. 2011, doi:10.1051/epjconf/201010000038. 
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①  Equal compressibility*:                          so 

With Alg. I, several closure models for pressure 
equilibration can be examined. 

②  Equal pressure†:    p1 = p2   and    q1 = q2  

•  Assume this is valid at the predictor step: 
•  Easy to implement; computationally efficient: 
•  Physically incorrect—with questionable results—in many situations. 

̶  E.g., cell with gas (highly compressible) and metal (low compressibility). 

! 
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•  Leads to coupled equations:  one must solve for  ∆Eα, ∆V, pn+1/2  in: 
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•  Bakhrakh, S., Spiridonov, V., Shanin, A., “A method for computing gas-dynamic flows of inhomogeneous medium in Lagrangian-
Eulerian coordinates,” DAN SSR 1984;276:829–833 (in Russian; translated in Sov. Phys. Doklady 1984;29:443–445).  

† Harlow, F., "The particle-in-cell computing method for fluid dynamics," in Alder, B., Fernbach, S., Rotenberg, M., eds., Methods in 
Computational Physics, Vol. 3; New York: Academic Press; 1964, 319–343; Zharova, G.V., Yanilkin, Yu.V. "The EGAK code mixed 
cell pressure equilibration algorithm," VANT (Mathematical Modeling of Physical Processes) 1993;3:77–81 (in Russian).  
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Equal-increment models can also be formulated. 

④  Equal velocity increments†  (∆v): 

•  Assume that the general acoustic approximation is valid: 
③  Equal pressure increments* (∆P ): 

! 
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•  This leads to the following closed-form expressions: 

•  One velocity per cell, so equal velocity increments is plausible. 
•  Acoustic approximation implies: 
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† Goncharov, E.A., Yanilkin, Yu.V., “New method for computations of thermodynamical states of the materials in 
mixed cells,” VANT (Mathematical Modeling of Physical Processes) 2004;3:16–30 (in Russian).  
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With Alg. II, a linearized Riemann problem* (LRP) used. 

⑤  Consider a Riemann problem in the mixed cell: 

•  Combining these equations gives updates for each material implies: 

•  From Algorithm II , the 
following update 
for the density follows:  

1

!n+1
! 1

!n
 = "t

+
 
 u
i

n+1/2
! u

i!1

n+1/2

M
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•  Riemann invariants imply the well-known 
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The LRP* method also involves additional equations. 

•  From the velocity divergence equation, the volume change is: 

with  hn  a characteristic mesh size and        improves stability: 

•  Delov, V., Sadchikov, V.V., “Comparison of several models for computation of thermodynamical parameters for 
heterogeneous Lagrangian cells,” VANT (Mathematical Modeling of Physical Processes) 2005;1:57–70 (in Russian).  

•  From                           , the individual 
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Kamm & Shashkov* (KS) break the pressure  
equilibration assumption of Després† using 

local Riemann problem solutions. 
 Pressure relaxation in the mixed cell reduces to the 

solution of a minimization problem in         ,        ,        ,   
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† Després, B., Lagoutière, F., Prog. Comput. Fluid Dyn. 2007; 7:295–310. 
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 Complicated — and untested for realistic problems in multi-D. 
• Kamm J.R., Shashkov M.J., Comm. Comput. Phys., 2010; 7:927–976. 14 
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  Inspired by VNIIEF work, KSR used the linearized Riemann problem 
to update the materials’ volumes, volume fractions, and SIEs. 

Kamm, Shashkov & Rider* (KSR) also 
propose a linearized Riemann model. 
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•  Kamm J.R., Shashkov M.J., Rider, W.J., “A new pressure relaxation closure model for one-dimensional two-
material Lagrangian hydrodynamics, Eur. Phys. J. Web Conf. 2011, doi:10.1051/epjconf/201010000038. 

 There is a problem:  this SIE update is not consistent with the total work 
done on the mixed cell, i.e., 
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"
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k
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k

 Using the expression for the total SIE discrepancy and the 
thermodynamic derivatives                  , one can solve for the 
corrections to the SIEs and then update the pressures: 

and 
  

! 

p
k
n+1 =   P

k
("
k
n+1

,#
k
n+1)! 

"p
k
"#

k
$ 

% 
& 

' 

( 
) *
k

15 



SAND2011-XXXXC  

 Tipton’s method is a widely used, robust multi-
material, pressure relaxation for multi-D. 

! 

p
k
n+1/2  + R

k
 = ˆ p n+1/2

 Assumption #2: There is a relaxation term added to each material’s 
pressure, so that these sums are all equal:  

Predictor pressure 
of k-th material 

Relaxation term 
for k-th material 

Overall predictor pressure 

where  

 One can solve for              and                in closed form.  

  The second step of a two-step time-integrator uses this 
information to obtain the final updated values. 
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  Assumption #1: Predictor pressure based on adiabatic update: 
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 Assumption #3:  Volume changes add up correctly: 

! 

 "V
k

n+1/2

k
# = V

n+1/2 Total predictor volume change is 
known from standard algorithm  

! 

ˆ p n+1/2

! 

"V
k

n+1/2

Unknown 

Unknown 
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h h h h 2h 

The initializations of the pure-material and 
mixed-cell test problems are as follows.  

  The test problems were run similarly: 

h h h h h h 
2 1 

… … 

  

! 

x
i  
mix

  

! 

x
i  
mix

+1

! 

x
1

! 

x
2

! 

x
N x

! 

x
N x +1

Mixed 

Pure 

•  The fictitious mixed-cell 
interface is at the center of 
mixed cell of width 2h, with 
no explicit mass-matching. 

•  We compare these results 
with pure-material 
calculations that have 
the actual interface. 

… … 

  

! 

x
i 
mix

  

! 

x
i 
mix

+2

! 

x
1

! 

x
2

! 

x
N x+2

  

! 

x
i  
mix

+1

! 

x
N x +1

•  Nx  zones on  xmin ≤ x < xmax  with  ∆xi = h , i ≠ imix  

•  One mixed cell for  i = imix  with  ∆ximix= 2h 
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Test Problem #1: Modified Sod Shock Tube  

 Two-gas, low Mach number shock tube initial conditions: 

 Final-time snapshots show the standard shock-tube evolution. 

(1.0,    2.0, 0.0, 2.0),     0 ≤ x < 0.5,  Material 1 
(0.125,0.1, 0.0, 1.4),  0.5 < x ≤ 1.0,  Material 2 

tfinal = 0.2 

D
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 Error 

SI
E 

Error 

Pr
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Error 

Ve
lo
ci
ty
 

Error 

“Closed‐form” – Computed = Error 

10
0 
ce
lls
 

Posi(on  Posi(on 

Posi(on Posi(on 

  In the following slides, we 
present time-histories in the 
single mixed cell. 

   Results for all of the methods 
mentioned are presented. 
•  All methods have been 

demonstrated to be about  
first-order accurate on this 
problem. 
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 All methods exhibit pressure 
oscillations, also. 

 Among mixed cell methods, 
KSR and Tipton look 
heuristically the “nicest.” 

 All methods: 
•  Equilibrate 
•  Obtain the 

correct final 
pressure 

Modified Sod Pressure History 
P

re
ss

ur
e 

P
re

ss
ur

e 

Material 1 

Material 2 

I Pure  I ∆P  I ∆v 

II Pure  II LRP 

KS  III KSR  Tipton 

P
re

ss
ur

e 

III Pure 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 All mixed cell methods 
undershoot the final values. 

 Which method looks heuristically 
the “best”? 

 The “pure” 
methods come 
closest to the 
correct values at 
the final time.  

Modified Sod Density History 
D

en
si

ty
 

D
en

si
ty

 

Material 1 

Material 2 

I Pure  I ∆P  I ∆v 

II Pure  II LRP 

KS  III KSR  Tipton 

D
en

si
ty

 

III Pure 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 For material 2, both linearized 
Riemann problem methods 
overshoot significantly. 

 Tipton overshoots a little, too. 
 KS heuristically the “best”? 

 For material 1, 
all methods 
perform about 
equally well, 
and get the 
correct result. 

Modified Sod Specific Internal Energy History 
S

IE
 

S
IE

 

Material 1 

Material 2 

I Pure  I ∆P  I ∆v 

II Pure  II LRP 

KS  III KSR  Tipton 

S
IE

 

III Pure 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Test Problem #2: the Water-Air Shock Tube 

 Water-air shock tube* initial conditions: 

 Final-time snapshots show the stronger shock-tube evolution. 

  In the following slides, we 
present time-histories in the 
single mixed cell. 

 Results for all of the methods 
mentioned are presented. 
•  All methods have been 

demonstrated to be about  
first-order accurate on this 
problem. 

* R. Saurel & R. Abgrall, “A Mul(phase Godunov Method for 
Compressible Mul(fluid and Mul(phase Flows,” J. Comput. Phys. 
1999; 150:425–467. 

(1.e+3,1.e+9,0.0,4.4,6.e+8),  0≤x<0.7, Material 1 

(5.e+1,1.e+6,0.0,1.4,0.0),   0.7<x≤1.0, Material 2 tfinal = 2.2e-4 

“Closed‐form” – Computed = Error 

25
0 
ce
lls
 

D
en

si
ty
  Error 

SI
E 

Error 

Pr
es
su
re
 

Error 

Ve
lo
ci
ty
 

Error 
Posi(on  Posi(on 

Posi(on Posi(on 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 Some pure and mixed cell 
methods have negative pressure. 

 The mixed cell methods based 
on Riemann problems have 
no negative pressure. 

 All methods: 
•  Equilibrate 
•  Obtain the 

correct final 
pressure 

Water-Air Pressure History 
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ss
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pressure 

Posi<ve 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pressure 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pressure 

Material 1 

Material 2 

I Pure  I ∆P  I ∆v 

II Pure  II LRP 

III Pure  KS  III KSR  Tipton 

Air 

H20 

Posi<ve 
pressure 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 For material 2, mixed cell methods 
consistently undershoot final 
values more than pure methods. 

 Which method looks heuristically 
the “best”? 

 The “pure” 
methods come 
closest to the 
correct values at 
the final time.  

Water-Air Density History 
D

en
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ty
 

D
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ty

 

Material 1 

Material 2 

I Pure  I ∆P  I ∆v 

II 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 II 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 III 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 Tipton 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Pure 

Air 
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 For material 2, both linearized 
Riemann problem methods 
overshoot seriously. 

•  Tipton, ∆P overshoot material 2. 
•  KSR has volume fraction “flip.” 

 For material 1, 
all methods are 
about the same, 
close to the 
exact final value. 

Water-Air Specific Internal Energy History 
S

IE
 

S
IE

 
S

IE
 

Material 1 

Material 2 

I Pure  I ∆P  I ∆v 

II Pure  II LRP 

III Pure  KS  III KSR  Tipton 

Air 

H20 
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•  Full Riemann problem in mixed cell → “optimal” pressure of each material. 
–  Physics-based.      Complicated.  2-D? Strength? 

Summary of these results 

  Kamm & Shashkov (KS):  

  Pure Material:  

  Tipton: 

•  Basic algorithm with no mixed cell; straightforward for ideal problems. 
–  No mixed cell assumptions.   No mixed cell assumptions. +   –  

•  Relaxation term → equal pressures: solve exactly for this term. 
–  Robust, fast, 2-D & strength.   Rough & ready assumptions, good results. 

+   –  

+   –  

•  Linearized Riemann problem in mixed cell is used as conservative closure. 
–  “Physics-based”, 2-D.    Questionable SIE, volume fractions.  

  Kamm, Shashkov & Rider (KSR):  

+   –  

  Equal ∆P:  
•  Acoustic approximation, assumed to be equal for all materials. 
–  Closed-form expressions, 2-D.    Sometimes oscillatory, less accurate SIE. +   –  

  Equal ∆v:  
•  Single velocity → equal velocity increments is a plausible assumption. 
–  Closed-form expressions, 2-D.    Sometimes oscillatory, negative pressure. +   –  

  Linearized Riemann Problem (LRP):  
•  Linearized Riemann problem in mixed cell is used as conservative closure. 
–  “Physics-based”, 2-D.    Questionable SIE, volume fractions. +   –  

26 
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Conclusions 

 Multi-material Lagrangian cells remain an important issue. 
• The 1-D case allows rigorous testing of closure models. 

 There is no clear “winner” among the methods 
•  In some aspects, simple methods look good (e.g., ∆P) 
•  In other aspects, Riemann-based methods do not (e.g., SIE) 
•  Other test problems?  Strong expansions, very stronger shocks, 

near-void initial conditions… 

 Several different closure models were described. 
•  Some are simple & fast (e.g., equal compressibility), while 

others are complex & slow (e.g., using the full Riemann problem). 

 Many of these approaches can be extended: 
•  ≥ 2 materials, with some assumptions about material ordering. 
•  2-D/3-D:  VNIIEF (Yanilkin et al.) and KSR (Harrison et al.). 

 Open issues: 
•  2-D comparison problems?  • Artificial viscosity (VNIIEF) 
•  Examine the entropy differences among methods 27 
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