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Abstract: Refractory metallic foams can increase heat transfer efficiency in gas-to-gas and liquid metal-to-gas heat exchangers by providing an extended surface area for better
convection, i.e. conduction into the foam ligaments providing a “fin-effect,” and by disruption of the thermal boundary layer near the hot wall and ligaments by turbulence
promotion. In this article, we describe the design of a high-temperature refractory regenerator (closed-loop recuperator) using computational fluid dynamics (CFD) modeling of
actual foam geometries obtained through computerized micro-tomography. The article outlines the design procedure from geometry import through meshing and thermo-
mechanical analysis and discusses the challenges of fabrication using pure molybdenum and TZM. The foam core regenerator is more easily fabricated, less expensive and
performs better than refractory flat plate-type heat exchangers. The regenerator can operate with a maximum hot leg inlet temperature of 900 °C and transfer 180 kW to the cold
leg using 100 g/s helium at 4 MPa. We also describe the high heat flux experiments on helium-cooled plasma facing components that will utilize the high temperature and high
pressure capabilities of this unique regenerator. Similar components will be required to adapt future fusion reactors to high-efficiency Brayton power conversion systems and
enable operation of advanced divertor and blanket systems.
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The helium regenerator is configured for cross flow and consists
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of an all moly foam core (hot leg) separated by a thin moly wall ~
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TZM endcaps with supply and return tubes direct the helium into 7

a circumferrential flow path through the foam. The regenerator is
designed to operate with 4 MPa helium at 100 g/s with a
maximum hotleg inlet temperature of 900 C . The reference
case produces an outlet of 550 C using a cold leg inlet of 65 C.
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Moly foam micro models meshing

Analysis reveals turbulent mixing
and fin effect created by foam.

Modeling is computationally expensive.
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Lumped model — Temperature and Stress

Permeability and effective thermal conductivity from micro models are used for design calculations.
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Future Experiments
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----- Conclusions -----

The high-temperature helium regenerator will allow HHF testing of helium-cooled refractory PFCs in the EB-1200 at Sandia’'s PMTF by transferring heat from the high temperature
exhaust stream to the incoming helium stream. It permits high temperature testing by minimizing the hot piping and heat rejection required in these experiments. We have
demonstrated that such components can be designed and fabricated for high pressure, high temperature gas applications. Scale-up of similar devices will be required to effectively
utilize the Brayton cycle in the power conversion systems of any fusion DEMO plant.
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