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A Novel Technology for Reactor Safeguards

 Antineutrino Monitoring of Reactors provides independent 
measurements of Thermal Power and Fissile Inventory

 Non-intrusive with NO connection to plant systems

 Continuous Remote Monitoring

 Highly tamper resistant

 Potential Applications to Present and Future Safeguards

 Independent Confirmation of Operator Declarations

 Reduction in needed Inspector visits

 Provide fissile content information for Next-Generation
fuel cycles (MOX, Th, bulk process)
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Primary Focus: Aboveground

 Without overburden, an aboveground detector is 
exposed to:

• An increased muon rate
• Hadronic showers
• Electromagnetic showers
• Secondary particles produced by all of the above in the 

detector and its surroundings
 Belowground (only a few meters) many of these 

cosmic backgrounds are significantly reduced
• SONGS1 design would not have survived aboveground 

backgrounds

 Fast neutron calculation is sobering
• Proton recoils of >10 MeV will look like positron signal

• Calculation based on Hess Spectrum and differential n-p 
cross-section

 Expect 5x105 events per day (~6Hz) per ton of LS 
(unshielded)

 A shield can control backgrounds more simply than 
detector design

• Neutron shielding and muon vetos have been improved 
from SONGS1

 Particle Identification can be a powerful tool
• Identify and reject fast neutrons and multi-neutron events

• Explicitly tag final state Positron and thermal neutron 
(capture) 
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Standard Detection of 
Inverse Beta-decay 

 We use the same antineutrino detection technique used to first detect 
(anti)neutrinos:

e + p  e+ + n

 Standard detectors of gammas and neutrons are sufficient to find this 
correlated signature

 Positron

• Immediate

• 1- 8 MeV (incl 511 keV s) 

 Neutron

• Delayed (= 28 s)

• ~ 8 MeV gamma shower
(200 s and 2.2 MeV for KamLAND)

n

e p

 ~ 8 MeV

511 keV

511 keV e+

Gd

 ~ 30 s

prompt signal + n capture on Gd

 Gadolinium yields poor detection efficiency for compact detectors…Li?
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Our New Segmented Scintillator 
Detector
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PID with Segmented Scintillator 
Detector

 Individual Segments contain organic 
scintillator with ZnS:Ag/6LiF screens 
on outer surface
• 3 cells with Plastic scintillator

• 1 cell with Liquid scintillator

 Use of ZnS:Ag with 6LiF allows 
identification of neutron capture
• ZnS:Ag is sensitive to alpha from n-

capture on Li

• Very slow scintillator time constant 
(~100ns) allows pulse shape 
discrimination to separate n-capture 
from γ events

 With Liquid Scintillator, proton recoils 
are also easily identified
• Allows a comparison to test need for 

additional rejection

 Ultimate design would be for 16 cells 
but this 4-cell prototype was sufficient 
for first testing
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Particle Identification (PID)

Positron Identification through Topology
 Positrons are rare in nature

• Deposit most of their kinetic energy very 
quickly through standard ionization losses

 Positrons will annihilate into two back-to-back 
511 keV gammas
• Very distinctive signature
• Gammas will travel ~2-5” through most 

scintillators

e

e+

n

Liquid or Plastic  
scintillator

Neutron identification through Pulse Shape Discrimination (PSD)

Liquid Cell Plastic Cell
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Containerized Shield for Aboveground 
Deployment

December 2009 February 2010

45 cm HDPE Neutron Shield 

1” Borated Poly with
Mu-metal Liner

2” Plastic Scintillator Muon Veto 

Central Detector 
+ secondary containment
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Final Deployment at SONGS
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First Analysis of Reactor Off Data

 Detector Performance looks stable

• Detector efficiencies look reasonable

 N-capture efficiency of 18%

 Positron efficiency 2—87% 

 Background rates are reasonable for a 
possible observation of reactor 
transition

• 2 – 4 orders of magnitude rejection

• 2 methods of analysis agree

 Based on expected νe signal, expect 3 
sigma detection in 4 – 6 weeks

• Expect 1 – 37 ev/day 

 Very encouraged by technology 
performance

Only Neutron PID
1,830 ev/day

Max PID info
23 ev/day

No PID
225,200 ev/day
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Challenging Operation Environment

 Multiple Hardware failures
• Replaced UPS twice
• Loss of electrical power
• HV spikes caused failure of PMT Bases

 After Change of HV, significant response change to detector
• Neutron detection efficiency down by ~30%
• Gamma detection efficiency is stable to < 4%
• Contamination by re-triggering in some cells

Reactor Turn-on

Single-ended Neutron ID

Double-ended Neutron ID
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The Power of Particle ID

Standard Inter-event Time 
distribution allows for 
correlated event extraction

Exponential matches 
expected Li Capture 
time constant ~100us

“Swapped” Time distribution 
allows for independent extraction 
of un-correlated backgrounds

Unexpected exponential 
(time constant ~30us) 

matches Gd capture in Water 
detector

Events in Water contribute 30% of correlated 
events in the segmented detector!!!
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Fully Corrected/Calibrated Data
(using only neutron PID)

Signal Background

Reactor
Off

Reactor
On
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Fully Corrected/Calibrated Data
(using both neutron and positron PID)

Signal Background

Reactor
Off

Reactor
On
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Operation Outside of Shield

Signal Background

Only 
Neutron PID

Neutron 
and 

Positron 
PID
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Data Comparisons (events/day)

Event 
Def.

Reactor Off Reactor On

Correlated
Un-

correlated
Subtracted 

Signal
Correlated

Un-
correlated

Subtracted 
Signal

1) 1421  14 482  8 939  16 1118  8 368  5 750  9

2) 167.4  4.7 40.6  2.3 126.8  5.2 119.1  2.6 28.7  1.3 90.4  2.9

Event 
Def.

Unshielded Operation

Correlated
Un-

correlated
Subtracted 

Signal

1) 15930  32 13835  30 2095  44

2) 1371  9 1168  9 203  13

Event 
Def.

Antineutrino Rate 
Expectation from MC

Scaled On/Off Data 
Subtraction 

1) 37 32  15

2) 12.7 0.9  4.6

 Measured Errors on Subtracted Signal are 
already below expected antineutrino signal 

• Dominated by limited 8-day Reactor Off data

• Prototype 4-Cell array is still highly inefficient 

 Unshielded Operation Shows Promise

• Uncorrelated rates increase by x 40

• Correlated only goes up by x 2—3

• Even 3-week unshielded operation of this small 
prototype has errors that are  expected rate  

 True comparison of Reactor On/Off data is 
impossible due to significant hardware changes

• A suggestive hint is possible by scaling Reactor Off 
data by the ratio of uncorrelated rates

• Consistent with changes in detection of ambient 
neutron and gamma rates
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Next Step for Segmented Scintillator

 We believe that a larger version of this detector 
would demonstrate reactor antineutrino sensitivity
 Especially below ground

 Possibly even without a shield

 This compact detector system can fit inside of a 
single sealed rack

• 4-cell prototype mounted vertically 

• Single VME crate of electronics

 Scheduled to deploy this small setup to the SONGS 
Unit-2 Tendon Gallery later this year

16-Cell Array 64-Cell Array

Increase for 
Event Def. 

1

Increase for 
Event Def. 2

Increase for 
Event Def. 1

Increase for 
Event Def. 2

Increase in Mass x 4 x 4 x 16 x 16

Neutron Capture Efficiency x 2 x 2 x 2.5 x 2.5

Positron Detection Efficiency no change x 1.8 no change x 2

Total Signal Increase x 8 x 14 x 40 x 80

Total Background Increase x 4 x 4 x 16 x 16

Improvement in S/B x 4 x 7 x 10 x 20
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Conclusion

 Very encouraged by performance of 
Segmented Scintillator prototype

• Reasonable efficiencies have been 
achieved even with a small 4-cell detector

• Increase to a 16 or 64 cell system would 
show marked improvement

 Demonstrated rejection of backgrounds

• 3+ orders of magnitude even without an 
external shield

• Ability to use PID improves understanding 
of background components

 Components are very robust and easy 
to handle

• Looking forward to unshielded test 
belowground


