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Motivation

• Goal : predict voltages and currents induced by external environments 
into electronics and electric devices. 

– Cable coupling is an integral part of this goal by describing the penetration 
of EM fields from the outside of the cable to the inside for a variety of cables 
( with High to low optical coverage). 

– Field penetration through the braid translates to transmission line voltage 
and current sources for propagation along the cable.  

• Goal : develop 1st principles model based on solutions to electrostatic 
and magnetostatic integral equations for braid penetration

– Use a doubly infinite “planar braid” model to simplify the problem

– Use multipole filament source representations  to simplify the integral 
equations

– Use Ewald techniques to increase efficiency in the computationally-
intensive calculations of the Green’s functions and their gradients 

• The principles models are used to compare to semi-empirical formulas  
when applicable as well as providing solutions for braids where these 
semi-empirical models are not available.
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Extension of previous work

• Modeling of Braided Shields, Johnson, Warne, Basilio,Coats, Kotulski, 
Jorgenson , ICEAA 2011, Torino

– Full electrostatic integral equation solutions

– Comptationally intense simulations

– Difficulties in extending to the finitely conducting magnetostatic braid 
penetration

• Led us to suggest modal series solutions for the the wires

• The multipole approach of the current work  provides a far simpiler
soultion to that suggestion in the above reference
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Outline

• Transmission Line models for cable braid 

– Pec for now

– magnetic field diffusion through braid (future)

• Transfer capacitance and Inductances

• Infinite 2d periodic (nearly planar braid)

• Electrostatic formulation for the transfer capacitance

– Integral equation formulations for filament  and multi-pole source unknowns

• Uniform field solution

• Unit potential on braid solution

• Final solution by superposition

– Ewald acceleration  for 

• Magneto-static formulation of the transfer Inductance

– Uniform current approximate distribution

– Self-consistent non-uniform current distribution

, , ,G G G G  
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A commercially available Beldon cable
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Infinitely periodic (nearly planar) unit Cell

a


b






x̂

ẑ

The unit cell of the two-dimensional infinitely periodic braid. 
The x  direction points along the cylinder axis of the coaxial 
cable .

.2 4 4 "b a  

024.4 

.005"Braid diameter 
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Connection of Coax to “Planar” Braid - Electric 
Field Formulation

 Scalar reciprocity formulation yields
 Correction to self capacitance per unit length

 Transfer capacitance per unit length
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Connection of Coax to “Planar” Braid - Magnetic 
Field Formulation

ICEAA05 Torino
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ICEAA05 Torino

Braid Shield Circuit Model

 Transfer impedance and cancellation of inductance terms in 78% 
cable

 Transfer admittance (capacitance)

Hole capacitance

All parameters related to geometry 
and material properties (although 
some fixed empirical constants 
present)

Internal impedance 
term

 T R L G SZ Z j M L Z   
Shell diffusion 
term

Hole 
inductance

Interweave 
inductance

cancellation

T TY j C
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Electrostatic Problem

a

b





x̂

ẑ
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Formulation of the electrostatic problem
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Uniform Field and Zero Potential Problem
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Zero Incident Field and Unit Potential Problem
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Results Electro-static Problem

Cable braid model consisting of half (14x14) the wires in the unit cell of the Beldon cable. 
The individual lines correspond to the center lines of the wires. 
The wire thickness due to the radius a is not shown.

a


b






x̂

ẑ

Highest multipole c/E0

Filament 5.26 x 10-5

Dipole 5.10 x 10-5

Quadrupole 4.86 x 10-5

Octopole 4.87 x 10-5

Highest multipole c/E0

Filament -2.60 x 10-7

Dipole 3.60 x 10-7

Quadrupole -7.66 x 10-8

Octopole -5.72 x 10-8

Full Eiger Run
12 around the circum  9.11 10-8

16 around the circum  8.67 10-8
Semi-emperical 1.3e-7
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Evaluation of the periodic Green’s Function
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Evaluation of the periodic Green’s Function

If |z| > .1 a Spectral series are used
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Formulation of the magneto-static problem
uniform current approximation
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Magneto-static problem : Uniform Current Approximation
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ẑ

Ampers law at x= a sin()

 0
1,

2
sgn( ) tan( )a

mm wire

H
I s x

N





�

0 0
0

( ) ( )
( )

2

sc sc
sc x z
y

A HA
H

z x




 
  

 

r r
rThe currents may be renormalized by setting

for a point far above the braid 

Uniform current approximation

( )( ) ( )1 1
( ) z z

AA A
B

a z a




 

 
  

  

rr r
r ( ) 0B r ˆ

my

,
c

n mr

a
ˆ

mx

Dipole 
Source

j

origin

( )
0zA








r

, , , ,0 , ,0 , ,( ) ( ) ( ) ( )
z z z

sc sc inc inc
z n m j n m n m n m j  A r A r A r A r

, , (cos sin )c
n m j m j m j mr r a x y   

 

,0,1,2,.., 1; 1,...unkn seg segj N m N  

0(filaments)

2(dipoles)

4(quadrupoles)

6(octopoles)

unk
segN

 
 
 
 
 
  



19

Formulation of the magneto-static problem:
Non-uniform current
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Magneto-static problem : Non-uniform Current
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ICEAA05 Torino

Meandering-Wire Test Case (Magnetostatic)

3.0 nHL 

1.3nHL 

 This test case is a simplified mesh which contains all of the 
topology of the full cable braid mesh.

(Multipole Simulation,
Current Filaments Only)

(Semi-Empirical Result)

(EIGER_S Simulation)

1.3L nH
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Magneto Static results

ICEAA05 Torino
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I will put results here from the filament ,dipole,quadrapole,and octopole for the inductance L  
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Conclusions

• A first principles approach to modeling based on multipoles for field 
penetration through a cable braid has yielded sucessful results for a 
perfectly conducting braid. 

• Magnetic diffusion into a  finitely conducting  cable braid will be next be 
attempted using these methods.


