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Introduction and Background

Ordinary andnon-ordinary state-based materials

Peridynamics treatment of momentum equation

Brief introduction to peridynamics kinematics

Related Works

State-based peridynamics and flow rule [2, Silling, 2007]

Bond-based andNon-ordinary constitutive models [Foster, 2009]

A nonlocal-ordinary-state-based plasticity model for peridynamics

Rate equations and constraints

Practical yield condition

Demonstration Calculations

Integration of a single bond

Expanding ring
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Ordinary and Non-Ordinary Materials
Momentum Equation, Internal Force and the Peridynamic Force State
Ordinary Materials and the Scalar Force State
Kinematic Peridynamic States:|X|, |Y |
Kinematic Peridynamic States:e, θ , ed

Ordinary Non-ordinary
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Momentum equation and internal forcef for particlex

ρ(x)ü(x, t) = f (x,u(x, t), t)+ b(x, t)

f (x,u(x, t), t) =
∫

H
{T(Y)[x]〈ξ 〉−T(Y)[Q]〈−ξ 〉}dVQ

A Nonlocal Plasticity Model for Peridynamics
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The vector force stateT is given as:

T(Y) = t(Y)M(Y) where M(Y) =
Y
|Y|

The scalar force statet(Y) is the subject matter of this talk.
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Bond: ξ

ξ = Q− x

Scalar Reference State: |X|

|X|〈ξ 〉 = |Q− x|
= |ξ |

Scalar Deformation State: |Y|

|Y|〈ξ 〉 = [Y[x]〈ξ 〉 ·Y[x]〈ξ 〉]
1
2
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Weighted Volume: m

m =
∫

H
ω |ξ |2dVQ

Scalar Extension State: e

e = |Y|− |X|

Dilatation: θ

θ̂ (e) =
3
m

(ωx)• e

=
3
m

∫

H
ω |X|〈ξ 〉|Y|〈ξ 〉dVQ −3

Deviatoric Extension State: ed

ed(Y) = e(Y)− θ(Y)|X|
3
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Summary of Rate Equations and Constraints
Exact Solution to Associated Backward Euler Approximation
Derivation of Force-based Yield Condition

Summary of Rate Equations and Constraints

Additive decomposition of extension state:ed = ede + edp

Elastic force state relations:t = −3p
m ωx + αω(ed − edp)

Elastic force states domain defined by a yield surface/function
that depends upon the deviatoric force state:

f (td) = ψ(td)−ψ0 ≤ 0, whereψ(td) = ‖td‖2

2

Flow rule which describes rate of plastic deformation:
ėdp = λ∇dψ
Loading/un-loading conditions (Kuhn-Tucker constraints):
λ ≥ 0, f (td) ≤ 0, λ f (td) = 0

Consistency condition:λ ḟ (td) = 0

A Nonlocal Plasticity Model for Peridynamics
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Problem definition

Given:{ed
n+1,e

d
n,e

dp
n }, wheren denotes the time step

Find: edp
n+1 andtd

n+1

Exact solution and algorithm for backward Euler approximation

Compute trial deviatoric force state:td
trial = αω(ed

n+1− edp
n )

if f (td
trial) ≤ 0, then step is elastic,∆λ = 0, andtd

n+1 = td
trial

else

td
n+1 =

√
2ψ0

tdtrial

‖tdtrial‖
, edp

n+1 = edp
n + 1

α

[

‖tdtrial‖√
2ψ0

−1
]

td
n+1

Additional Comments

Evolution of plasticity is driven by incoming scalar deviatoric
extension stateed

Above algorithm is conceptually similar to radial return

A Nonlocal Plasticity Model for Peridynamics
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A Practical Definition forψ0.

Assume pure shear conditions

Expand scalar deformation state in a taylor series

Dilation is zero under linearized conditions

Scalar extension state and deviatoric extension state are identical

ψ0 =
1
2

[

15µ
m

]2

‖ed‖2

=
75
8π

E2
y

δ 5

whereEy is the shearing yield stress andδ is thehorizon
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Expanding Ring w/Damage
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Time Integration of Single Bond
Expanding Ring
Expanding Ring w/Damage

cylindrical ring

square cross-section

IC: outward radial velocity

non-local solutionperidigm

compare localpresto solution
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Time Integration of Single Bond
Expanding Ring
Expanding Ring w/Damage

Peridigm Simulation
Ductile failure of expanding aluminum ring

Plasticity model inherits all the advantages of peridynamics for
modeling fracture; Color indicates damage.

Peridigmis (soon to be) an open source Sandia peridynamics code.
More Info: talk to David Littlewood, Michael Parks, John Mitchell,
Stewart Silling
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Closing Remarks and Summary

Presented new nonlocal, ordinary-state-based plasticitymodel

Presentedforce-based yield condition

Not presented but shown in report: model satisfies 2nd law of
thermodynamics

Not presented but developed in report: Linearization

Damage is easy to incorporate

Presented demonstration calculations

Detailed report is available:[1, Mitchell,2011]
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