

# A Nonlocal, Ordinary, State-Based Plasticity Model for Peridynamics

John Mitchell

Multiphysics Technologies, Sandia National Laboratories  
Albuquerque, New Mexico

July 26, 2011

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL8500.

## Introduction and Background

- *Ordinary* and *non-ordinary* state-based materials
- Peridynamics treatment of momentum equation
- Brief introduction to peridynamics kinematics

## Related Works

- State-based peridynamics and flow rule [2, Silling, 2007]
- *Bond*-based and *Non-ordinary* constitutive models [Foster, 2009]

## A nonlocal-ordinary-state-based plasticity model for peridynamics

- Rate equations and constraints
- Practical yield condition

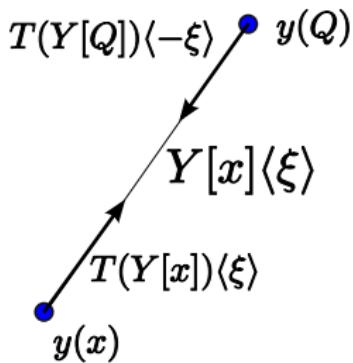
## Demonstration Calculations

- Integration of a single bond
- Expanding ring

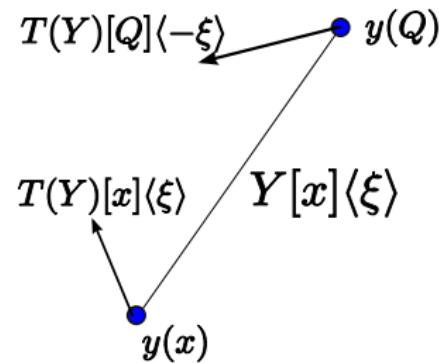
# Key References

-  John A. Mitchell.  
A nonlocal, ordinary, state-based plasticity model for peridynamics.  
Sandia Report SAND2011-3166, Sandia National Laboratories,  
Albuquerque, NM, May 2011.
-  S. A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari.  
Peridynamic states and constitutive modeling.  
*J Elasticity*, (88):151–184, 2007.

## Ordinary

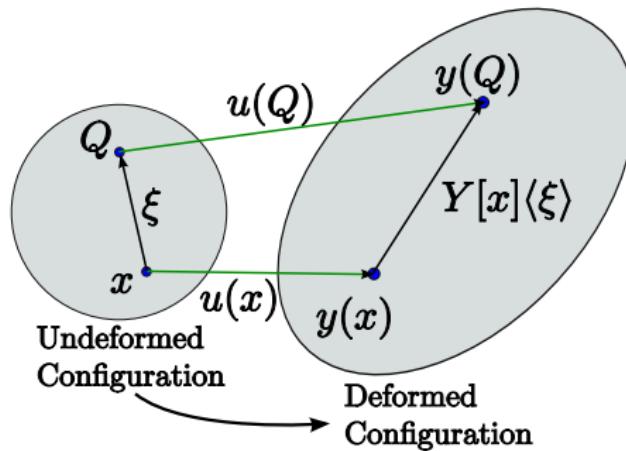


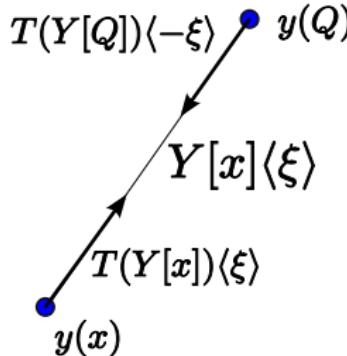
## Non-ordinary



## Momentum equation and internal force $f$ for particle $x$

$$\begin{aligned}\rho(x)\ddot{u}(x,t) &= f(x, u(x,t), t) + b(x, t) \\ f(x, u(x,t), t) &= \int_H \{T(Y)[x]\langle\xi\rangle - T(Y)[Q]\langle-\xi\rangle\} dV_Q\end{aligned}$$

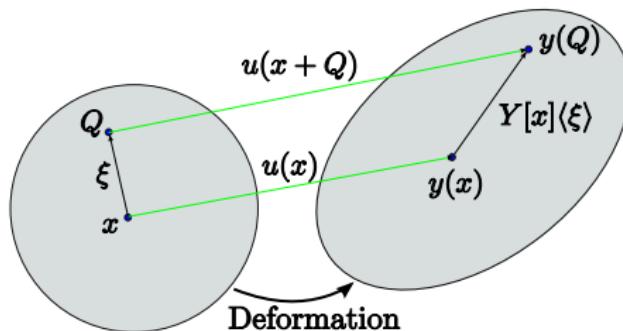




The vector force state  $T$  is given as:

$$T(Y) = t(Y)M(Y) \quad \text{where} \quad M(Y) = \frac{Y}{|Y|}$$

The scalar force state  $t(Y)$  is the subject matter of this talk.



### Bond: $\xi$

$$\xi = Q - x$$

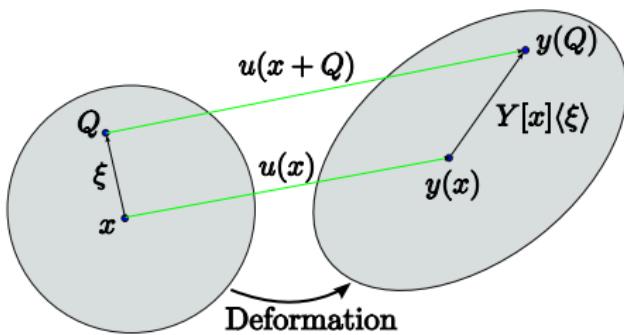
### Scalar Reference State: $|X|$

$$\begin{aligned}|X|\langle\xi\rangle &= |Q - x| \\ &= |\xi|\end{aligned}$$

### Scalar Deformation State: $|Y|$

$$|Y|\langle\xi\rangle = [Y[x]\langle\xi\rangle \cdot Y[x]\langle\xi\rangle]^{\frac{1}{2}}$$

## Scalar Extension State: $e$



$$e = |Y| - |X|$$

## Dilatation: $\theta$

$$\begin{aligned}\hat{\theta}(e) &= \frac{3}{m} (\underline{\omega x}) \bullet \mathbf{e} \\ &= \frac{3}{m} \int_H \omega |X| \langle \xi \rangle |Y| \langle \xi \rangle dV_Q - 3\end{aligned}$$

## Weighted Volume: $m$

$$m = \int_H \omega |\xi|^2 dV_Q$$

## Deviatoric Extension State: $e^d$

$$e^d(Y) = e(Y) - \frac{\theta(Y)|X|}{3}$$

## Summary of Rate Equations and Constraints

- Additive decomposition of extension state:  $\underline{e}^d = \underline{e}^{de} + \underline{e}^{dp}$
- Elastic force state relations:  $t = -\frac{3p}{m}\underline{\omega}x + \alpha\underline{\omega}(\underline{e}^d - \underline{e}^{dp})$
- Elastic force states domain defined by a yield surface/function that depends upon the deviatoric force state:  
$$f(t^d) = \psi(t^d) - \psi_0 \leq 0, \text{ where } \psi(t^d) = \frac{\|t^d\|^2}{2}$$
- Flow rule which describes rate of plastic deformation:  
$$\dot{e}^{dp} = \lambda \nabla^d \psi$$
- Loading/un-loading conditions (Kuhn-Tucker constraints):  
$$\lambda \geq 0, \quad f(t^d) \leq 0, \quad \lambda f(t^d) = 0$$
- Consistency condition:  $\lambda \dot{f}(t^d) = 0$

## Problem definition

- Given:  $\{e_{n+1}^d, e_n^d, e_n^{dp}\}$ , where  $n$  denotes the time step
- Find:  $e_{n+1}^{dp}$  and  $t_{n+1}^d$

## Exact solution and algorithm for backward Euler approximation

- Compute trial deviatoric force state:  $t_{trial}^d = \alpha \underline{\omega}(e_{n+1}^d - e_n^{dp})$
- if  $f(t_{trial}^d) \leq 0$ , then step is elastic,  $\Delta\lambda = 0$ , and  $t_{n+1}^d = t_{trial}^d$
- else

$$t_{n+1}^d = \sqrt{2\psi_0} \frac{t_{trial}^d}{\|t_{trial}^d\|}, \quad e_{n+1}^{dp} = e_n^{dp} + \frac{1}{\alpha} \left[ \frac{\|t_{trial}^d\|}{\sqrt{2\psi_0}} - 1 \right] t_{n+1}^d$$

## Additional Comments

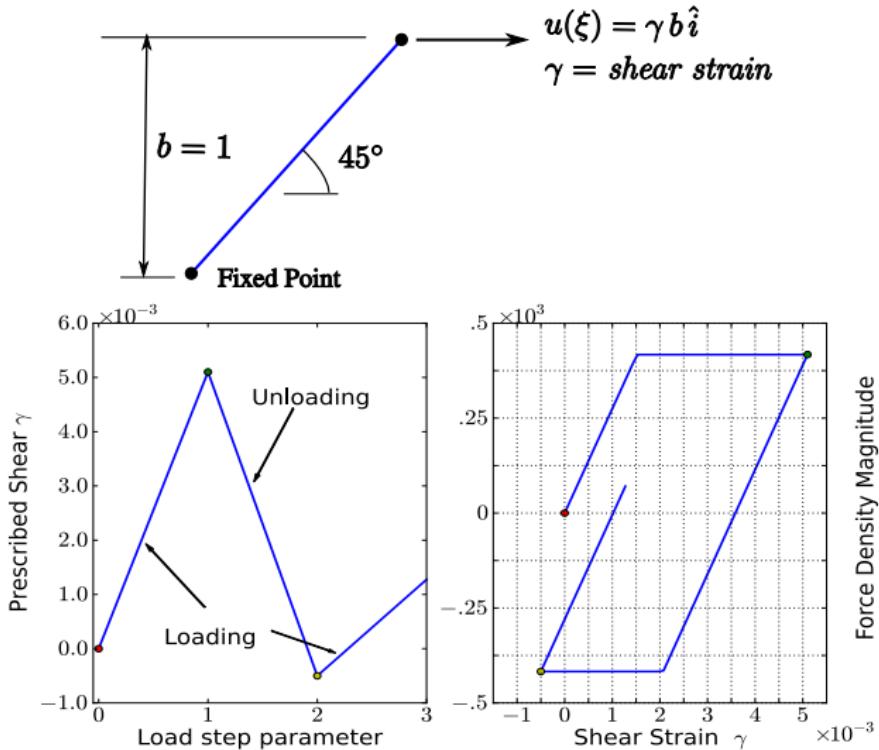
- Evolution of plasticity is driven by incoming scalar deviatoric extension state  $e^d$
- Above algorithm is conceptually similar to radial return

## A Practical Definition for $\psi_0$ .

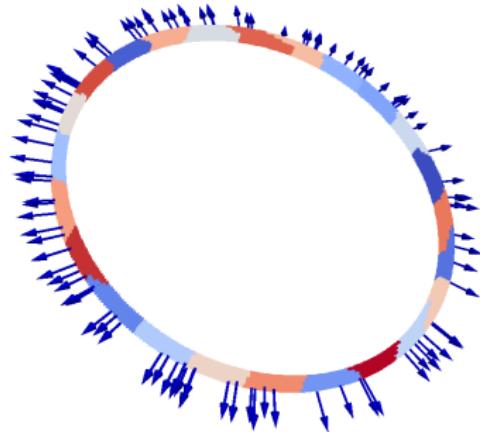
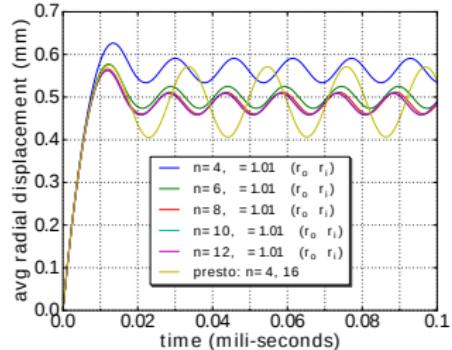
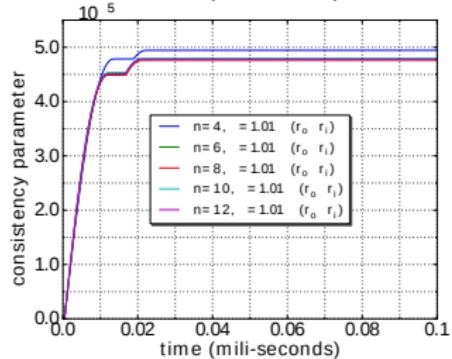
- Assume pure shear conditions
- Expand scalar deformation state in a taylor series
- Dilation is zero under linearized conditions
- Scalar extension state and deviatoric extension state are identical

$$\begin{aligned}\psi_0 &= \frac{1}{2} \left[ \frac{15\mu}{m} \right]^2 \|e^d\|^2 \\ &= \frac{75}{8\pi} \frac{E_y^2}{\delta^5}\end{aligned}$$

where  $E_y$  is the shearing yield stress and  $\delta$  is the *horizon*



- cylindrical ring
- square cross-section
- IC: outward radial velocity
- non-local solution *peridigm*
- compare local *presto* solution



# Peridigm Simulation

## Ductile failure of expanding aluminum ring

Plasticity model inherits all the advantages of peridynamics for modeling fracture; Color indicates damage.



**Peridigm** is (soon to be) an open source Sandia peridynamics code.

**More Info:** talk to David Littlewood, Michael Parks, John Mitchell, Stewart Silling

# Closing Remarks and Summary

- Presented new nonlocal, ordinary-state-based plasticity model
- Presented *force-based* yield condition
- Not presented but shown in report: model satisfies 2nd law of thermodynamics
- Not presented but developed in report: Linearization
- Damage is easy to incorporate
- Presented demonstration calculations

Detailed report is available: [1, Mitchell,2011]