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Introduction 

• Many Sandia-designed systems may be subjected 
to severe mechanical environments.  Safety and 
security issues require analysis of system 
response under these conditions. 

• System and component level finite element 
models are widely used to perform a substantial 
part of the analysis and to guide testing. 

• Validation of FE modeling capabilities, by 
comparison to experiment is an essential part of 
the process. 
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Objectives 

• Demonstrate the performance of FE nonlinear 
structural models to simulate crushing and other 
large-deflection scenarios. 

• Examples: 
– Axial and lateral crushing of  tubular structures 
– Hydraulic collapse 
– Puncturing 
– Etc. 

• This presentation addresses aluminum tubes 
crushed by quasi-static axial compression. 

 
 
 

3 



Axisymmetric Collapse (Bardi et al, 2003) 
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at a much lower mean load level to form concertina folds (Alexander, 1960; Pugsley and Macaulay, 1960;
Horton et al., 1966; Andrews et al., 1983; Allan, 1968). It is this lower mean load level phase of the process
which gives such tubes the attractive energy absorption characteristics. As the R=t of a tube increases, initial
buckling reverts to a nonaxisymmetric pattern involving circumferential waves (diamond mode, Tvergaard,
1983a). In such tubes, the concertina folds also have increasing number of waves demonstrated clearly in
Pugsley and Macaulay (1960), Horton et al. (1966), Andrews et al. (1983) and Allan (1968).

Usually once past the first fold the process is periodic. Over the years most modeling efforts have con-
centrated on providing estimates of the average load and of the wavelength of steady-state folding. In this
study we will revisit the axisymmetric mode of collapse shown in Fig. 1. Alexander (1960) was the first to
propose a simple, kinematically admissible collapse mechanism. He assumed the material to be perfectly
plastic and calculated approximately the energy required (bending and stretching) for one fold to develop.
He equated this with the work done by the average load. The wavelength of the fold was then selected such
that the calculated mean load (P ) is minimized. The model was meant as a first approximation and as such
the predicted load and wavelength are generally low. Many efforts for improving the predicted results have
been made (e.g. Abramowicz and Jones, 1986; Calladine, 1986; Grzebieta, 1990; Wierzbicki et al., 1992;
Singace et al., 1995) where more representative kinematical or constitutive models were introduced while
the main assumptions of Alexander!s model were maintained (i.e., perfect plasticity, infinitesimal defor-
mations, energy balance, minimization of P with respect to the wavelength). The two strongest represen-

Fig. 1. Cross section of a tube with five axisymmetric folds.
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period of folding. A new fold starts to occur at the next local maximum and a second folding period
consisting of a high and a low stress peak starts to develop.

The second folding period is similar to the first one. The two stress peaks and valleys are at about the
same levels and their extent is also approximately the same. The first half of the third period is also similar
but the second stress valley is somewhat higher while simultaneously the folding started showing signs of

Fig. 4. Sequence of configurations illustrating progressive crushing of a tube (correspond to points identified with numbered flags on
response in Fig. 3).

Fig. 3. Measured force–displacement response for tube CR8.
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folding. For this reason in the majority of our experiments, including those that will be discussed here, the
ends of the tubes were clamped using the custom end fixture shown in Fig. 2.

Close fitting solid inserts are placed inside the ends of the tubes over a length of 1.125 in. (28.6 mm). The
outer surface of the tube is in contact with close fitting spacers cut into three sectors. The gap between the
sectors enables tightening of the assembly by expanding the Ringfeder clamp around it. The outer cir-
cumference of the Ringfeder is in contact with a solid steel housing as shown in the figure. In this ar-
rangement the first lobe folds over the solid spacer.

The crushing was conducted at displacement rates that correspond to an average strain rate of about 10!2

s!1. Of course, once the deformation localizes the local strain rate increases quite significantly. Further-
more, the strain rate varies at different points of a typical fold with the points at the crowns of the extrados
and the intrados experiencing the highest deformation rate. During the experiment, the load (P ) and axial
deflection (d) were recorded using a digital data acquisition system. The side of the tube undergoing folding
was monitored by a video system run synchronously with the data acquisition system. After the test, it was
possible to analyze the events by comparing the force history with the video recording.

We will use results recorded for an Al-6061-T6 tube with R=t ¼ 12:13 (CR8 in Tables 1 and 2) to describe
a typical sequence of events. Fig. 3 shows the recorded force–displacement response. The load is normalized
by the yield load (Po) and the displacement by the tube radius. Fig. 4 shows a sequence of photographs of
the initial stages of the crushing which correspond to the points on the response marked with numbered
flags. Initially the tube deforms uniformly. The response is at first elastic and stiff but softens as the tube
material plasticizes. The restraints of the clamped edges cause the usual ‘‘boundary layer’’ lobes to form at
the ends while the rest of the tube shows signs of axisymmetric plastic buckling (see Batterman, 1965;
Batterman and Lee, 1966; Tvergaard, 1983b; Yun and Kyriakides, 1990). At some stage the load reaches a
maximum and one of the two end-lobes (in this case the one at the bottom) starts to collapse accompanied
by a precipitous drop in the load. The load continues to drop until one side of the first fold which now has a
#-shape (see ) contacts the solid clamp insert. This stiffens the response temporarily but it reverts to its

Fig. 2. Experimental setup used to crush tubes under displacement control.
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L/D = 7.0 
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Modeling Overview 

• Abaqus/Explict 
• Shell Elements on Tube 

– Reduced Integration (S4R) 
– Relax Stiffness Hourglass Control  

• Rigid Fixtures 
• Two Step Procedure 

– Clamping Pressure on Fixtures 
– Displacement on End 

• Shell Contact Thickness 
– Set by Contact Algorithm 
– <= 42% of Element Edge Length 
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Material Properties 
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• Tensile Test of Tube 
– Pulled a Section from 

Same Tube 
• Material Model Input 

– Up to UTS from Test 
–  Iteratively Determined 

from UTS till Near 
Failure 
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Crushing Prediction L/D=4.6 
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Crushing Pattern 
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L/D = 4.6 
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L/D = 7 
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Summary of Results 
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L/D Mode 
Experiment 

Mode 
Prediction 

λ (Δ/D)	


Experiment 

λ (Δ/D)	


Prediction 

 
2.2 N=3 / N=3 N=3 - - 

3.8 N=3 / N=3 N=3 0.352 0.388 

4.6 N=3 / N=2-3 N=3 0.354 0.394 

5.4 N=3 / Lateral N=3 - 0.395 

7.0 Lateral / Lateral Lateral - - 



Axisymmetry? 
Bardi et al 
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at a much lower mean load level to form concertina folds (Alexander, 1960; Pugsley and Macaulay, 1960;
Horton et al., 1966; Andrews et al., 1983; Allan, 1968). It is this lower mean load level phase of the process
which gives such tubes the attractive energy absorption characteristics. As the R=t of a tube increases, initial
buckling reverts to a nonaxisymmetric pattern involving circumferential waves (diamond mode, Tvergaard,
1983a). In such tubes, the concertina folds also have increasing number of waves demonstrated clearly in
Pugsley and Macaulay (1960), Horton et al. (1966), Andrews et al. (1983) and Allan (1968).

Usually once past the first fold the process is periodic. Over the years most modeling efforts have con-
centrated on providing estimates of the average load and of the wavelength of steady-state folding. In this
study we will revisit the axisymmetric mode of collapse shown in Fig. 1. Alexander (1960) was the first to
propose a simple, kinematically admissible collapse mechanism. He assumed the material to be perfectly
plastic and calculated approximately the energy required (bending and stretching) for one fold to develop.
He equated this with the work done by the average load. The wavelength of the fold was then selected such
that the calculated mean load (P ) is minimized. The model was meant as a first approximation and as such
the predicted load and wavelength are generally low. Many efforts for improving the predicted results have
been made (e.g. Abramowicz and Jones, 1986; Calladine, 1986; Grzebieta, 1990; Wierzbicki et al., 1992;
Singace et al., 1995) where more representative kinematical or constitutive models were introduced while
the main assumptions of Alexander!s model were maintained (i.e., perfect plasticity, infinitesimal defor-
mations, energy balance, minimization of P with respect to the wavelength). The two strongest represen-

Fig. 1. Cross section of a tube with five axisymmetric folds.
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at a much lower mean load level to form concertina folds (Alexander, 1960; Pugsley and Macaulay, 1960;
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which gives such tubes the attractive energy absorption characteristics. As the R=t of a tube increases, initial
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study we will revisit the axisymmetric mode of collapse shown in Fig. 1. Alexander (1960) was the first to
propose a simple, kinematically admissible collapse mechanism. He assumed the material to be perfectly
plastic and calculated approximately the energy required (bending and stretching) for one fold to develop.
He equated this with the work done by the average load. The wavelength of the fold was then selected such
that the calculated mean load (P ) is minimized. The model was meant as a first approximation and as such
the predicted load and wavelength are generally low. Many efforts for improving the predicted results have
been made (e.g. Abramowicz and Jones, 1986; Calladine, 1986; Grzebieta, 1990; Wierzbicki et al., 1992;
Singace et al., 1995) where more representative kinematical or constitutive models were introduced while
the main assumptions of Alexander!s model were maintained (i.e., perfect plasticity, infinitesimal defor-
mations, energy balance, minimization of P with respect to the wavelength). The two strongest represen-
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at a much lower mean load level to form concertina folds (Alexander, 1960; Pugsley and Macaulay, 1960;
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centrated on providing estimates of the average load and of the wavelength of steady-state folding. In this
study we will revisit the axisymmetric mode of collapse shown in Fig. 1. Alexander (1960) was the first to
propose a simple, kinematically admissible collapse mechanism. He assumed the material to be perfectly
plastic and calculated approximately the energy required (bending and stretching) for one fold to develop.
He equated this with the work done by the average load. The wavelength of the fold was then selected such
that the calculated mean load (P ) is minimized. The model was meant as a first approximation and as such
the predicted load and wavelength are generally low. Many efforts for improving the predicted results have
been made (e.g. Abramowicz and Jones, 1986; Calladine, 1986; Grzebieta, 1990; Wierzbicki et al., 1992;
Singace et al., 1995) where more representative kinematical or constitutive models were introduced while
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mations, energy balance, minimization of P with respect to the wavelength). The two strongest represen-
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Fillet          Chamfer 
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Boundary Effects 
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Boundary Effects 

The geometry of the first fold which, as mentioned above, is sensitive to the radius rc of the clamps, tends
to affect the orientation of subsequent folds in a similar way and also affects the evolution of the inter-
mediate load peaks. Interestingly neither factor was found to affect the overall wavelength of the cycles.
This variable is not dependent on the details of the contact of the folds but is instead a function of the tube
geometry R=t and its stress–strain characteristics. All observations made here relating to changes in the
loading cycle including the timing of the onset of the changes, correspond very well to experimental events
discussed earlier.

The results from the numerical simulations for the remaining three tubes analyzed are summarized in
Table 2. The average crushing load P compares very well with the measured values. The biggest difference is
)3.3% for tube CR19. For tubes CR10 and CR21, the wavelengths of the folds match well the measured
values. For CR19 the wavelength is 8.1% higher than the experimental value. This particular aluminum
alloy exhibited low yield stress and high hardening. Thus the use of isotropic hardening to model the
material plasticity results in more error than in the other cases.

The calculated values of ðso; siÞ are lower than the experimental values for CR10 and CR19 and quite
good for CR21. The radii of the inner and outer folds ðro; riÞ and the variable m are in very good agreement

Fig. 15. Calculated force–displacement response for tube CR8 showing progressive degradation of load cycle characteristics.

Fig. 16. Calculated deformed configurations showing progressive increase in inclination of folds (correspond to numbered points in
Fig. 15).
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Sensitivity Investigations 
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• Mesh Sensitivity 
– 0.025, 0.05, 0.1 inch 

squares studied 
• Other Studies 

– Clamping Pressure 
– Fixture Dimensions 

• Future Studies 
– Hex-Based Meshes 
– Anisotropic Material 

 
 
 



Conclusions 

• Shell model does a reasonable job in predicting 
the crushing response of the tubes. 

• N=3 crushing mode seems to be a consequence 
of the three-segmented clamping fixture and of 
the applied clamping pressure. 

• Shell contact thickness is a model feature that 
probably affects the numerical results. 

• Crushing mode is influenced by the geometric 
details of the clamping fixture. Perhaps more 
generally, by the geometry of preceding folds. 
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Parametric Study 
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Clamping 
Pressure (PSI) 

Plug Size 
(inches) Mesh (inches) Result 

1250 1.15 0.05 N=3 
1250 1.147 0.05 N=2 
1250 1.15 0.025 N=2 
2500 1.15 0.05 N=3 
2500 1.147 0.05 N=3 
12500 1.15 0.05 N=3 
12500 1.15 0.025 N=3 
12500 1.147 0.05 N=3 
6250 1.15 0.025 N=3 


