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ABSTRACT

The Discrete Fractional Fourier Transform is a useful tool
for multicomponent chirp parameter estimation. In recent
work a projection-subspace approach to multicomponent
chirp parameter estimation was proposed, to bring the in-
herent noise resilience of subspace decomposition methods
to DFrFT-based estimation.

This paper refines the projection-subspace to over-
come limitations caused by the projection pre-processing,
and presents a quantitative analysis of its performance as
compared to the Cramér-Rao lower bound.
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1 Introduction

Chirp signals are sinusoidal waveforms with linearly
changing instantaneous frequency. They find wide applica-
tions in radar systems, including synthetic aperture radar,
and can be used as a simplified model for bat echo-location
signals. A robust method of multicomponent parameter es-
timation would enable the estimation of the vibrational fre-
quency of a target and improve estimation performance in
the presence of clutter.

The Discrete Fractional Fourier Transform (DFrFT)
shows promise in multicomponent chirp parameter estima-
tion as it generates a strong peak for each chirp whose loca-
tion in the the 2D transform plane corresponds to the center
frequency and chirp rate. The mapping between peak loca-
tions and chirp parameters was investigated in [1] resulting
in a closed-form empirical approximation of the relation-
ship, however this approximation introduces significant er-
ror in the parameter estimation.

Subspace decomposition techniques have also been
investigated for use in conjunction with the DFrFT with the
aim of providing more robust and accurate estimation[2].
The projection method used in this prior work, however,
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causes the peak to be buried in the sum, hindering the per-
formance of the subspace decomposition. Finally, neither
of the above papers investigated effects of noise on the per-
formance of their proposed estimators.

In this paper, we will calculate the peak to parameter
mapping at each point in the transform, greatly reducing
the error caused by mapping approximation. We will in-
vestigate using different p-norms for the projection to bet-
ter accentuate the peaks, and propose a cross-hairs method,
where subspace decomposition is only performed on pro-
jections of thin slices centered on the peaks found by 2D
peak detection. Finally, we quantify the performance of the
estimators in the presence of noise using simulation data,
and compare them to the Cramér-Rao lower bound.

2 Discrete Fractional Fourier Transform

The Fractional Fourier Transform (FrFT) is a generaliza-
tion of the Fourier Transform. If time and frequency are
treated as orthogonal axes, then the Fourier Transform is
a 90° rotation in this plane, while the FrFT can generate
signal representations at any angle of rotation in the plane
[3]. The eigenvectors of the FrFT are Hermite-Gauss func-
tions, which result in a kernel composed of chirps. Thus
when applied to a chirp function at the appropriate angle,
the result is a delta function. The angle where this occurs
corresponds to the chirp rate of the signal, and the location
of the delta peak in the transform corresponds to the center
frequency, according to closed-form equations.

Discrete versions of the Fractional Fourier Transform
have been developed by several people[4][5][6]. All the
forms use approximations of the Hermite-Gauss functions
for eigenvectors, which lead to approximate chirp functions
as their kernel. The general form of the transform is given
by:

X, =VAFVTx, (1)

where V is a matrix of DFT eigenvectors and A is a diag-
onal matrix of DFT eigenvalues.

For this paper we use the MA-CDFrFT as presented in
[7], which is based on a centered DFT (whose kernel is gen-
erated by the Griinbaum tridiagonal commuter). The sym-
metries of those eigenvectors allow for an efficient compu-
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Figure 1: Effect of Noise on Projection. The MA-CDFrFT transform of a chirp with parameters « = 7/2/N, w = m/8 is shown above
with and without noise added to the signal. Horizontal and vertical projections calculated using a 3-norm, show how the noise floor is higher
in the 1D projections than in the 2D transform. The problem is more pronounced with 1-norm (absolute sum) projection.

tation given by:

N-1
Xelr] = 3 anlple 7 F, @)
p=0
N-1
2k [p] = Vip Z z[n|vnp, 3)

n=0

where vy, denotes the p-th component of the k-the CDFT
eigenvector.

3 Chirp Model

The chirp signals considered in this paper are formulated
as:

si[n] = A exp(j(asm® + win + ¢;)) 4)
P
z2ln] = siln] + wln] 5)
=1
m=n— % 0<n<N-1

where w[n] is additive Gaussian white noise with a stan-
dard deviation of ¢. The unknown parameters, 6; =
[A;, i, wi, ¢5]T, are the amplitude, chirp rate, center fre-
quency, and phase respectively. This paper focuses on esti-
mating the chirp rate and center frequency. The amplitude
and phase are assumed to be unknown for the purpose of
Cramér-Rao lower bound derivation, but were fixed at 1

and 0 respectively for all simulations. The algorithms were
written assuming they were unknown and did not take ad-
vantage of their fixed value.

Many of the applications of chirps measure real-
valued signals. The techniques presented here can be ap-
plied directly to real valued signals with only minor vari-
ation (there will be two 180°-symmetric peaks per chirp
instead of one). Alternately, the signal can be converted
to complex form using a Hilbert transform. Preliminary
investigation suggests that these methods have lower error
when operating on a complex signals, so that is the focus
of this paper.

4 Subspace Decomposition

This paper builds of off the work of [2] to use subspace
decomposition techniques to improve DFrFT chirp rate es-
timation in the presence of noise. Subspace decomposition
techniques have proved to be very successful at sinusoidal
frequency estimation. They are more robust to noise, and
more accurate than simple Fourier Transform peak detec-
tion. The ideal approach would be to apply a 2D subspace
decomposition (such as developed in [8]) however, this is
quite computationally expensive. Instead, horizontal and
vertical projections of the MA-CDFrFT were calculated,
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Figure 2: Expected Valid Mapping Region. A mapping must be established between (a subset of) the field of chirp parameters, and the
MA-CDFFT transform grid. Outside of the dashed region, the instantaneous frequency of chirps will be greater than 7, and the sampling
theorem is not satisfied. We thus only generated a mapping for the region shown in grey.

using a p-norm:

N-1
Xo = FFT™ | X|[;** = FFT ™! <Z Xk[’]|p> (6)
k=0

N—-1 P
x,, = FFT 7| X]||5” = FFT ™ (Z |X.[r}|”) (7
r=0

The strong peaks in the projections (as seen in figure la)
result in strong frequency content in x,, and x,,, thus turn-
ing the chirp parameter estimation problem into two fre-
quency estimation problems, which were solved using sub-
space decomposition methods.

We investigated using various p-norms to project the
magnitude of the MA-CDFrFT onto the horizontal and ver-
tical axes. The result of our preliminary investigation was
that the 1-norm (absolute sum) tended to bury the peak.
The 2-norm was not appropriate, as the FrFT respects Par-
seval’s Law at each angle of the transform. The Inf-norm
(vector maximum) had a lower noise-floor at high SNR,
but was still fairly susceptible to noise at low SNR levels.
Compared to the Inf-norm the 3-norm had a higher noise-
floor at high SNR, but less at low SNR. It was considered to
be a good compromise and was selected for detailed evalu-
ation in this paper.

The subspace decompostion process begins by per-
forming eigenvalue decomposition on estimated covariance
matrices R,, and R, of size (C'+ M) x N, where C is the
number of chirps expected in the signal. The eigenvectors
corresponding to the C' largest eigenvalues were then se-
lected to form the signal subspace, leaving M eigenvectors
to form the noise subspace.

Next the pseudo-spectra for was calculated using the
MUSIC and Minimum-Norm methods :

1

Puusic = ; ®)
Sokli | FET(0y)|?
1
P _ = 9
MIN-NORM = [ (Vv ©))

where vy, is the k-th eigenvector of V, sorted in ascending

order, and VT is the column vector containing the first el-
ement of each eigenvector. These two algorithms were se-
lected for evaluation in this paper as they showed the most
promise of all the subspace decomposition methods exam-
ined in [2].

Finally these pseudo-spectra were searched for the
largest C' peaks. The indices that were found using this
approach differ from the direct 2D peak detection, due pri-
marily to contributions of other terms in the projection.
Thus a different peak to parameter mapping function was
generated for each method.

5 Generating Peak-to-Parameter Mapping

To calculate the mappings, we generated N x N sam-
ple chirp functions with evenly spaced center frequen-
cies ranging from O to 7 and chirp rates ranging from
—7/N to w/N. These ranges were chosen because when
|a|(N — 1) 4 |w| > 7 the instantaneous frequency of the
chirp will exceed the range |Q;[n]| < 7, resulting in an
effect similar to aliasing (area shown in figure 2). The MA-
CDFrFT is thus not well behaved outside of this range and
we would not expect the mapping to be one-to-one in this
region.

For the direct 2D peak detection methods, we could
have restricted our mapping to chirps within this region.
However, for the projection-subspace approach, since the
horizontal and vertical coordinates of the peak are found
independently, it is possible to obtain an estimate for the
peak outside of the valid region. To calculate the error in
this estimate it is it necessary to have a mapping for a full
rectangular region.

We then used the above above peak detection meth-
ods to determine the peak indices for each of the sam-
ple chirps.The peaks in the MA-CDFrFT occurred roughly
between k = N/4 to 3N/4 and r = N/2 to N. Thus the
N x N samples in chirp parameter space mapped to about
N/2 x N/2 indices, for an average over-sampling of 4
times. To invert this mapping we started by grouping all
the chirp parameters that mapped to a specific index loca-
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Figure 3: Actual Valid Mapping Regions. The mapping is one-to-one in the white areas, was not one-to-one in the grey regions, and had
no solution in the black regions. The range of images correspond to the grey region shown in figure 2(a). They were generated for chirps
of length N = 256, with a transform size of NV X N and have a resolution of N x N. For the subspace decomposition methods, 50 noise

eigenvectors were used.

tion. This location was mapped to the centroid of the chirp
parameters that mapped to it. If these parameters did not
form a connected region in the chirp parameter grid, then
that location of the mapping was flagged as being not one-
to-one. Finally, if no chirps mapped to an index pair, then
the chirp parameters for that location were determined by
linear interpolation of the surrounding points or 4th-order
polynomial extrapolation of the entire mapping depending
on whether the location was on the interior or exterior of
the mapping.

Figure 3 shows the regions where the mappings were
valid. Using the basic 2D peak detection method, the re-
gion of the MA-CDFrFT with a valid mapping was slightly
smaller than the IF alone would suggest, and there were
even a few spots on the interior of the triangle that were
not one-to-one. Using the Minimum-Norm projection-
subspace method actually expanded the valid area, while
the MUSIC projection-subspace method made it much
worse. Inspecting slices of the MUSIC mapping showed
that the non-one-to-one areas were mostly the result of
dithering between index steps, and not large discontinu-
ities.

6 Cramér-Rao Lower Bound

To evaluate the performance of these estimators, it is valu-
able to compare against the theoretically limit provided by
Cramér and Rao. This lower bound has been calculated
before for chirps [9] [10], but since different papers use
slightly different forms of the chirp function, we present
our derived results for the specific form used in this paper.

The components of the Fischer information matrix for

any signal in complex additive Gaussian white noise is:

N-1
2 Optn Oty Oy Oy
Ji == <” H v ”), (10)

L + [ —
— 00; 00;  00; 00;
where p,, = real(z[n]) and v,, = imag(z[n]), are the ex-
pected values of the real and imaginary components of the
signal. For the multicomponent case © = [0y,60s,...0p]T
and J will have the form:

Juu Jiz oo e
Jor Jaz oo Jop
J= . . . ; (11)
Jpr Jp2 -+ Jpp
composed of the block matrices:
N_1 cij[n] ) Ajsij [n]mi
J.o— 2 3 —Aisij[n)m? - AiAjciz[njm
Y g2 r —A;sijlnln A;jAjeij[nlm?n
" A;sijn] A;Ajcijnlm?
Ajsijnln Ajsijn]
A;Ajcijinlm®n AjAjcijn]m?
A;Ajcijinn®  AjAjcijn)n ’
A;Ajciinin A;Ajci;n]
(12)
where
cij[n] = cos(®i[n] — ©;[n]) (13)
sij[n] = sin(®;[n] — ®;[n]) (14)
@l[n} = Olz'?’n2 + win + (i)z (15)

For the case of a single chirp, the inverse of this matrix has
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Figure 4: Single Chirp Parameter Estimation Error. The MSE at each SNR was calculated using 1000 chirps of length N=256, in the "safe”
range of |a|N + |w| < 0.857. A transform of size N x N was used. For the subspace decomposition methods, 50 noise eigenvectors were
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5 X 5 map generated above.

a simple closed form, and the Cramér-Rao lower bound is:

2
var{A} > N (16)
. o\2 90
vara} 2 (Z) N(N2 —1)(NZ-2) a7
var{@} > (%) N2 Y (18)
0\2 21N* — 24N3 — 66N? + 96N — 27
var{¢} 2 (Z) SN(N2 — 1)(N2 — 2)

19)

For the multicomponent case, there is no simple closed-
form solution, but the matrix inverse can be easily calcu-
lated for any specific chirp parameters.

7 Single Chirp Performance

With a strong framework in place, we proceeded to evalu-
ate the performance of the estimation methods using simu-
lated signals of a single chirp function with various levels
of noise. The results are shown in figure 4. At low SNR
(roughly < —15dB), all the estimation methods return re-
sults no better than choosing a point in the mapping range
at random. At medium-to-high SNR (roughly > —5dB) the
2D Peaks method is able to determine the center frequency
to within the pixel resolution of the transform grid and the
average error of the chirp rate is within a few pixels.

For the subspace decomposition methods, the output
vector does not have to be the same length as the input, and

we found that by increasing it (to 2048 in this case), it is
possible to obtain a more accurate solution, with much less
processing overhead than increasing the size of the trans-
form. Linear interpolation of the N x N mapping was used
to map peak location to chirp parameters. Better results yet
might be obtained with a more accurate mapping function,
or higher order interpolation.

At medium-low SNR the MSE transitions from these
two extremes. Based on preliminary investigation, it ap-
pears that this primarily reflects the percentage of time that
a noise-generated peak is selected rather than the true peak.
In other words, we believe the estimation either provides a
relatively accurate answer, or a completely wrong answer
in this region.

The subspace decomposition methods actually per-
form worse in this SNR region. The reason can be seen in
figure 1. As discussed before, the noise in the signal is dis-
tributed throughout the transform, so the peak is still stands
out above the noise floor in the 2D transform. However, the
projections include all the noise from all the rows/columns
and the noise floor buries the peak. Furthermore, in the
case of multicomponent chirps, the support leading up to
each of the peaks sum together to create a high “cross-term
floor” even when no noise is present. Using a 3-norm is an
improvement over the 1-norm, but still has it’s limits. Thus
the subspace decomposition techniques presented are use-
ful for improving accuracy at low SNR, but not extending
the SNR range.
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8 Extension to Multicomponent Chirps

Modifications are needed to extend these methods to
signals containing multiple chirps.  Particularly, the
projection-subspace approach does not provide informa-
tion to determine which peaks in the horizontal projection
match the peaks in the vertical projection, and thus it must
be combined with other techniques to obtain a final result.
For this paper, we used 2D peak detection to find the peaks,
and then used subspace decomposition on projections of
thin slices surrounding those peaks to refine the result, in
what we are calling the cross-hairs method.

Using slices rather than just the exact row and col-
umn where peak was detected allows the subspace method
to correct the detection of noise-generated peaks on the
support leading up to the real peak. We found that (for a
256 x 256 transform) a 5-pixel slice provides a good trade-
off between providing enough content to correct these false
peaks and not including too much content which just in-
creases the noise floor.

The same mapping function as the 2D-peak method
was used, assuming that the additional terms are not be as
significant for such a small projection. Slight gains in ac-
curacy might be had by calculating a separate mapping for
the cross-hairs approach.

Finally, to calculate the estimation error, we must de-
fine how the estimated parameters are paired with the actual
parameters. We selected the permutation which resulted in
the lowest total MSE.

9 Multicomponent Performance

The results of 2D-peak detection with two chirps are shown
in figure 6. These chirps are well separated, and the
Cramér-Rao lower bound is only negligibly higher than the
bound for a single chirp. Nevertheless, the error begins to
increase at higher SNR than for the single-chirp (about 7dB
vs -5dB). However, given suitable SNR, they still provide
estimations close to the limit of the transform resolution.

The results of the cross-hairs method are shown in
figure 7. The error at SNR levels below 7dB are about the
same as the 2D peaks method, since the subspace method
can’t correct the selection of false peaks far from the real
peak. At higher SNR, however, the error is significantly
reduced.

Further study is needed to determine why the estima-
tion error is lower for one chirp than the other. It may be a
fundamental limitation in the method, where chirps in dif-
ferent areas of the parameter space obtain better results than
others, or it may be an artifact of some detail in our imple-
mentation which can be improved.

10 Conclusion

In this paper we evaluated the use of the Discrete Frac-
tion Fourier transform for chirp parameter estimation. We
began by presenting a systematic peak-to-parameter map-
ping framework that allows us to approach the best esti-
mation error possible with a fixed-grid resolution, without
the need for closed-form mapping equations. We then re-
fined a projection-subspace decomposition method to using
a cross-hairs approach to provide better results. Finally, we
compared the mean square error of the chirp parameter esti-
mators to the Cramér-Rao lower bound, presenting a base-
line characterization of direct application of the DFrFT and
demonstrating the effectiveness of the subspace decompo-
sition approach.
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