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Description of Aleph
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1, 2, or 3D Cartesian

Unstructured FEM (compatible with CAD)
Massively parallel

Hybrid PIC + DSMC (PIC-MCC)
Electrostatics

Fixed B field

Solid conduction

e- approximations (quasi-neutral ambipolar,
Boltzmann)

Dual mesh (Particle and Electrostatics/Output) 256 core particle load balancing example
Advanced surface (electrode) physics models

Collisions, charge exchange, chemistry,

excited states, ionization

Advanced particle weighting methods

Dynamic load balancing (tricky)

Restart (with all particles)

Agile software infrastructure for easily extending BCs, post-processed quantities, etc.
Currently utilizing up to 64K processors (>1B elements, >1B particles)
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Target Application: 3D Cu-Cu Arc System

At vacuum or 4 Torr Ar background

1.5 mm inner-to-inner distance

0.75 mm diameter electrodes

Copper electrodes (this picture is Cu-Ti)
2 kV drop across electrodes

20Q resistor in series

Steady conditions around 50V, 100A
Breakdown time << 100ns

lonization mfp = 1.5 mm at maximum o
> n;~ 10" #/cm?3
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3D Model of Cu-Cu Arc System
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} Simulation Requirements

Temporal scales dominated by plasma electron frequency w,, CFL, and
collision frequency v, at different phases of breakdown:

2 Ax 1
1) ] —_
(Up MeAV n,ov
2qe

Spatial scales dominated by Debye length Ay and collision mean free path
A at different phases of breakdown:

1
Ax < min (AD,—)

At < min

n,o

Number densities increase from “0” to 107 #/cm3. Using same fixed particle
weight pyeignt iSN't @an option.
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Simulation Phases and Requirements

Running entire simulation at highest fidelity At, Ax, and
particle weighting is an enormous computational cost.
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Because of uncertainty in boundary conditions, we
don’t even know how long phase A is!
Phase Descripiion Aflreq.

L

A pre-breakdown neutral growth C
B breakdown initiation

C breakdown

D post-breakdown equilibriation

E post-breakdown steady arc

Approx. n;

1016 #/cm?3

1078 #/cm3 ()

1017 #/cm?3

(*) Depending on system model, there is a competition between generation and
ionization of neutrals. At a minimum, Ax and At limits have large spatial variation.
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# Quasi-static Acceleration

D E
To accelerate through Phase A, we take large (\-
neutral steps with “equilibriation” of ions and c
Ng electrons, including accounting for proper collision
opportunities, e.g.,
B
A
time
For each of 400 At Steps, For each of 40 10xAt, . 4 Steps,
move neutrals move neutrals
neutral-neutral interactions neutral-neutral interactions
for each of 10 At , steps, and for each of 100 At steps,
move ions move ions
jon-neutral interactions jon-neutral interactions
jon-ion interactions ion-ion interactions
for each of 10 At .on StEPS, for each of 10 At .on StEPS,
move electrons move electrons
electron-* interactions electron-* interactions
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Quasi-static Acceleration

» Dashed lines are no acceleration. » Cathode on left, anode on right.
 Neutral sputtering BC's. « Influx of e- from cathode.

lon factor = 100. Neutral factor = 1000 lon factor = 100, Neutral factor = 10000
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# Successive (Ax, At, p,eiqnt) Refinement

Recall constraints become progressively stronger through each phase, and
the leading constraint will switch:

At AX N (particle weight)
pre-breakdown neutral growth CFL none 0 #/cm?3
breakdown initiation CFL, w, Ao 10" #/cm?3
breakdown CFL, wy, ve  Ap, Ay 1076 #/cm3

post-breakdown equilibriation  w,, v, (*) Aps A (F) 1078 #/cmd (?)
post-breakdown steady arc Wp, Ve () Ap, Ay (F) 1077 #/cm?

Approach:
Start with (Ax, At, p,eignt) “COarse” simulation and:
— Continually refine in pyiqn through particle merging

— Discretely refine in (Ax, At) by stopping simulation near stability/fidelity
limits and perform full particle restart on Ax- and/or At-refined simulation.
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} Successive (Ax, At, p,eiqnt) Refinement

A typical progression to (Ax, At) = (0.014 um, 10 fs) looks like:

10,000
w
‘é 1,000
<100
S
8 10
5 /
10 100 1,000
Ax factor (x 0.014 um)

S3afled, pthd.000hmmnly ps)is being challenged, so move to ...

... and continue ... (right now this is manual, want to automate termination ...)

Total savings to 1.35 ps (this case) is tremendous, but still need many small
steps on small mesh at end...
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Successive (Ax, At, p,eiqnt) Refinement
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} Conclusions

* Vacuum arc discharge simulations place enormous simulation demands
on “vanilla” methods.

» We are developing many approaches to mitigate computational costs, two
of which were presented (*).

— Quasi-static acceleration (*)

— Successive refinement (*)

— Dynamic particle weighting / particle merging

— Implicit kinetic methods

— Adaptive time-stepping

— Oct-tree DSMC collision mesh separate from PIC mesh
- P3M
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Thank You!



Description of Aleph

Basic algorithm for one time step of length A¢:
1. Given known electrostatic field E" move each particle for % via:
n 1/2

At ;
v, — v+ — (iE”>
2 \my

et =g Atv?+1/2
2. Compute intersections (non-trivial in parallel).
Transfer charges from particle mesh to static mesh.
4. Solve for E !

v . (evvqhtl) o _p(xnfl)

w

En+1 — _vv*n#»l

o

Transfer fields from static mesh to dynamic mesh.

6. Update each particle for another 2t via:

¢

gt /e A (gEn—l)

t 2 \my
7. Perform DSMC collisions: sample pairs in element, determine cross section and probability of
collision. Roll a digital die, and if they collide, re-distribute energy.

8. Perform chemistry: for each reaction, determine expected number of reactions. Sample particles
of those types, perform reaction (particle creation/deletion).

9. Reweight particles.

10. Compute post-processing and other quantities and write output.

11. Rebalance particle mesh if appropriate (variety of determination methods).
' VR T %) Sandia
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5.
6.
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# Merging

. Choose a random pair of S particles.

Compute center of mass position.

Compute modified velocities at the center of mass by accounting for
displacement in the potential field.

If velocities are “too different,” reject pair and repeat 1-3.
Calculate average velocity, conserving momentum.
Adjust (to target) weight and record difference in kinetic energy.

Repeat 1-6 until target number or limiter is met.
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* Merging

What makes particles “too different” to merge?

Only approve merge pairs that are close in both position and velocity — close
in phase space.

The spatial bin is the element, approves any pair.

The velocity bin has many options. Can use MC sampling to select pairs
randomly. (let |v,| <|v,|)

Velocity Sphere Velocity Proportion

‘Vz — Vl‘ < ‘Vl‘sin(G) V, -V, > ‘Vlez‘ cos(0)

Velocity Interval
cos(0)

]v2‘—]vl‘ <V o, k1 m

VI'V2>]V1

v,

V.| <Ry,

~

We use this, plus sorting the S particles
by energy in each cell to increase

INIA S | chances of finding merge partner.
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density (fixed weights)
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