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Abstract. An approach to the conversion of regulatory requirements into a conceptual 
and computational structure that permits meaningful uncertainty and sensitivity 
analyses is descibed. This approach is predicated on the description of the desired 
analysis in terms of three basic entities: (i) a probability space characterizing aleatory 
uncertainty, (ii) a probability space characterizing epistemic uncertainty, and (iii) a 
model that predicts system behavior. The presented approach is illustrated with results 
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1 Introduction

An approach to the conversion of regulatory requirements into a conceptual and 
computational structure that permits meaningful uncertainty and sensitivity analyses is 
descibed. This approach is predicated on the description of the desired analysis in terms of 
three basic entities: (i) a probability space characterizing aleatory uncertainty, (ii) a 
probability space characterizing epistemic uncertainty, and (iii) a model that predicts system 
behavior. The presented approach is illustrated with results from the 2008 performance 
assessment (PA) for the proposed repository for high-level radioactive waste at Yucca 
Mountain (YM), Nevada, carried out by the U.S. Department of Energy (DOE) to assess 
compliance with regulations promulgated by the U.S. Nuclear Regulatory Commission 
(NRC) [1-3].       

2 Example: DOE’s Licensing Requirements for YM Repository

The NRC’s licensing requirements for the YM repository provide a good example of 
the challenges that are present in the conversion of regulatory requirements into the 
conceptual structure and associated computational implementation of an analysis that 
establishes compliance (or noncompliance) with those requirements [4; 5].
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The following two radiation protection requirements for a reasonably maximally 
exposed individual (RMEI) are at the core of the NRC’s requirements for the YM 
repository ([6], p. 10829): “(a) DOE must demonstrate, using performance assess-
ment, that there is a reasonable expectation that the reasonably maximally exposed 
individual receives no more than the following annual dose from releases from the 
undisturbed Yucca Mountain disposal system: (1) 0.15 mSv (15 mrem) for 10,000 
years following disposal; and (2) 1.0 mSv (100 mrem) after 10,000 years, but within 
the period of geologic stability. (b) DOE’s performance assessment must include all 
potential environmental pathways of radionuclide transport and exposure.” In addi-
tion, the following elaboration on the preceding dose requirements for the RMEI is 
also given ([6], p. 10829): “Compliance is based upon the arithmetic mean of the 
projected doses from DOE’s performance assessments for the period within 1 million 
years after disposal”.

The preceding dose requirements indicate (i) that dose results must be determined 
for long time periods into the future and also for many different potential modes of 
exposure and (ii) that some type of averaging process is to be used to determine the 
dose values to which the regulatory requirements apply. The indicated averaging pro-
cess (i.e., “arithmetic mean of projected doses”) is vague and thus particularly chal-
lenging to the design of an analysis to assess compliance with the indicated bounds on 
(mean) dose. However, of necessity, implementation of this averaging process re-
quires some form of a probabilistic representation of uncertainty.

Additional detail on what is desired in assessing compliance with the indicated 
dose requirements is provided by the NRC in the following definition for PA ([7], p. 
55794): “Performance assessment means an analysis that: (1) Identifies the features, 
events, processes (except human intrusion), and sequences of events and processes 
(except human intrusion) that might affect the Yucca Mountain disposal system and 
their probabilities of occurring during 10,000 years after disposal, (2) Examines the 
effects of those features, events, processes, and sequences of events and processes 
upon the performance of the Yucca Mountain disposal system; and (3) Estimates the 
dose incurred by the reasonably maximally exposed individual, including the associ-
ated uncertainties, as a result of releases caused by all significant features, events, 
processes, and sequences of events and processes, weighted by their probability of 
occurrence.”

The preceding definition makes very clear that a PA used to assess regulatory 
compliance for the YM repository must (i) consider what could happen in the future, 
(ii) assign probabilities to what could happen in the future, (iii) model the effects of 
what could happen in the future, (iv) consider the effects of uncertainties, and (v) 
weight potential doses by the probability of the occurrence of such doses. Of particu-
lar interest and importance to the design of an analysis to assess compliance is the 
indicated distinction between “uncertainty” and “probability of occurrence”. This is a 
distinction between what is often called epistemic uncertainty and aleatory uncertain-
ty [8; 9]. Specifically, epistemic uncertainty derives from a lack of knowledge about 
the appropriate value to use for a quantity that is assumed to have a fixed value in the 
context of a particular analysis, and aleatory uncertainty derives from an inherent 
randomness in the properties or behavior of the system under study.
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The NRC further emphasizes the importance of an appropriate treatment of uncer-
tainty in assessing regulatory compliance for the YM repository in the following defi-
nition of reasonable expectation ([7], p. 55813): “Reasonable expectation means that 
the Commission is satisfied that compliance will be achieved based upon the full rec-
ord before it.  Characteristics of reasonable expectation include that it: (1) Requires 
less than absolute proof because absolute proof is impossible to attain for disposal due 
to the uncertainty of projecting long-term performance; (2) Accounts for the inherent-
ly greater uncertainties in making long-term projections of the performance of the 
Yucca Mountain disposal system; (3) Does not exclude important parameters from 
assessments and analyses simply because they are difficult to precisely quantify to a 
high degree of confidence; and  (4) Focuses performance assessments and analyses on 
the full range of defensible and reasonable parameter distributions rather than only 
upon extreme physical situations and parameter values.” As the preceding definition 
makes clear, the NRC intends that a thorough treatment of uncertainty is to be an 
important part of assessing compliance with licensing requirements for the YM repos-
itory.

Similar requirements to the NRC’s requirements for the YM repository, either by 
explicit statement or implication, underlie requirements for analyses of other complex 
systems, including (i) the NRC’s safety goals for nuclear power stations [10], (ii) the
U.S. Environmental Protection Agency’s certification requirements for the Waste 
Isolation Pilot Plant [11; 12], and (iii) the National Nuclear Security Administration’s 
mandate for the quantification of margins and uncertainties in assessments of the 
nation’s nuclear stockpile [13-15]. Three recurrent ideas run through all of these ex-
amples: (i) the occurrence of future events (i.e., aleatory uncertainty), (ii) prediction 
of the consequences of future events (i.e., the modeling of physical processes), and 
(iii) lack of knowledge with respect to appropriate models and associated model pa-
rameters (i.e., epistemic uncertainty). The challenge in each case is to define a con-
ceptual model and an associated computational implementation that appropriately 
incorporates these ideas into analyses supporting compliance determinations.    

3 Conceptual Structure and Computational Implementation

The needed conceptual structure and path to computational implementation is provid-
ed by viewing the analysis of a complex system as being composed of three basic 
entities: (i) a probability space (,, pA) characterizing aleatory uncertainty, (ii) a 
probability space (, , pE) characterizing epistemic uncertainty, and (iii) a model that 
predicts system behavior (i.e., a function f(t|a, e), or more typically a vector function
f(t|a, e), that defines system behavior at time t conditional on elements a and e of the 
sample spaces  and  for aleatory and epistemic uncertainty). In the context of the 
three recurrent ideas indicated at the end of the preceding section, the probability 
space (,, pA) defines future events and their probability of occurrence; the func-
tions f(t|a, e) and f(t|a, e) predict the consequences of future events; and the probabil-
ity space (,, pE) defines “state of knowledge uncertainty” with respect to the ap-
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propriate values to use for analysis inputs and characterizes this uncertainty with 
probability.

In turn, this conceptual structure leads to an analysis in which (i) uncertainty in
analysis results is defined by integrals involving the function f(t|a, e) and the two 
indicated probability spaces and (ii) sensitivity analysis results are defined by the 
relationships between epistemically uncertain analysis inputs (i.e., elements ej of e) 
and analysis results defined by the function f(t|a, e) and also by various integrals of 
this function. Computationally, this leads to an analysis in which (i) high-dimensional 
integrals must be evaluated to obtain uncertainty analysis results and (ii) mappings 
between high-dimensional spaces must be generated and explored to obtain sensitivity 
analysis results. In general, f(t|a, e) is just one component of a high dimensional func-
tion f(t|a, e). It is also possible for f(t|a, e) and f(t|a, e) to be functions of spatial co-
ordinates as well as time.

In general, the elements a of  are vectors

1 2 ma ,a ,...,a   a (1)

that define one possible occurrence in the universe under consideration. In practice, 
the uncertainty structure formally associated with the set  and the probability meas-
ure pA is defined by defining probability distributions for the individual elements ai of 
a. Formally, this corresponds to defining a density function dAi(ai) on a set i charac-
terizing aleatory for each element ai of a (or some other uncertainty structure such as 
a cumulative distribution function (CDF) or a complementary CDF (CCDF) when 
convenient). Collectively, the sets i and density functions dAi(ai), or other appropri-
ate uncertainty characterizations, define the set  and a density function dA(a) for a
on , and thus, in effect, define the probability space (, , pA).

Similarly, the elements e of  are vectors

  1 2A M n, e ,e ,...,e    e e e (2)

that define one possible set of epistemically uncertainty analysis inputs, where the 
vector eA  contains uncertain quantities used in the characterization of aleatory uncer-
tainty and the vector eM  contains uncertain quantities used in the modeling of physi-
cal processes. As in the characterization of aleatory uncertainty, the uncertainty struc-
ture formally associated with the set  and the probability measure pE is defined by 
defining probability distributions for the individual elements ei of e. Formally, this 
corresponds to defining a density function dEi(ei) (or some other uncertainty structure 
such as a CDF or CCDF when convenient) on a set i characterizing epistemic uncer-
tainty for each element ei of e. Collectively, the sets i and density functions dEi(ei), 
or other appropriate uncertainty characterizations, define the set  and a density func-
tion dE(e) for e on , and thus, in effect, define the probability space (, , pE). In 
practice, the distributions for the individual elements of e are often obtained through 
an extensive expert review process (e.g., [16]).
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The model, or system of models, that predict analysis results can be represented 
by

     for a single resultM My t | , f t | ,a e a e (3)

and

       1 2  for multiple results,M M M Mt | , y t | , , y t | , ,... t | ,   y a e a e a e f a e (4)

where t represents time. In practice, f(t|a, e) and f(t|a, e) are very complex computer 
models and may produce results with a spatial as well as a temporal dependency.

In concept, the probability space (, , pA) and the function y(t|a, e) = f(t|a, e) are 
sufficient to determine the expected value EA[y(t|a, e)] of y(t|a, e) over aleatory un-
certainty conditional on the values for uncertain analysis inputs defined by an element 
e = [eA, eM] of  (i.e., risk in the terminology of many analyses and expected dose in 
the terminology of the NRC’s regulations for the YM repository). Specifically,
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(5)

with the inclusion of “|eA” in dA(a|eA) and pA(j|eA) indicating that the distribution 
(i.e., probability space) for a is dependent on epistemically uncertain quantities that 
are elements of eA. Similarly, the probabilities that define CDFs and CCDFs that 
show the effects of aleatory uncertainty conditional on a specific element e = [eA, eM] 
of  are defined by 

     | , | | , | dA M A y M A Ap y t y y t d       a e e a e a e
A

A (6)

and

     | , | | , | d ,A M A y M A Ap y y t y t d       a e e a e a e
A

A (7)

respectively, where
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and
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(9)

The integrals in Eqs. (6) and (7) can be approximated with procedures analogous to 
the sampling-based procedures indicated in Eq. (5).

The integrals in Eqs. (5)-(7) must be evaluated with multiple values of e = [eA, 
eM] in order to determine the effects of epistemic uncertainty. As illustrated in Sect. 4, 
the indicated multiple values for e = [eA, eM] are often obtained with a Latin hyper-
cube sample (LHS)

1 2, , ,..., , 1, 2,..., ,k Ak Mk k k nke e e k nLHS        e e e (10)

of size nLHS from the sample space  for epistemic uncertainty due to the efficient 
stratification properties of Latin hypercube sampling [17; 18]. This sample provides 
the basis for both (i) the numerical estimation of the effects of epistemic uncertainty 
and (ii) the implementation of a variety sensitivity analysis procedures [19-21]. 

Just as expected values, CDFs and CCDFs related to aleatory can be defined as 
indicated in Eqs. (5)-(7), similar quantities can be defined that summarize the effects 
of epistemic uncertainty. Several possibilities exist: (i) epistemic uncertainty in a 
result y(t|a, eM) conditional on a specific realization a of aleatory uncertainty, (ii) 
epistemic uncertainty in an expected value over aleatory uncertainy, and (iii) epistem-
ic uncertainty in the cumulative probability pA[y(t|a, eM)≤y|eA] or exceedance (i.e., 
complementary cumulative) probability pA[y<y(t|a, eM) |eA] for a specific value y of 
an analysis result. 

For a result y(t|a, eM) conditional on a specific realization a of aleatory uncertain-
ty, the expected value, cumulative probability and exceedance probability over epis-
temic uncertainty are given by
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and
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respectively, where (i)  corresponds to the subspace of  that contains only the 
vectors eM and (ii) the vectors eMk are part of the LHS in Eq. (10).

For an expected result EA[y(t|a, eM)|eA] over aleatory uncertainty, the expected 
value, cumulative probability and exceedance probability over epistemic uncertainty 
are defined analogously to the corresponding results in Eqs. (11)-(13). Specifically,
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and
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where, in general, the inner integrals over  will have to be evaluated with some ap-
propriate integration procedure as indicated in Eq. (5).

For a cumulative probability pA[y(t|a, eM)≤y|eA] or an exceedance (i.e., comple-
mentary cumulative) probability pA[y<y(t|a, eM) |eA] over aleatory uncertainty for a 
specific value y of an analysis result, the expected value, cumulative probability and 
exceedance probability over epistemic uncertainty are defined analogously to the 
corresponding results in Eqs.(14)-(16). For example, the expected value and cumula-
tive probability for pA[y<y(t|a, eM)|eA] that derive from epistemic uncertainty are de-
fined by 

         

   
1

| , | | , | d d

| , | d /

E A M A y M A A E

nLHS

y Mk A Ak
k

E p y y t y t d d

y t d nLHS






       

   

 

 

a e e a e a e e

a e a e

E A

A

A E

A
(17)

and



8
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respectively.
The conceptual structure and computational procedures described in this section 

are illustrated in the next section with results from the 2008 YM PA [1].

4 Example: 2008 PA for YM Repository

The individual elements of the sample space  for aleatory uncertainty in the 2008 
YM PA are vectors of the form

, , , , , , , , , , , ,EW ED II IE SG SFnEW nED nII nIE nSG nSF   a a a a a a a (19)

where, for a time interval [a, b] (e.g., [0, 104 yr] or [0, 106 yr]), nEW = number of 
early waste package (WP) failures, nED = number of early drip shield (DS) failures, 
nII = number of igneous intrusive (II) events, nIE = number of igneous eruptive (IE) 
events, nSG = number of seismic ground (SG) motion events, nSF = number of seis-
mic fault (SF) displacement events, aEW = vector defining the nEW early WP failures, 
aED = vector defining the nED early DS failures, aII = vector defining the nII igneous 
intrusive events, aIE = vector defining the nIE igneous eruptive events, aSG = vector 
defining the nSG seismic ground motion events, and  aSF = vector defining the nSF
seismic fault displacement events. The definition of the probability space (, , pA) 
for aleatory uncertainty was completed by defining probability distributions for the 
individual elements of a (see [1], App. J). In the 2008 YM PA, elements of the sam-
ple space  are referred to as scenarios, and elements of the set  are referred to as 
scenario classes. With this usage, scenarios and scenario classes correspond to what
are called elementary events and events, respectively, in the usual terminology of 
probability theory. 

The individual elements of the sample space  for epistemic uncertainty in the 
2008 YM PA are vectors of the form

  1 2 392A M, e ,e ,...,e ,    e e e (20)

where, as examples, the following quantities are elements of e: DSNFMASS = scale 
factor used to characterize uncertainty in radionuclide content of defense spent nucle-
ar fuel; IGRATE = frequency of intersection of the repository footprint by a volcanic 
event (yr1); MICTC99 = groundwater biosphere dose conversion factor (BDCF) for 
99Tc in modern interglacial climate; SCCTHRP = residual stress threshold for stress 
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corrosion cracking nucleation of Alloy 22 (as a percentage of yield strength in MPa);
SZGWSPDM = logarithm of scale factor used to characterize uncertainty in ground-
water specific discharge (dimensionless); and WDGCA22 = temperature dependent 
slope term of Alloy 22 general corrosion rate (K). Distributions characterizing epis-
temic uncertainty were assigned to the individual elements of e and, in effect, defined 
the probability space (, , pE) for epistemic uncertainty. A complete listing of the 
392 elements of e and sources of additional information on these variables and the 
development of their distributions are given in Table K3-3 of Ref. [1].

A very complex system of models was used to predict a large number of time-
dependent results related to evolution of the repository, including (i) the release of 
radionuclides from WPs, (ii) the transport of radionuclides away from the engineered 
component of the repository, and (iii) human exposure to released radionuclides (see 
[1], Table K3-4, for a listing of the analysis results selected for study). An overview 
description of these models and extensive sources of additional information are avail-
able in Ref. [1]. As an example, a high-level overview of the models used in the anal-
ysis of seismic ground motion events is given in Fig. 1. The models indicated in Fig. 1 
correspond to part of what is very simplistically represented by f(t|a, e) in Eq. (4).

Owing to its central role in the NRC’s regulatory requirements for the YM reposi-
tory,

 

 

| , dose (mrem/yr) to the RMEI at time  (yr) conditional on  

and ,  

M

A M

D t t 

 

a e a

e e e

A

E
(21)

will be used as an example to illustrate results of the form indicated in Sect. 3. It is in 
the generation of such results where the challenge of bringing conceptual structure 
and computational implementation together arises. Bluntly put, it is not possible to 
evaluate integrals of the form indicated in Sect. 3 for D(t|a, eM ) defined by modeling 
systems of the complexity shown in Fig. 1 without a carefully designed computational 
strategy that makes efficient use of what will almost always be a limited number of
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Fig. 1. Information transfer between the model components and submodels for the seismic 
scenario class in the 2008 YM PA ([1], Fig. 6.1.4-6).

detailed, mechanistic calculations. Such a strategy will be analysis specific and de-
signed to take advantage of particular properties of the models in use.

A core quantity in the NRC’s regulatory requirements for the YM repository is the 
expected value EA[D(t|a, eM)|eA] of D(t|a, eM) over aleatory uncertainty, with
EA[D(t|a, eM )|eA] being an example of the expected value formally defined in Eq. (5). 
Specifically,
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where the subscripts contained in the set  are used to denote doses to the RMEI from 
individual scenario classes with N designating the scenario class in which no disrup-
tions occur and the remaining subscripts designating scenario classes associated with 
the correspondingly subscripted aleatory occurrences in Eq. (19). Results associated 
with dose DC(t|a, eM) for scenario class C in Eq. (22) are assumed to be calculated 
with only those elements of a and e = [eA, eM] that are related to scenario class C. 
The approximation to EA[D(t|a, eM )|eA] in Eq. (22) can be justified on the basis of 
tradeoffs between the effects of high probability-low consequence scenario classes 
and low probability-high consequence scenario classes.

Epistemic uncertainty is propagated in the 2008 YM PA with an LHS

1 2 392, , ,..., , 1, 2,..., 300,k Ak Mk k k ke e e k nLHS         e e e (23)

from the sample space  for epistemic uncertainty.  In turn, the approximation

   ˆ ˆ| , | | , |A Mk Ak A C Mk AkC
E D t E D t


      a e e a e e

C
(24)

results for each element ek of the LHS in Eq. (23), where ˆ [ ( | , ) | ]A Mk AkE D t a e e and

ˆ [ ( | , ) | ]A C Mk AkE D t a e e denote approximations to [ ( | , ) | ]A Mk AkE D t a e e and

[ ( | , ) | ]A C Mk AkE D t a e e , respectively. Because of the occurrence of the same elements 

of eM in the evaluation of DC(t|a, eM ) for different values of C (i.e., for different sce-
nario classes), it is essential that the doses DC(t|a, eM ) in Eq. (24) be evaluated for the 
same elements of the LHS in Eq. (23) for the indicated approximation to 

[ ( | , ) | ]A Mk AkE D t a e e to be valid. 

As an example, analysis results are presented for seismic ground motion events oc-
curring in the time interval [0, 2104 yr] (i.e., for what is called the seismic ground 
motion scenario class in the 2008 YM PA). This restriction reduces the elements of 
the sample space  for aleatory uncertainty to

1 1 1 2 2 2, , , , , , ,..., , , ,nSG nSG nSGnSG t v A t v A t v A   a (25)

where (i) nSG = number of seismic ground motion events in 20,000 yr, (ii) ti = time 
(yr) of event i, (iii) vi = peak ground velocity (m/s) for event i, (iv) Ai = damaged area 
(m2) on individual WPs for peak ground velocity vi, (v) the occurrence of seismic 
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ground motion events is characterized by a hazard curve for peak ground velocity, 
and (vi) damaged area is characterized by distributions conditional on peak ground 
velocity.

To evaluate results of the form defined in Sect. 3 for the seismic ground motion 
scenario class, it is necessary to integrate the function DSG(t|a, eM) over the sample 
space  for aleatory uncertainty with a defined as indicated in Eq. (25). In full detail, 
DSG(t|a, eM) is defined by the model system shown in Fig. 1. Evaluation of this system 
is too computationally demanding to permit its evaluation 1000’s of times for each 
element ek = [eAk, eMk] of the LHS in Eq. (23). This is a common situation in analyses 
of complex systems, where very detailed physical models are developed which then 
turn out to be too computationally demanding to be naively used in the propagation of 
aleatory uncertainty. In such situations, it is necessary to find ways to efficiently use 
the results of a limited number of model evaluations to predict outcomes for a large 
number of different possible realizations of aleatory uncertainty.

For the seismic ground motion scenario class and the time interval [0, 2104 yr],
the needed computational efficiency was achieved by evaluating DSG(t|a, eMk) at a 
sequence of times (i.e., 100, 1000, 3000, 6000, 12000, 18000 yrs) and for a sequence 
of damaged areas areas (i.e., 108+s(32.6 m2) for s = 1, 2, …, 5 with 32.6 m2  corre-
sponding to the surface area of a WP) at each time (Fig. 2a). This required 65 = 30
evaluations of the system indicated in Fig. 1 for each LHS element in Eq.(23). Once 
obtained, these evaluations can be used with appropriate interpolation and additive 
procedures to evaluate DSG(t|a, eMk) for different values of a for each LHS element ek

= [eAk, eMk].       
The individual CCDFs in Fig. 2b are defined by probabilities of the form shown in 

Eq. (7) with (i) DSG(t|a, eMk) and eAk replacing y(t|a, eM) and eA and (ii) t = 104 yr.
Numerically, the integrals that define exceedance probabilities for the individual 
CCDFs are approximated with (i) random sampling from the possible values for a as 

indicated in Eq. (5) and (ii) estimated values ˆ ( | , )SG j MkD t a e for DSG(t|a, eMk) con-

structed from results of the form shown in Fig. 2a. Specifically,

   
1

ˆˆ | , | | , / ,
nS

A SG Mk Ak y SG j Mk
j

p y D t D t nS


      a e e a e (26)

with the aj, j = 1, 2, …, nS, sampled in consistency with the density function dA(a|
eAk) for vectors of the form shown in Eq. (25). The mean and quantile curves in Fig. 
2b are (i) defined and approximated as indicated in Eqs. (17) and (18) and (ii) provide 
a summary of the epistemic uncertainty present in the estimation of exceedance prob-
abilities (i.e., pA[y < DSG(104|a, eM)|eA]) for DSG(104|a, eM).    

As indicated in Eq. (5), the expected value EA[DSG(t|a, eMk)|eAk] of DSG(t|a, eMk) 
over aleatory uncertainty can also be defined and estimated, with the estimate
ˆ

AE [DSG(t|a, eMk)|eAk] obtained as shown in Eq. (26) with removal of the indicator 

function y . The expected values EA[DSG(t|a, eMk) |eAk] and their corresponding esti-
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Fig. 2. Example results for dose (mrem/yr) to RMEI for seismic ground motion scenario class: 
(a) dose for seismic events occurring at different times and causing different damaged areas on 
WPs ([1], Fig. J8.3-3a), (b) CCDFs for dose at 10,000 yr ([1], Fig. J8.3-10a), (c) CCDF for 
expected dose at 10,000 yr ([1], Fig. J8.3-5c), (d) time-dependent expected dose ([1], Fig. J8.3-
6), (e) stepwise rank regression for expected dose at 10,000 yr ([1], Fig. K7.7.1-2a), and (f) 
time-dependent PRCCs for expected dose ([1], Fig. K7.7.1-1c).  

mates are the result of reducing each CCDF in Fig. 2b to a single number. As indicat-
ed in Eqs. (14)-(16) and illustrated in Fig. 2c, epistemic uncertainty associated
EA[DSG(t|a, eM)|eA] can be summarized by (i) an expected (mean) value EE{EA[DSG      

(t |a, eM)|eA]} over epistemic uncertainty as defined in Eq. (14) , (ii) a CDF as defined 
by the cumulative probabilities in Eq. (15), or (iii) a CCDF as defined by the com-
plementary cumulative probabilities in Eq. (16). The indicated mean defined in Eq. 
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(14) and illustrated in Fig. 2c is the outcome of reducing all the information in Fig. 2b 
to a single number. The approximation process for a CDF also provides the basis for 
obtaining specific quantile values (e.g., q = 0.05, 0.5 ~ median, 0.95) as indicated in 
Fig. 2c.

In the NRC’s regulatory requirements for the YM repository, bounds apply over  
time to expected dose to the RMEI. Thus, the analysis results of greatest interest are 
expected dose and the uncertainty in expected dose as a function of time (Fig. 2d). 
Specifically, expected doses for individual LHS elements correspond to the lighter 
lines in Fig. 2d, and quantile and mean values for expected dose that summarize the 
effects of epistemic uncertainty correspond to the darker dashed and solid lines. The 
results on Fig. 2d at 10,000 years correspond to the results shown in more detail in 
Fig. 2c. For reasons of computational efficiency, the individual expected dose curves 
in Fig. 2d were estimated with a quadrature procedure as described in Sect. J8.3 of 
Ref. [1] rather than with a sampling-based procedure as illustrated in Fig. 2b.

Sensitivity analysis is an important component of the 2008 YM PA and contrib-
utes to an establishment of “reasonable expectation” by supporting a detailed exami-
nation of the operation of the models that predict dose and expected dose to the RMEI 
and many other analysis outcomes of interest. Specifically, sensitivity analysis in the 
2008 YM PA was based on an exploration of the mapping between elements of the 
LHS indicated in Eq. (23) and analysis results of interest (e.g., dose and expected 
dose to the RMEI) with a variety techniques including stepwise rank regression (Fig. 
2e) and time-dependent partial rank correlation coefficients (PRCCs) (Fig. 2f) [19]. In 
stepwise rank regression, variable importance is indicated by the order in which vari-
ables are selected in the stepwise process, the incremental changes in R2 values as 
variables are added to the regression model, and the values of the standardized rank 
regression coefficients (SRRCs) in the regression model. The indicated results with R2

values and SRRCs provide a measure of the amount of epistemic uncertainty in the 
dependent variable under consideration that derives from the epistemic uncertainty in 
individual analysis inputs (i.e., elements of e); in contrast, PRCCs provide a measure 
of the strength of the monotonic relationship between individual epistemically uncer-
tain analysis inputs and the dependent variable under consideration after removal of 
the monotonic effects of all other epistemically uncertain analysis inputs. Definitions 
for selected variables appearing Figs. 2e and 2f are given after Eq. (20).

Additional detailed information on uncertainty and sensitivity analysis for the 
seismic ground motion scenario class in the 2008 YM PA is available in Sects. J8 and 
K7 of Ref. [1]. Included in this material are extensive examples of results conditional 
on individual realizations of aleatory uncertainty as defined in Eqs. (11)-(13).

As indicated in Eq. (22), expected dose results are obtained for individual scenar-
io classes and then summed to determine expected dose over all scenario classes (i.e., 
over all futures as described by the vectors defined in Eq. (19)). The results of this 
summation are shown in Figs. 3a and 3c for the time intervals [0, 2104 yr] and [0, 
106 yr], respectively. The individual expected dose curves in Fig. 3c are not as smooth 
as the individual expected dose curves in Fig. 3a. This difference results because the 
complexity of the calculations for the [0, 106 yr] time interval required the 
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Fig. 3. Expected dose to RMEI: (a, b) Expected dose and associated PRCCs for [0, 2104 yr] 
([1], Fig. K8.1-1[a]) and (c, d) Expected dose and associated PRCCs for [0, 106 yr] ([1], Fig. 
K8.2-1[a]).

use of a sampling-based procedure to approximate expected dose from seismic ground 
motion events (see [1], Sect. J8.4); in contrast, the quadrature procedures used to de-
termine expected dose for the individual scenarios for the [0, 2104 yr] time interval 
resulted in the smoother expected dose curves in Fig. 3a.   

Ultimately, the NRC decided that their expected (i.e., “arithmetic mean”) dose 
requirements of 15 mrem/yr and 100 mrem/yr for the time intervals [0, 104 yr] and 
[104, 106 yr], respectively, applied to the mean (i.e., solid line) doses in Figs. 3a and 
3c (i.e., to results of the form defined in Eq. (14)). However, it is the spread of the 
individual dose curves in Figs. 3a and 3c that provide the NRC requested uncertainty 
information and thus a basis for a “reasonable expectation” that the requirements are 
being met despite the presence of substantial epistemic uncertainty.  Further, sensitivi-
ty analyses of the form illustrated in Figs. 3b and 3d also contribute to “reasonable 
expectation” by enhancing understanding of the overall analysis and thus confidence 
in the numerical implementation of the analysis. Definitions for selected variables 
appearing Figs. 3b and 3d are given after Eq. (20).

Additional detailed information on uncertainty and sensitivity analysis in the 
2008 YM PA is available in Apps. J and K of Ref. [1].



16

5 Concluding Message

Everyone cannot be expected to agree on the details of an analysis of a complex sys-
tem, but everyone should be able to know what those details are. Without such 
knowledge, it is not possible to have informed and meaningful discussions involving 
the views of all parties interested in the analysis.

A necessary starting point for the design, computational implementation and, ulti-
mately, communication of an analysis for a complex system is a clear conceptual 
structure. As described in this presentation, this structure for many, if not most, anal-
yses, can be based on three basic entities: a probability space (,, pA) characterizing 
aleatory uncertainty, a probability space (, , pE) characterizing epistemic uncertain-
ty, and a model that predicts system behavior (i.e., a function f(t|a, e), or more typi-
cally a vector function f(t|a, e), that defines system behavior at time t conditional on 
elements a and e of the sample spaces  and  for aleatory and epistemic uncertain-
ty). As illustrated with results from the 2008 YM PA, this conceptual view of the 
analysis of a complex system provides (i) a way to formally describe that analysis and 
then (ii) a clear path from formal description to computational implementation to 
written documentation.
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