

# Preliminary Analysis of NAPL Behavior in Soil-Heated Vapor Extraction for *In-Situ* Environmental Restoration

RECEIVED  
Stephen W. Webb and James M. Phelan  
Sandia National Laboratories, Albuquerque, NM 87185

OCT 11 1995  
OSTI

*Simulations of soil-heated vapor extraction have been performed to evaluate the NAPL removal performance as a function of borehole vacuum. The possibility of loss of NAPL containment, or NAPL migration into the unheated soil, is also evaluated in the simulations. A practical warning sign indicating migration of NAPL into the unheated zone is discussed.*

Soil-heated vapor extraction is proposed as a process to remove solvents and chemicals from contaminated soils. In this process, the ground is heated electrically, and borehole(s) within the heated zone are maintained at a vacuum to draw air and evaporated contaminants into the borehole and a subsequent treatment facility. Sandia National Laboratories has designed a field demonstration of the process at the Chemical Waste Landfill at Sandia, designated TEVES (Thermal Enhanced Vapor Extraction System), which is currently underway. Additional details are given in [1] and [2].

As part of the evaluation process, detailed two-phase fluid flow and heat transfer simulations have been performed using the single-component NAPL version of the TOUGH2 computer code. The behavior of liquid water and contaminants will be influenced by a number of factors including soil heating rate and local temperature gradients, evaporation rate of the liquid water and contaminants, air flow rate, and borehole (vapor extraction) location(s). If the air flow rate is too small, the heating and evaporation processes may drive the contaminant vapors out of the heated zone and into the cooler unheated soil where they may condense, and contaminant migration into previously uncontaminated areas would occur. Figure 1 shows the general TEVES process setup. In this process, the ground is electrically heated, and borehole(s) within the heated zone are maintained at a vacuum to draw air and evaporated contaminants into the borehole and a subsequent treatment facility. The ground above the heated zone and beyond is insulated to minimize heat loss to the ambient environment. A vapor barrier is used over a yet larger area to provide for a more complete air sweep of the contaminated soil.

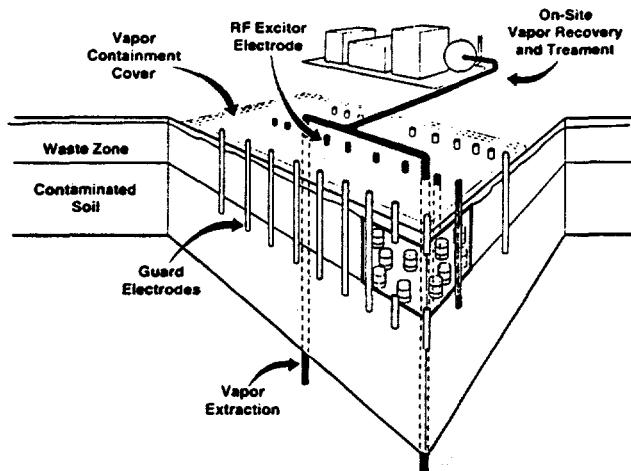
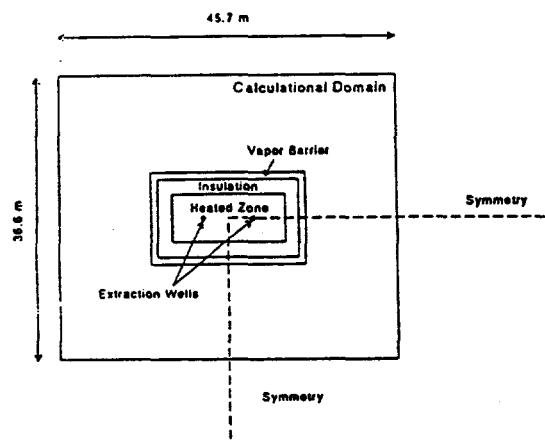
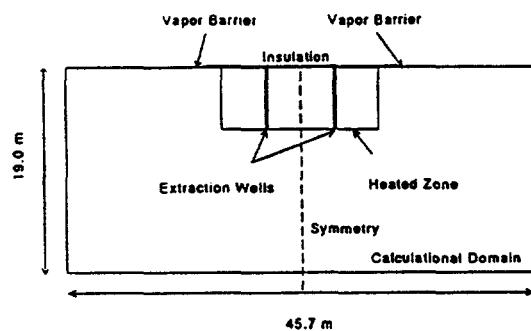



Fig 1 Soil-Heated Vapor Extraction Configuration (TEVES)

## MODEL DEVELOPMENT


Simulations of soil-heated vapor extraction have been performed using a modified version of the TOUGH2 computer code [3]. TOUGH2 simulates fluid flow and heat transport in porous and fractured media including unsaturated conditions. The original TOUGH2 program considers fluid flow and heat transport for water and air. Recent modifications to the code include the capability to simulate a single-component NAPL in addition to the water and air components already present [4], and the addition of a conjugate gradient solver package to improve the numerical performance.

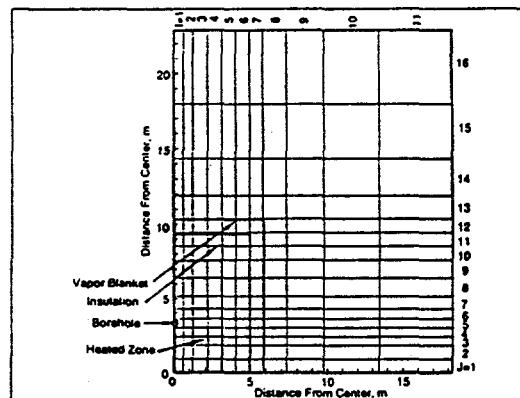
## **DISCLAIMER**


**Portions of this document may be illegible  
in electronic image products. Images are  
produced from the best available original  
document.**

[5]. Test versions of these modifications were provided to the author for testing and evaluation. The assistance and cooperation of Lawrence Berkeley Laboratory in providing these versions is gratefully acknowledged.

The single-component NAPL capability in TOUGH2 is based on the work of Falta, et al. [6,7] and the STMVOC computer program [8]. The formulation is restricted in that the gas and liquid phases can not completely disappear; this effect is noted in the present results. More recently, further improvements have been made in the NAPL simulation capability in the M<sup>2</sup>NOTS code [9] which is an extension of the TOUGH2 code. The multi-component NAPL formulation is planned to be used in future analyses to address multi-component issues.




(a) Top View



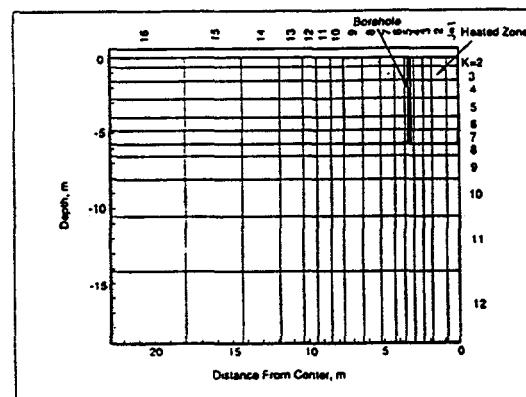

(b) Side View

Fig 2 Conceptual Model

Figure 2 shows the conceptual model of TEVES used for the analysis. A three-dimensional TOUGH2 model with over 2200 elements is employed using quarter symmetry to simplify the model; the nodalization is shown in Figures 3. Vapor extraction occurs through two vapor extraction wells located near the center of the heated zone. The nominal borehole vacuum is 2.5 kPa (10 inches of water). The borehole is modeled as a constant pressure and temperature boundary with no heat transfer between the soil and the borehole. The borehole vacuum is an important parameter, because if the air sweep into the borehole is not sufficient, water vapor and VOCs generated by the heating process could migrate from the heated zone into the unheated soil resulting in a loss of containment.



(a) Top View



(b) Side View

Fig 3 Computer Model Nodalization

Heat is added uniformly to the heated zone at the rate of 100 kW, or a volumetric heating rate of  $190 \text{ W/m}^3$ . If all the heat is assumed to go into evaporation of the initial water in the soil, approximately  $0.044 \text{ kg/s}$  of water vapor would be generated. The vapor barrier is assumed impermeable to flow. The permeability of the soil is assumed to be 50 darcies with a porosity of 0.333 and an initial liquid water saturation of 0.20, less than the liquid residual saturation. An initial  $\text{o-xylene}$  saturation of 0.05 in the entire heated zone is assumed to simulate an initial NAPL inventory. No NAPL is initially present in the unheated zone.

The soil is initially at ambient conditions, and heating and the venting occur simultaneously. As time proceeds, the soil heats up, and liquid water and NAPL are vaporized and generally transported toward the borehole. At 60 days, heating is stopped but venting continues. The soil cools down due to heat losses to the unheated soil and to the atmosphere.

The Parker et al. three-phase characteristic curves [10] have been used, although both liquid phases are initially immobile because the liquid residual saturation is greater than the initial value. Liquid transport only occurs due to evaporation and condensation phenomena, not due to transport of the liquid phase unless evaporation and condensation processes increase the local saturation sufficiently to mobilize the liquid.

The borehole vacuum was decreased from the nominal value of 2.5 kPa until NAPL migrated into the unheated soil surrounding the heated zone, which occurred at a borehole vacuum of 0.5 kPa. Webb[2] presents the results for borehole vacuums of 2.5 kPa and 1.0 kPa. For 0.5 kPa vacuum, the NAPL migration percentage was small compared to the total inventory, and the NAPL quickly re-evaporated and was transported to the vapor extraction location as time went on. Nevertheless, migration into the unheated zone represents a loss of containment of the NAPL within the heated zone.

#### SIMULATION RESULTS

The time variation of the soil temperature in the heated zone out to 60 days is shown in Figure 4 for a 0.5 kPa borehole vacuum; the time variation is very similar to other borehole vacuum cases. After 60 days, the heated zone average temperature is about  $264^\circ\text{C}$  with a range of 137 to  $375^\circ\text{C}$ ; these values are only about 15-20°C higher than for 2.5 kPa vacuum [2] indicating minor heat losses to the air flow through the soil. Top and side-view temperature contours at 60 days are shown in Figure 5.

Figure 6a gives the time variation of the water and NAPL liquid masses in the heated zone. The NAPL mass in the heated zone is mostly gone within about 12 days; for a higher borehole vacuum of 2.5 kPa, the time

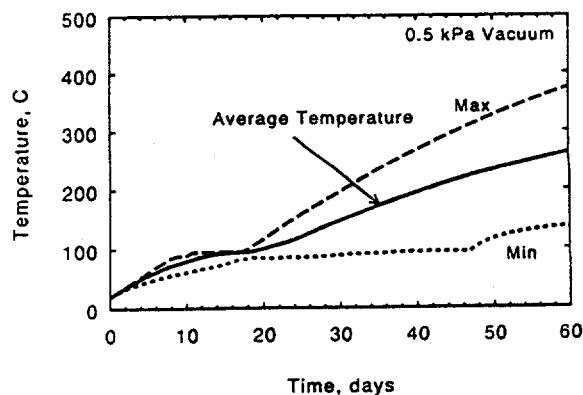
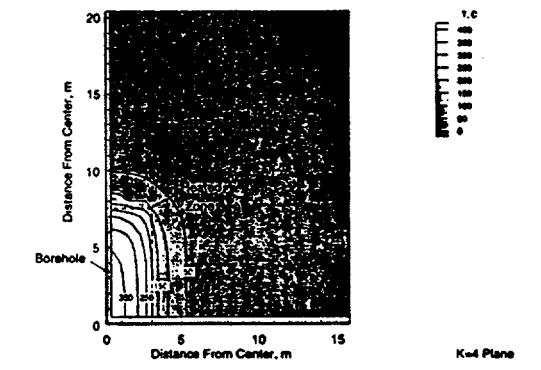
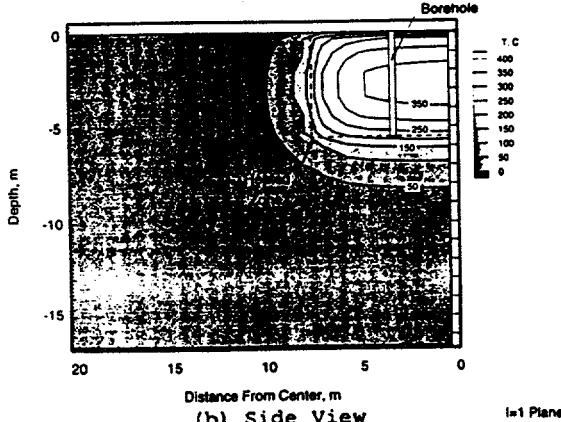





Fig 4 Heated Zone Temperatures



(a) Top View



(b) Side View

Fig 5 Temperature Contours at 60 Days

is about 7 days. The increased time for the lower vacuum is due to the lower air flow rate through the soil. Figure 6b shows the NAPL masses in the heated and unheated soil. At about 14 days, just before the last of the NAPL in the heated zone disappears, NAPL starts to migrate to the unheated soil. The NAPL in the unheated soil continues to increase until about 20 days. After this time, NAPL migration from the heated zone stops, and NAPL in the unheated soil starts to decrease as the unheated soil temperature increases and NAPL evaporates into the air.

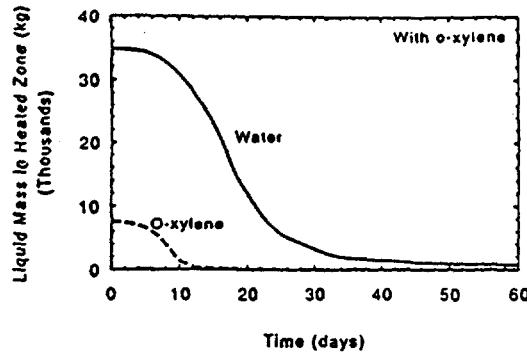



Fig 6a Heated Zone Water and NAPL Masses

flowing through the soil toward the extraction borehole. The maximum NAPL mass in the unheated soil is about 200 kg compared to an initial mass of almost 8000 kg in the heated zone, or less than 3% of the initial mass. While this migrated NAPL is eventually evaporated and transported to the borehole, the migration into the unheated soil represents undesirable contaminant migration caused by insufficient air sweep.

NAPL contours at 8 and 11.6 days are given in Figures 7 and 8, respectively. The

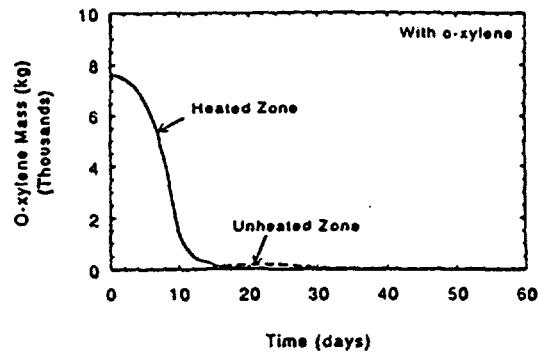



Fig 6b Heated and Unheated Zone NAPL Masses

saturation contours show a zone of NAPL which is left behind on the edges of the heated zone. Transport into the unheated zone is due to evaporation in the heated zone, flow into the unheated soil, and condensation in the cooler unheated soil. Liquid water saturation contours at 30 days, which are not shown, also indicate an insufficient air sweep. Water evaporates in the heated zone and is subsequently transported and condensed in the unheated soil as indicated by liquid saturations higher initial saturations along some of the edges of the heated zone.

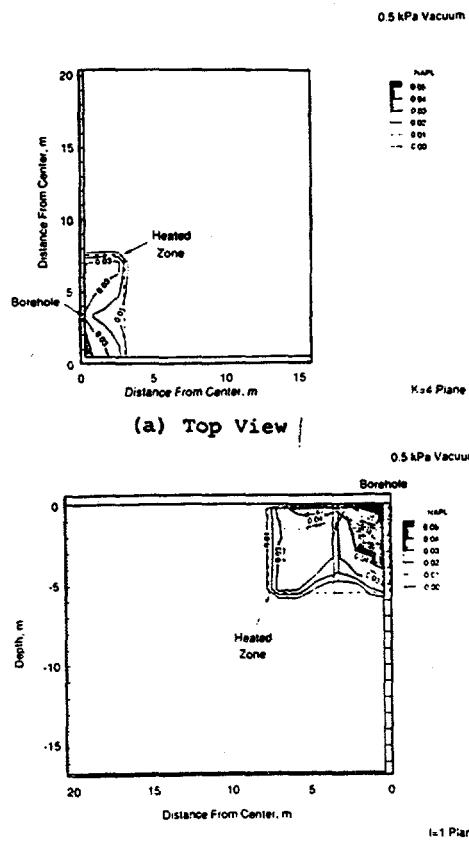



Fig 7 NAPL Contours at 8 Days

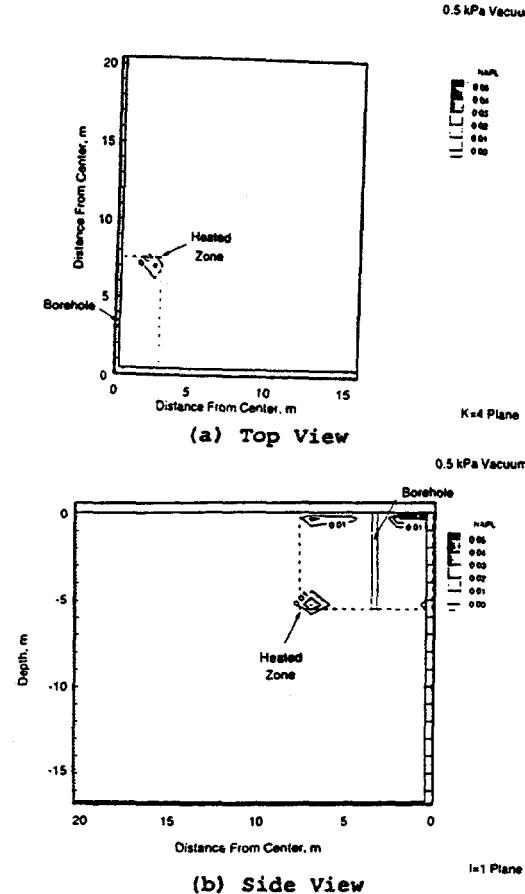
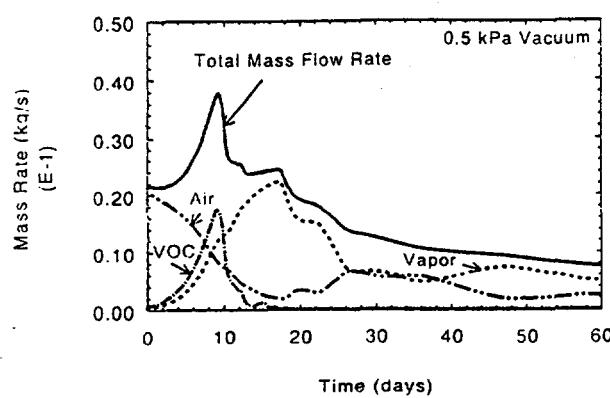
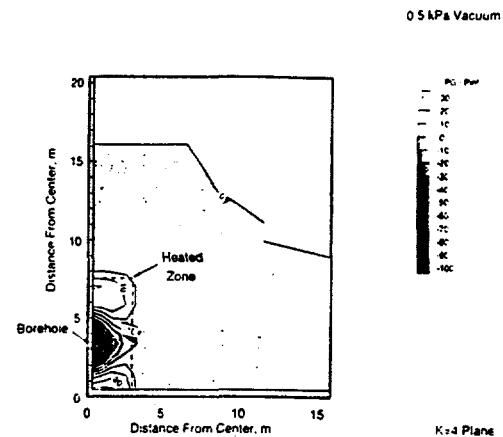



Fig 8 NAPL Contours at 11.6 Days

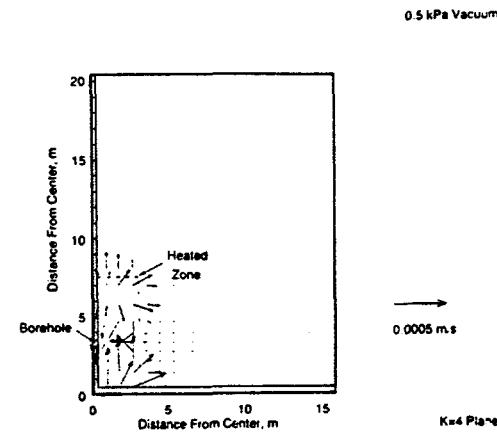
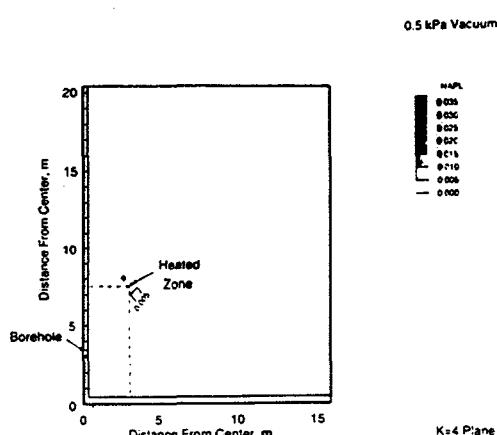


Fig 9 Mass Flow Rates Into the Borehole

Figure 9 shows the various mass flow rates into the borehole. The total mass flow rate into the borehole increases in the early stages of heating due to the evaporation of the NAPL (VOC) component in the heated soil. For much of the simulation, the mass fraction is predominantly vapor. The vapor flow rate into the borehole peaks at a value of about 0.022 kg/s, or about 1/2 of the maximum vapor generation rate given earlier; this value is significantly lower than the 0.032 kg/s rate for 2.5 kPa borehole vacuum. However, the air flow rate into the borehole is dramatically reduced from the 2.5 kPa case, from a peak of 0.094 kg/s to a peak of 0.02 kg/s for 0.5 kPa. The vapor mass fraction into the borehole peaks at about 92% at 15 days, indicating little air flow through the heated zone. For the 0.5 kPa case, the borehole vacuum is not sufficient to capture all the vapor generated, and some vapor flows into the unheated zone where it condenses. Some VOCs also flow along with the water vapor, condensing in the unheated soil. Obviously, a practical warning occurs when the vapor mass flow rate dominates the total mass flow rate into the borehole, indicating insufficient air flow and possible contaminant migration into the unheated soil.


Figure 10 shows details of the NAPL migration into the unheated soil; the results are given for 15 days, which is the maximum rate of NAPL inflow into the unheated zone. Figure 10a shows the pressure difference compared to the far-field value; dark areas indicate gas pressures less than the far-field, while light areas indicate higher gas pressures. At the top of the heated zone, the gas pressure is significantly higher than the far-field value. Figure 10b shows the resulting gas velocity vectors indicating significant gas flow from the heated zone into the unheated soil. As shown in Figure 10c, this region corresponds to NAPL migration into the unheated soil, representing a loss of containment of the NAPL within the heated zone.



(a) Pressure Differential Contours



(b) Gas Velocity Vectors



(c) NAPL Contours

Fig 10 NAPL Migration Details at 15 Days

SUMMARY AND CONCLUSIONS

Detailed simulations have been performed for the soil-heated vapor extraction based on the TEVES Project using the TOUGH2 code considering air, water, and a single-component NAPL. A critical parameter varied in the simulations is the borehole vacuum which directly affects air flow through the system and indirectly influences soil temperatures and water and NAPL fluid masses. Contaminant migration from the heated zone into the unheated soil can occur if the borehole vacuum, or borehole flow rate, is not sufficient. Under these conditions, evaporation of liquids (water and NAPL) due to the heating can cause flow from the heated zone into the unheated soil. Insufficient air sweep may be indicated by a vapor dominated mass flow rate into the borehole, at least for the present configuration. Sufficient air flow through the heated zone must be provided to contain the contaminants within the heated zone.

The above analyses are greatly simplified since they assume homogeneous soil properties and a single-component NAPL. Further investigation into heterogeneity effects including layering and the influence of multicomponent NAPLs on contaminant migration should be performed. In this case, gas diffusion processes may dominate transport as discussed by Ho and Udell [11].

ACKNOWLEDGMENT

This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000.

REFERENCES

1. Phelan, J.M., and S.W. Webb, "Thermal Enhanced Vapor Extraction Systems - Design, Application, and Performance Prediction Including Contaminant Behavior," 33rd Hanford Symposium on Health and the Environment (1994).
2. Webb, S.W. (in review), *TOUGH2 Simulations of the TEVES Project Including the Behavior of a Single-Component NAPL*, SAND94-1639, Sandia National Laboratories.
3. Pruess, K., *TOUGH2 - A General-Purpose Numerical Simulator for Multiphase Fluid and Heat Flow*, LBL-29400, Lawrence Berkeley Laboratory (1991).
4. Finsterle, S. and K. Pruess, *T2VOC, a 3-phase Water/Air/NAPL Module for TOUGH2*, Version 0.5, Lawrence Berkeley Laboratory (1993).
5. Moridis, G.J., and K. Pruess, *TOUGH2 Conjugate Gradient Package*, Lawrence Berkeley Laboratory (1993).
6. Falta, R.W., K. Pruess, I. Javandel, and P.A. Witherspoon, "Numerical Modeling of Steam Injection for the Removal of Nonaqueous Liquids From the Subsurface, 1. Numerical Formulation," *Water Resour. Res.*, Vol. 28, No. 2, pp. 433-449 (1992).
7. Falta, R.W., K. Pruess, I. Javandel, and P.A. Witherspoon, "Numerical Modeling of Steam Injection for the Removal of Nonaqueous Liquids From the Subsurface, 2. Code Validation and Approximation," *Water Resour. Res.*, Vol. 28, No. 2, pp. 451-465 (1992).
8. Falta, R.W., and K. Pruess, *STMVOC User's Guide*, Lawrence Berkeley Laboratory, LBL-30758 (1991).
9. Adenekan, A.E., T.W. Patzek, and K. Pruess, "Modeling of Multiphase Transport of Multicomponent Organic Compounds and Heat in the Subsurface: Numerical Model Formulation," *Water Resour. Res.*, Vol. 29, No. 11, pp. 3727-3740 (1993).
10. Parker, J.C., R.J. Lenhard, and T. Kuppusamy, "A Parametric Model for Constitutive Properties Regarding Multiphase Flow in Porous Media," *Water Resour. Res.*, Vol. 23, No. 4, pp. 618-624 (1987).
11. Ho, C.K., and K.S. Udell, "An experimental investigation of air venting of volatile liquid hydrocarbon mixtures from homogeneous and heterogeneous porous media," *J. Contaminant Hydrology*, Vol. 11, pp. 291-316 (1992).

**DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

# Heat Transfer - Portland 1995

***Elmer L. Gaden, Jr., Series Editor***

***Mohamed S. El-Genk, Volume Editor***

S.I. Abdel-Khalik  
Samim Anghaie  
J. Apps  
John C. Bass  
A.G. Belonogov  
James I. Bennetch  
S. Benson  
J.H. Bentz  
N. Brown  
Ralph Budwig  
K.A. Burrill  
Thomas E. Carleson  
E.L. Cheluget  
Gary Chen  
T.Y. Chu  
Jacob N. Chung  
S.H. Conrad  
Michael L. Corradini  
Allen Crabtree  
C.T. Crowe  
Christopher J. Crowley  
J.C. Cunningham  
J. Daisey  
Hugo C. Da Silva  
P.B. Davies  
Zhongtao Ding  
K.J. DeWitt  
V.K. Dhir  
Brian D. Donovan  
Rod W. Douglass

M.F. Dowling  
Harry A. Dwyer  
Mohamed S. El-Genk  
S.M. El-Haggar  
Richard Ewell  
Ronald W. Falta  
Dave Felde  
S. Finsterle  
Jean-Pierre Fleurial  
J.C. Fountain  
Geoffrey A. Freeze  
Alexander G. Glebov  
V. Georgevich  
R.J. Glass  
L. Gold  
Michael T. Goodrich  
E.F. Goodwin  
Y.A. Hassan  
R.C. Haberstroh  
Russell Hewett  
L.E. Hochreiter  
Clifford K. Ho  
J. Hougland  
M.L. Howard  
Joseph F. Ivanenok, III  
R.E. Jackson  
J. Jaroszewicz  
S.M. Jeter  
Sudhakar Katamneni  
Yehia F. Khalil

S.H. Kim  
V.M. Kiseev  
P.E. Ksiazek  
Kurt W. Larson  
Hylan B. Lyon  
J. Macfarlane  
Tom Mahefkey  
Jon Martinez  
James G. Maveety  
Malachy McAlonan  
James T. McCord  
John E. McCray  
Jacob L. Melnik  
William R. Menchen  
G.J. Moridis  
N. Muolo  
R. Nabbi  
S. Navarro-Valenti  
G.J. Neises  
D.H. Nguyen  
Hoa D. Nguyen  
V.A. Nouroutdinov  
C. Oldenburg  
James Y. Oldshue  
D.L.R. Oliver  
James E. Pacheco  
Seungho Paik  
M.T. Pauken  
P. Persoff  
James M. Phelan

N.P. Pogorelov  
G.A. Pope  
K. Pruess  
Mysore L. Ramalingam  
Robert L. Rasnic  
X.B. Reed, Jr  
W.D. Schmidl  
Raymond E. Schneider  
L. Schor  
Nimesh Y. Shah  
Robert K. Sievers  
R.B. Simpson  
G. Son  
Andre T. Spears  
Therese K. Stovall  
R.P. Taleyarkhan  
Ali Tajbakhsh  
Scott K. Thomas  
Jean-Michel Tournier  
Ali Uludogan  
Jan W. Vandersande  
E.K. Webb  
Stephen W. Webb  
Paul J. Wirsch  
Scott K. Wold  
J. Wolters  
Y.H. Yang  
Jim T.C. Yeh  
W.S. Yeung

## AIChE Staff

Maura N. Mullen, Managing Editor; Julie A. McBride, Editorial Assistant  
Cover Design: Joseph A. Roseti

Inquiries regarding the publication of Symposium Series volumes should be directed to

Mark Rosenzweig, Editor-in-Chief  
American Institute of Chemical Engineers,  
345 E. 47 Street, New York, N.Y. 10017  
(212) 705-7576 • FAX (212) 705-7812

AIChE Symposium Series

Number 306

1995

Volume 91

Published by

American Institute of Chemical Engineers

345 E 47 Street

New York, New York 10017