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| 2\ Conventional Transportation Fuels Contain
7 Wide Distributions of Hydrocarbon Classes, Species
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Gasoline Fuel

Appropriate (high) octane number
Short-chain alkanes
Highly branched species

Some aromatics

Diesel Fuel
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Appropriate cetane number
Long-chain alkanes
Limited branched species

Some aromatics

EtOH, Methyl Esters Impose Blending Limits for
Practical Engines, Fuel-Transport Infrastructure

Comparison of Alcohol Properties to Gasoline

Fuel Energy Content | Octane Number |Viscosity (15 °C)
(MJ - L) (MON) (mPa - s)
Gasoline 32.0 84 -93 0.700

~Non

N o

Comparison of Biodiesel Properties to Diesel

Density Viscosity
Fuel (g - mL-") Cetane Number (mPa - s)
Diesel 0.85 40 - 55 1.3-41

Peralta-Yahya et al.
Nature, 2012
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A\ “Ideal” Biofuels Share Similar Fuel Properties with
CKREL Conventional Hydrocarbons

Gasoline Fuel =
» Appropriate (high) octane number

» Short-chain alkanes

« Highly branched species

 Some aromatics

|deal Biofuel Target:
Diesel Fuel Biofuels with properties similar to
« Appropriate cetane number

« Long-chain alkanes = petroleum-based fuels for all

» Limited branched species engines types
+ Some aromatics

Jet Fuel

* Long-chain alkanes

« Limited branched species
* Some aromatics e
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2\ Targeted Biofuel Production using Microbial Synthesis

Pathway and host Simple Sugars
optimization

!

Acetyl CoA (Enzyme)

Bacterium

Feedstock q Feedstock
: A\
Conversion Mevalonate Pathway
of feedstock
to fuel 7
\4
K I
N ~ Advanced | |
hei biofuel X X NN N N
ibei o]
Jount BioLucigy Iostoute Farnesyl Pyrophosphate

(Precoursor for Biofuel Production)

Peralta-Yahya, Zhang, del Cardayre, and Keasling, (2012).
Microbial engineering for the production of advanced biofuels. Nature, 488, 320.
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Microbial Production of Biofuel Provides Some
Control Over Fuel Structure

CRE.

Sesquiterpenes Production using S. cerevisiae Production using E. coli

Farnesene 2 yg/L 240 mg/L

Curcumene Not detected 130 pg/L

Cadinene 3.6 mg/L 10.3 ug/L

Amorphadiene 120mg/L 20 g/L

Peralta-Yahya et al.
Nature Communications, 2011

Joimt BicLEnergy Tnsttute

4

,

bisabolene syntha

"}da'jbne
Wﬂsﬂ'
. vetispiradiene synthase MM@P aristolochene synthase
H ) Farnesyl pyrophosphate ] :
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Sesquiterpenes

Production using S. cerevisiae

=z, Selected Biosynthetic Pathway Leads to
‘_ K. Diesel-like Fuel Molecule

Production using E. coli

3.6 mglL 103 giL

Amorphadiene

120mg/L

Peralta-Yahya et al.
Nature Communications, 2011

ibei

Joimt BicLEnergy Tnsttute
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Bisabolene (C,sH,,)

bisabolene syntha

A A A

Farnesyl pyrophosphate
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| N\ Microbially-Derived Sesquiterpenoid Biofuel Produced

7 with Structural Characteristics of Diesel

Micro-organism
Bisabolene (C,5H,,)

XN G

Chemical
Hydrogenation

AgBIS
(Bisabolene Synthase)

A

Biosynthetic Alternative
to D2 Diesel Fuel

Bisabolane (C,sH,,)

Peralta-Yahya, Zhang, del Cardayre, and Keasling, (2012).
Microbial engineering for the production of advanced biofuels. Nature, 488, 320.
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| 2\ Physical Properties of Bisabolane
~*  Compatible with Conventional Diesel Fuel

Properties D2 Diesel Biodiesel H’g‘;’;’gsﬁ; t:d
Density (g/ml) 0.85 0.88 0.82

API Gravity 35 29.3 41.1
Flash point (°C) 60-80 100-170 111
Viscosity (mm?°/s) 1.3-4.1 4.0-6.0 2.91
Boiling point (°C) 180-340 315-350 267
Cloud point (°C) -35t0 5 -3to 15 <-78
Cetane number 40-55 48-65 41.9

Peralta-Yahya et al.
Nature Communications, 2011

Bisabolane (C,sH,,)
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LA Component-Centered Approach Towards Oxidation

~  Studies on Microbially-Derived Bisabolane

Target Molecule

Bisabolane (C,sH,,)

Component System 1 Component System 2
2,5-dimethylhexane MCH Limonane

General Objectives
1.  Characterize low-temperature RO,-related oxidation mechanisms of sub-systems
2. Quantum chemical, ab initio calculations (PES, rate coefficients)
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A Component-Centered Approach Towards Oxidation

~  Studies on Microbially-Derived Bisabolane

Target Molecule

Bisabolane (C,sH,,)

Component System 1

2,5-dimethylhexane

General Objectives
1.  Characterize low-temperature RO,-related oxidation mechanisms of sub-systems
2. Quantum chemical, ab initio calculations (PES, rate coefficients)
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A' . Knowledge of Initial Low-Temperature Oxidation Steps
~  of Biofuels Critical to Advanced-Engine Development

RH

\L Gasoline Engine

(Spark Ignition)

spark plug

R — Olefin+ R’

0. §

Olefin + HO,

@ ROO-
|
& y
E’_ .QOOH Cyclic Ether + OH
g 02 ¢ I Hot-Flame Region:
= N -0oqooH
\L B-Scission Products + OH —

Ketohydroperoxide + OH

|

Low-Temperature Branching

Diesel Engine
(Compression Ignition)

fuel injector

HCCl Engine

(Homogeneous Charge
Compression Ignition)

Hot-Flame Region: Low-Temperature Combustion:

NOx & Soot Ultra-Low Emissions (< 1900K)

Direct probing of intermediates
related to R + O,
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Ion Signal (a.u.)

2

Probing of Molecular Beams

High-Resolution
Mass Spectra
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Time-Dependent
Chemical Kinetics
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Experimental and Computational Methods
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V2
WA Experimental Setup/Conditions:
CRE.

Cl-Initiated Oxidation, MBMS Detection

| Time-Sensitive
MCP Detector
Excimer
Photolysis
Tunable |
vms | Lt
N =Lt
5 T
) Hi=:=
f > Orthogonal ToF
Reactants % | I I I I e
Advanced Light Source 3
Synchrotron o )
(—__V \—— Reactor Exit
Species Number Density (molecules/cm3) Mole Fraction
2,5-dimethylhexane |1.3-10'4 0.001
0, 2.8-1016 0.219
cl, 1.4-10" 0.001
Cl (Photolyzed CL,) |2.1-10"2 -
He 1.1-10"7 (550 K) /8.5-1016 (650 K) 0.779
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| N\ Initial Alkyl Radicals Generated using Photolyzed Cl,

+ ClI + CJ

N |
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A Experimental Conditions Favor R + O,

Products Products Products
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2\ Computational Methods
CRE.

Cationic State

Energy

Neutral State

>

Interatomic Distance

Computational Objectives —
1. Electronic transition intensities
2. PES (stationary points)

= 2,5-dimethyl-1-hexyl + O, }

= 2,5-dimethyl-2-hexyl + O,
= 2,5-dimethyl-3-hexyl + O,

16 cyclic ether channels, 11 products
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Organization of Results

(1) HO,-elimination channel, species fractional yield quantification
(2) Analysis of cyclic ether formation channels
(3) Evidence of ‘other’ channels (unimolecular QOOH decomposition)

(4) Role of primary radicals in cyclic ether formation
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CRE.

Results (1): HO,-Elimination Channel,
Species Fractional Yield Quantification
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Direct Measurement of HO,-Elimination Channel

R
0, ¢
Olefin + HO,
@ ROO-
=
£ 0
@ QOOH
(o}
=
Q
-
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N HO,-Elimination Co-Products of R + O,
CRF

N N

0, l v+02
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N Separate Experiments Conducted to

7 Determine Branching Ratios

60

m/z 112
550 K

50 1
~ 40 -
= Integrated Ion Signal
<
T 304 &
en
% __ Unknown, temperature-dependent
=) . . . . .
S 204 contributions to integrated ion signal

10
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A\ Isomeric Contributions Quantified using

CKE Absolute Photoionization Cross-Sections
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| 2\ Temperature-Dependent Branching Ratios of
7 HO,-Elimination Yields

60

T 550 K )\/\(

40

30

Ion Signal (a.u.)

20
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~ 7
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| A\ Temperature-Dependent Branching Ratios of

7 HO,-Elimination Yields

60

o 550 K )\/\( )\/Y

40

30

Ion Signal (a.u.)

20

10

0 T ! T T T 'xl T T T T T T T
82 84 | 86 88 |90 92 94 9.6 98
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8.45 eV
8.87 eV
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| 2\ Temperature-Dependent Branching Ratios of
7 HO,-Elimination Yields

T 550 K /AA( )\A( )W

Isomers of m/z 112

Isomer-specific contributions quantified using
results from separate measurements of absolute

B
=
=
=)
2D
N
a
=
10-
0' L -_'Q photoionization cross-sections J; (E) for each
27 84 86 88 90 92 94 96 og species and application of fitting routine:

Photon Energy (eV)

N
Smyz(E) = ZAiUi(E)
lon Signal Definition: l

Si(E) = Ao ;(E)c;a; >— For known g;(E), ion signals OC concentration ¢;

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



Eﬁ:‘
2\

Ion Signal (a.u.)

CRL.

60

m/z 112
Correlation Function 5 5 0 K
50
40 -
304
20 -
104
0 —_—— T T T T
82 84 86 88 90 92 94 96 98

Photon Energy (eV)

Alkene

2,5-dimethyl-1-hexene
2,5-dimethyl-2-hexene
2,5-dimethyl-3-hexene

Ion Signal (a.u.)

‘ Temperature-Dependent Branching Ratios of
“ Alkenes from HO,-Elimination

m/z 112
Correlation Function 650 K
54
4 -
3
2
14
0 T | T T ——I-/-/—— /-I T T T T T T T
82 84 86 88 90 92 94 96 938
Photon Energy (eV)
550 K 650 K
30% 47%
32% 33%
38% 19%
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42

44

56

58

68

72

98

112

128

propene

acetaldehyde
vinyl alcohol

iso-butene

acetone
methyloxirane

isoprene
methyl-propanal
5-methyl-2-hexene
2,5-dimethyl-1-hexene
2,5-dimethyl-2-hexene

2,5-dimethyl-3-hexene

2,2,5,5-tetramethyl-THF

550 K
0.10

0.04
0.02

1.05

0.49
0.21

0.01

1.46

0.00

1.00

1.13

1.16

73.69

650 K
0.38

0.02
0.01

0.88

0.21
0.00

0.01

0.58

0.07

Quantification of Fractional Yields of Products

Fractional yields defined relative to
= formation of HO,-elimination co-product
2,5-dimethyl-1-hexene:

[Species i]
[2,5—dimethyl—1—hexene]

Fractional Yield =

1.00 <~
0.71

0.41

12.91

COMBUSTION RESEARCH FACILITY
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Results (2): Cyclic Ether Formation
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Direct Measurement of OH-Loss Channel

-QOOH ——> Cyclic Ether + OH

o
—
-
wid
©
—
Q
Q
£
o
-
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| %F OH-Loss Co-Products from QOOH Species

l? . l +Cl )\?/ +Cl
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A\ Cyclic Ether Formation from O,-Addition to Tertiary R

7

0
0
P A
+ OH + OH
+ OH
Channel 1
Channelz\ /Channel 3
[ ] + 02
Ahannel 5 ) Channel4\
o
N

+ OH

+ OH
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| %F Cyclic Ether Formation: 2,2,5,5-tetramethyl-THF

+0,

Channel4\

X

+ OH
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N Stationary Points: 2,5-dimethyl-2-hexyl + O,
~7  Calculated at CBS-QB3 Level

TS5 TSI10 3 s
TS8  TS6 207 -10.4 2
TSI 92 46 TSil 17 4
7.4 TS7 TS2 R+ 02 TS15 on
0+ - TS9 TS3 -32
~ -1 9.5 < TS13 QOOH
ho 5.7 I
= ? -7 A -8.7
g 136
~ H02+
= -20 — X \\\
ﬁ A QOOH-2  -18.1 Voo
= 22.7 \ =
> +OH -25.2 \ +OH
)
= -38.0 QOOH-3 TS12 k
o -40 4 , , \ 424
& 0 . 204 i?og i‘;‘; 244 -18.0 :
= >A\/]\+OH | | | %
QOOH-5 . ><>—<+ OH
-60 - . -18.3 -61.5
3
+ OH

2,5-dimethyl-2-hexyl % OH
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% °
Cyclic Ether Channel
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=
g 061 550K T
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+0, —>»

Significance of 2,2,5,5-tetramethyl-THF to

10.5

1.2
1.0_- Cyclic Ether
Ion Signall
—~ 0.8
=
=
g 067 650K T
= ]
0.2 1
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Significance of 2,2,5,5-tetramethyl-THF to

7 Cyclic Ether Channel

5SS0 K

Cyclic Ether
Ion Signall
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~ 0.8
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N
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.20
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Photon Energy (eV)

10.5

1.2

1.0 1
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0.6

0.4+

Ion Signal (a.u.)

0.2

650 K

Cyclic Ether
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O
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Photon Energy (eV)
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& { 550K
gﬁ 0.4 I _
n ] ' cyclic ether + OH
5 ﬂ —m=— HO_-elimination
= 0.2 ; 2 _
5
L
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00 I T I T I T I
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40
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Results (3): Other Channels

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



B-Scission Products of QOOH Species

B-Scission Products + OH
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| //\% lon Signal (m/z 58): Acetone )

[¢]
1 550 K )j\
50+
~ 40
= ] ——m/z58
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0.05 I v Correlation Function
le————C,H,O 8 204 0
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/ 140

(o]
1T X 10
120 j\
| 5
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: :
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FractionalYield (550 K) = 1.46

o
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Comparison of m/z 58, 72 Time Histories to
Cyclic Ether and HO,-Elimination

1.0 =
—~ 0.8+ m
F] E
8 N
E S
g 0.6- £ 0.6 .
o o
Z &
g 041 Téo 0.4+ -
'fé — = acetone/methyloxirane 72 - —=— acetone/methyloxirane
= oo B metl.lyl-propanal § 02 & —=— methyl-propanal -
cyclic ether + OH | E cyclic ether + OH
& —#— HO,-elimination 1 * —=— HO,-elimination
- " I
0.0 —4= T T T T T T T 0.0 —F T T T T T T T
0 10 20 30 40 0 5 10 15 20
Kinetic Time (ms) Kinetic Time (ms)
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Stationary Points: 2,5-dimethyl-3-hexyl + O,

TS15 TS9 TS7 TS3
g0 -7.9 -10.0 -88 TSI4

-12.7
TS10
R+0
132 | TS4 ? T45913
TSIl
= ] 7 +HO
g 156
~
—~ =204
8 N +HO |
> | \
o0 X
5 40— ROO  ROO
= + OH A 9 247 QOOH-2 355 352 812
A N\ 444 | ] 21 0
: 1270\ e
l ﬁ/Aw/ 484 >—<><+OH
-60 - +oH | . 576
+ + OH
2,5-dimethyl-3-hexyl
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Results (4): Role of Primary Radicals
in Cyclic Ether Formation
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30
% 20 -
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Ei
) Reaction 1A
5,3 104 React%on 1B
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- Reaction 3B
O ]
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| %F Stationary Points: 2,5-dimethyl-1-hexyl + O,

=
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©
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en
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-4.3 TS16 4.9 TS3
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M

2,5-dimethyl-1-hexyl

TS10

TS5 1.9

-17.6

QOOH-3
-22.7

<
N
+CH,0 + OH
+OH

TS14

5
N Tsi2
4N 159

-354

.....

QOOH-5 .
23.0 65ili;}/
+OH

Energy barriers to m/z 98 alkene formation from QOOH

lie above entrance channel for R + O,
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2N\ -Scission Species Identified
cre P P m
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Role of Primary Alkyl Radicals in Forming
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Concluding Remarks

Bisabolane (C;cH;,) 2,5-dimethylhexane MCH
Target Fuel Component Analogs

e RO,-related oxidation of 2,5-dimethylhexane studied at 550 K, 650 K

Branching ratios of HO2-elimination pathways determined

Formation of 2,2,5,5-tetramethyl-THF potentially vital to low-temperature
oxidation modeling of 2,5-dimethylhexane

Isomerization of primary alkyl to tertiary alkyl energetically favored over
unimolecular decomposition

Relevance of concerted QOOH decomposition

Potential energy surfaces calculated for R + O, reactions

e Ongoing work

(1) time-dependent OH- and HO,-yield measurements of 2,5-dimethylhexane + O,

(2) characterization of MCH oxidation

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



ENERGY RESEARCH CENTER

*H % R 8 REIREE I

@ Sandia National Laboratories UNIVERSITY OF MICHIGAN ]bel

Joimt BioEnergy Institute

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the NNSA under contract DE-AC04-94AL85000

Funded by U.S.-China Clean Energy Research Center for Clean Vehicles

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories


http://www.jbei.org/index.shtml

Vol
N Joint Synthesis-Experimental-Computational Effort
7 Towards Complex-Biofuel Oxidation Studies

H icellul 1.4 um (HO,) Diode Laser Sign
emicellulose Micro-organism 57 g,
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Molecular Beam
Mass Spectrometry (MBMS) Nd: YAG Laser (266/355nm)

Biofuel

Energy (keal /mol)

(Bisabolene Synthase)

Joint BioEnergy Institute (JBEI): > Sandia National Laboratories,
Synthesis of Advanced Biofuels University of Michigan:

A Fundamental Oxidation Measuremeﬁts,
ab initio Calculations

Direct Feedback of Experimental Results
Supports Further Development of Advanced Biofuels
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¢ Overview of Species Detected in Mass Spectra

2

m/z  Linear Formula 550 K 650 K

126 CgH,,0O (unidentified) (unidentified)

112 CgHyg 2,5-dimethyl-1-hexene 2,5-dimethyl-1-hexene Alkene
2,5-dimethyl-2-hexene 2,5-dimethyl-2-hexene (HO,-
2 5-dimethyl-3-hexene 2 5-dimethyl-3-hexene Elimination)

104 C,HgO; (minor) (unidentified) (unidentified)

98 C,Hy, - 5-methyl-2-hexene Alkene

90 C5HgO4 (minor) (unidentified) (unidentified)

86 CsH,,0 (unidentified) (unidentified)

84 CsHgO (unidentified) (unidentified)

72 C,HgO methyl-propanal methyl-propanal Aldehyde

70 CsHy, (unidentified) (unidentified)

68 CsHg isoprene isoprene Diene

58 C;HgO acetone acetone Ketone
methyloxirane -

56 C,Hg iso-butene iso-butene Alkene

44 C,H,O acetaldehyde acetaldehyde Aldehyde
vinyl alcohol vinyl alcohol Alcohol

42 CsHg propene propene Alkene
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550 K 650 K

42  propene 0.10 0.38
44  acetaldehyde 0.04 0.02
vinyl alcohol 0.02 0.01

56  iso-butene 1.05 0.88
58 acetone 0.49 0.21
methyloxirane 0.21 0.00
68 isoprene 0.01 0.01
72  methyl-propanal 1.46 0.58
98 5-methyl-2-hexene 0.00 0.07
112 2,5-dimethyl-1-hexene 1.00 1.00
2,5-dimethyl-2-hexene 1.13 0.71
2,5-dimethyl-3-hexene 1.16 0.41

128 2,2,5,5-tetramethyl-THF  73.69 12.91

Quantification of Fractional Yields of Products

lon Signal:
Si(E) = Ao(E)cia

Absolute Photoionization Cross-Section:

SiB) \ (e \( m \'O
O'E(E) = Jref.(E) (Sref(E)) (Cref.) (mref_)

y(P,T) )

C imf(P’T)

o;(E) = Si(E) (
Fitting Coefficients:
N
S(E) = ) Aioi(E)

Fractional Yield:

B ( A; ) ( m; )ﬁ(P:r)
P AZ,S—dimethyl—l—hexene 112.125
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HO,-Elimination Co-Products of R + O,

@»ﬁ

e WA
| o l " e

8.91 eV 8.56 eV 8.88 eV

CBS-QB3-Calculated Adiabatic lonization Energies
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A\ OH-Loss Co-Products from QOOH Species

N |

+0 +0,

2 +O
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9.56 eV

9.11 eV / \A(
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0. 15 eV :/\ :
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2\ Daughter lon Measurements Support Quantification

1.2
m/z 113
Daughter Ion (2,2,5,5-tetramethyl-tetrahydrofuran)
1.0+
=)
g
= 0.8-
E
o
& 067 550K
Té 1 0.10
5 i .
204
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0.2 1
0.00
8.8
0.0 —

Photon Energy (eV)

Normalized m/z 113 daughter ion signals
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1.2
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10
0.8-
0.6-
0.4

0.2 1

m/z 113 Daughter Ion Signal —>
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Scaled m/z 113 daughter ion signals
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2\ Daughter lon Signals Indicate Potential for Other
7 Cyclic Ethers Formed by QOOH Decomposition

’
i
k//

m/z 85 m/z 113

Daughter lon Daughter Ion/(&<

Photon Energy (ev)
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OH-, HO,-Loss Channels of Methylcyclohexane




