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Gasoline Fuel
• Appropriate (high) octane number
• Short-chain alkanes
• Highly branched species
• Some aromatics

Jet Fuel
• Long-chain alkanes
• Limited branched species
• Some aromatics

Diesel Fuel
• Appropriate cetane number
• Long-chain alkanes
• Limited branched species
• Some aromatics

Conventional Transportation Fuels Contain 
Wide Distributions of Hydrocarbon Classes, Species
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Gasoline Fuel
• Appropriate (high) octane number
• Short-chain alkanes
• Highly branched species
• Some aromatics

Jet Fuel
• Long-chain alkanes
• Limited branched species
• Some aromatics

Diesel Fuel
• Appropriate cetane number
• Long-chain alkanes
• Limited branched species
• Some aromatics

EtOH, Methyl Esters Impose Blending Limits for 
Practical Engines, Fuel-Transport Infrastructure

Comparison of Alcohol Properties to Gasoline

Comparison of Biodiesel Properties to Diesel

Peralta-Yahya et al.          
Nature, 2012

Fuel
Energy Content 

(MJ  L–1)
Octane Number 

(MON)
Viscosity (15 °C)      

(mPa  s)

Gasoline 32.0 84 – 93 0.700

Ethanol 19.6 102 1.337

1–Butanol 29.2 78 3.515

Fuel
Density             

(g  mL–1)
Cetane Number

Viscosity      
(mPa  s)

Diesel 0.85 40 – 55 1.3 – 4.1 

Biodiesel 0.88 48 – 65 4.0 – 6.0 



Gasoline Fuel
• Appropriate (high) octane number
• Short-chain alkanes
• Highly branched species
• Some aromatics

Jet Fuel
• Long-chain alkanes
• Limited branched species
• Some aromatics

Diesel Fuel
• Appropriate cetane number
• Long-chain alkanes
• Limited branched species
• Some aromatics

“Ideal” Biofuels Share Similar Fuel Properties with 
Conventional Hydrocarbons

Ideal Biofuel Target: 

Biofuels with properties similar to 
petroleum-based fuels for all 
engines types



Acetyl CoA (Enzyme)

Simple Sugars

Mevalonate Pathway

Farnesyl Pyrophosphate

(Precursor for Biofuel Production)

Peralta-Yahya, Zhang, del Cardayre, and Keasling, (2012). 
Microbial engineering for the production of advanced biofuels. Nature, 488, 320. 

Targeted Biofuel Production using Microbial Synthesis
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Microbial Production of Biofuel Provides Some 
Control Over Fuel Structure 

Sesquiterpenes Production using S. cerevisiae Production using E. coli

Farnesene 2 µg/L 240 mg/L

Bisabolene 150 µg/L 517 mg/L

Curcumene Not detected 130 µg/L

Vetispiradiene 300 µg/L 73 mg/L

Cadinene 3.6 mg/L 10.3 µg/L

Aristolochene 190 µg/L 33 mg/L

Amorphadiene 120mg/L 20 g/L

Peralta-Yahya et al.          
Nature Communications, 2011
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Sesquiterpenes Production using S. cerevisiae Production using E. coli

Farnesene 2 µg/L 240 mg/L

Bisabolene 150 µg/L 517 mg/L

Curcumene Not detected 130 µg/L

Vetispiradiene 300 µg/L 73 mg/L

Cadinene 3.6 mg/L 10.3 µg/L

Aristolochene 190 µg/L 33 mg/L

Amorphadiene 120mg/L 20 g/L

Selected Biosynthetic Pathway Leads to 
Diesel-like Fuel Molecule

Bisabolene (C15H24)

Peralta-Yahya et al.          
Nature Communications, 2011
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Microbially-Derived Sesquiterpenoid Biofuel Produced 
with Structural Characteristics of Diesel

Micro-organism

AgBIS
(Bisabolene Synthase)

Peralta-Yahya, Zhang, del Cardayre, and Keasling, (2012). 
Microbial engineering for the production of advanced biofuels. Nature, 488, 320. 

Bisabolene (C15H24)

Bisabolane (C15H30)

Chemical 
Hydrogenation

Biosynthetic Alternative
to D2 Diesel Fuel



Physical Properties of Bisabolane 
Compatible with Conventional Diesel Fuel

Properties D2 Diesel Biodiesel
Hydrogenated 

bisabolene

Density (g/ml) 0.85 0.88 0.82

API Gravity 35 29.3 41.1

Flash point (C) 60–80 100–170 111

Viscosity (mm
2
/s) 1.3–4.1 4.0–6.0 2.91

Boiling point (C) 180–340 315–350 267

Cloud point (C) −35 to 5 −3 to 15 <−78

Cetane number 40–55 48–65 41.9

Peralta-Yahya et al.          
Nature Communications, 2011

Bisabolane (C15H30)



Bisabolane (C15H30)

Component-Centered Approach Towards Oxidation 
Studies on Microbially-Derived Bisabolane

MCH2,5-dimethylhexane Limonane

General Objectives

1. Characterize low-temperature RO2-related oxidation mechanisms of sub-systems

2. Quantum chemical, ab initio calculations (PES, rate coefficients)

Target Molecule

Component System 1 Component System 2



Bisabolane (C15H30)

MCH2,5-dimethylhexane Limonane

Target Molecule

Component System 1 Component System 2

Component-Centered Approach Towards Oxidation 
Studies on Microbially-Derived Bisabolane

General Objectives

1. Characterize low-temperature RO2-related oxidation mechanisms of sub-systems

2. Quantum chemical, ab initio calculations (PES, rate coefficients)



RH
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O2
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·QOOH
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·OOQOOH

Ketohydroperoxide + OH

Low-Temperature Branching

Olefin + HO2

Cyclic Ether + OH

-Scission Products + OH
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Knowledge of Initial Low-Temperature Oxidation Steps 
of Biofuels Critical to Advanced-Engine Development

Direct probing of intermediates 
related to R + O2



Probing of Molecular Beams

VUV Photoionization of Molecular Beams Produced 
during Low-Temperature Hydrocarbon Oxidation
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Experimental and Computational Methods



Species Number Density (molecules/cm3) Mole Fraction

2,5-dimethylhexane 1.3·1014 0.001

O2 2.8·1016 0.219

Cl2 1.4·1014 0.001

Cl (Photolyzed Cl2) 2.1·1012 –

He 1.1·1017 (550 K) /8.5·1016 (650 K) 0.779

Time-Sensitive 
MCP Detector

Excimer
Photolysis

Reactants
Orthogonal ToF

Tunable Ion 
Source (h)
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Experimental Setup/Conditions: 
Cl-Initiated Oxidation, MBMS Detection

Advanced Light Source 
Synchrotron

Reactor Exit



Initial Alkyl Radicals Generated using Photolyzed Cl2

+ Cl
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+ HCl
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+ Cl



Experimental Conditions Favor R + O2
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Computational Methods 

Computational Objectives –

1. Electronic transition intensities

2. PES (stationary points)

 2,5-dimethyl-1-hexyl + O2

 2,5-dimethyl-2-hexyl + O2

 2,5-dimethyl-3-hexyl + O2

16 cyclic ether channels, 11 products

E
n
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y

Interatomic Distance

R + O2

ROO

ROR + OH

QOOH

Neutral State

Cationic State



Organization of Results

(1) HO2-elimination channel, species fractional yield quantification

(2) Analysis of cyclic ether formation channels

(3) Evidence of ‘other’ channels (unimolecular QOOH decomposition)

(4) Role of primary radicals in cyclic ether formation 



Results (1): HO2-Elimination Channel, 
Species Fractional Yield Quantification
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Direct Measurement of HO2-Elimination Channel



HO2-Elimination Co-Products of R + O2

+ O2
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Separate Experiments Conducted to 
Determine Branching Ratios 
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Isomeric Contributions Quantified using 
Absolute Photoionization Cross-Sections

8.0 8.5 9.0 9.5 10.0 10.5 11.0
0

5

10

15


 (

M
b)

Photon Energy (eV)

8.0 8.5 9.0 9.5 10.0 10.5 11.0
0

5

10

15


 (

M
b)

Photon Energy (eV)

8.0 8.5 9.0 9.5 10.0 10.5 11.0
0

5

10

15


 (

M
b)

Photon Energy (eV)



Temperature-Dependent Branching Ratios of 
HO2-Elimination Yields
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Temperature-Dependent Branching Ratios of 
HO2-Elimination Yields
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Temperature-Dependent Branching Ratios of 
HO2-Elimination Yields

8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8
0

10

20

30

40

50

60

550 K

Io
n
 S

ig
n
al

 (
a.

u
.)

 m/z 112

Photon Energy (eV)

Ion Signal Definition:

Isomers of m/z 112



Temperature-Dependent Branching Ratios of 
Alkenes from HO2-Elimination

Alkene 550 K 650 K

2,5-dimethyl-1-hexene 30% 47%

2,5-dimethyl-2-hexene 32% 33%

2,5-dimethyl-3-hexene 38% 19%
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Quantification of Fractional Yields of Products

m/z Species Fractional Yield

550 K 650 K

42 propene 0.10 0.38

44 acetaldehyde 0.04 0.02

vinyl alcohol 0.02 0.01

56 iso-butene 1.05 0.88

58 acetone 0.49 0.21

methyloxirane 0.21 0.00

68 isoprene 0.01 0.01

72 methyl-propanal 1.46 0.58

98 5-methyl-2-hexene 0.00 0.07

112 2,5-dimethyl-1-hexene 1.00 1.00

2,5-dimethyl-2-hexene 1.13 0.71

2,5-dimethyl-3-hexene 1.16 0.41

128 2,2,5,5-tetramethyl-THF 73.69 12.91

Fractional yields defined relative to 

formation of HO2-elimination co-product 

2,5-dimethyl-1-hexene:



Results (2): Cyclic Ether Formation
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OH-Loss Co-Products from QOOH Species
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Cyclic Ether Formation from O2-Addition to Tertiary R
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Cyclic Ether Formation: 2,2,5,5-tetramethyl-THF
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Channel 4Channel 5



Stationary Points: 2,5-dimethyl-2-hexyl + O2

Calculated at CBS-QB3 Level
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Significance of 2,2,5,5-tetramethyl-THF to 
Cyclic Ether Channel
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Significance of 2,2,5,5-tetramethyl-THF to 
Cyclic Ether Channel
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Comparison of Cyclic Ether, HO2-Elimination Channels
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Results (3): Other Channels



RH

R Olefin + R

O2

ROO·

·QOOH

O2

·OOQOOH

Ketohydroperoxide + OH

Low-Temperature Branching

Olefin + HO2

Cyclic Ether + OH

-Scission Products + OH

-Scission Products of QOOH Species



Ion Signal (m/z 58): Acetone
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Comparison of m/z 58, 72 Time Histories to 
Cyclic Ether and HO2-Elimination
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Results (4): Role of Primary Radicals 
in Cyclic Ether Formation



-Scission Pathways in 2,5-dimethylhexane
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Evidence of -Scission: m/z 98
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-Scission Species Identified
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Role of Primary Alkyl Radicals in Forming 
2,2,5,5-tetramethyl-THF
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Concluding Remarks



• RO2-related oxidation of 2,5-dimethylhexane studied at 550 K, 650 K

– Branching ratios of HO2-elimination pathways determined

– Formation of 2,2,5,5-tetramethyl-THF potentially vital to low-temperature 
oxidation modeling of 2,5-dimethylhexane

– Isomerization of primary alkyl to tertiary alkyl energetically favored over 
unimolecular decomposition

– Relevance of concerted QOOH decomposition 

– Potential energy surfaces calculated for R + O2 reactions

• Ongoing work

– (1) time-dependent OH- and HO2-yield measurements of 2,5-dimethylhexane + O2

– (2) characterization of MCH oxidation

Concluding Remarks

Bisabolane (C15H30) MCH2,5-dimethylhexane

Target Fuel Component Analogs



Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a
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Overview of Species Detected in Mass Spectra

m/z Linear Formula 550 K 650 K

128 C8H16O
2,2,5,5-tetramethyl-

tetrahydrofuran

2,2,5,5-tetramethyl-

tetrahydrofuran

126 C8H14O (unidentified) (unidentified)

112 C8H16 2,5-dimethyl-1-hexene 2,5-dimethyl-1-hexene

2,5-dimethyl-2-hexene 2,5-dimethyl-2-hexene

2,5-dimethyl-3-hexene 2,5-dimethyl-3-hexene

104 C4H8O3 (minor) (unidentified) (unidentified)

98 C7H14 – 5-methyl-2-hexene

90 C3H6O3 (minor) (unidentified) (unidentified)

86 C5H10O (unidentified) (unidentified)

84 C5H8O (unidentified) (unidentified)

72 C4H8O methyl-propanal methyl-propanal

70 C5H10 (unidentified) (unidentified)

68 C5H8 isoprene isoprene

58 C3H6O acetone acetone

methyloxirane –

56 C4H8 iso-butene iso-butene

44 C2H4O acetaldehyde acetaldehyde

vinyl alcohol vinyl alcohol

42 C3H6 propene propene

Cyclic Ether

Alkene 
(HO2-
Elimination)

Alkene

Aldehyde

Diene

Ketone

Alkene

Alkene

Aldehyde

Alcohol



Quantification of Fractional Yields of Products

Ion Signal:

Absolute Photoionization Cross-Section:

Fitting Coefficients:

Fractional Yield:

m/z Species Fractional Yield

550 K 650 K

42 propene 0.10 0.38

44 acetaldehyde 0.04 0.02

vinyl alcohol 0.02 0.01

56 iso-butene 1.05 0.88

58 acetone 0.49 0.21

methyloxirane 0.21 0.00

68 isoprene 0.01 0.01

72 methyl-propanal 1.46 0.58

98 5-methyl-2-hexene 0.00 0.07

112 2,5-dimethyl-1-hexene 1.00 1.00

2,5-dimethyl-2-hexene 1.13 0.71

2,5-dimethyl-3-hexene 1.16 0.41

128 2,2,5,5-tetramethyl-THF 73.69 12.91
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+ O2
+ O2

+ O2

+ Cl

+ HCl

+ HCl

+ HCl

+ Cl

+ Cl

8.91 eV 8.56 eV 8.88 eV

CBS-QB3-Calculated Adiabatic Ionization Energies

HO2-Elimination Co-Products of R + O2



OH-Loss Co-Products from QOOH Species
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Daughter Ion Measurements Support Quantification 
of Upper Limit to 2,2,5,5-tetramethyl-THF
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Daughter Ion Signals Indicate Potential for Other 
Cyclic Ethers Formed by QOOH Decomposition 

m/z 85
Daughter Ion

m/z 113 
Daughter Ion

Raw Ion Signals



Role of Primary Alkyl Radicals in Forming 
2,2,5,5-tetramethyl-THF
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OH-, HO2-Loss Channels of Methylcyclohexane


