

Modeling dislocation nucleation and strength in nanowires and nanopillars

Andrew T Jennings¹, Christopher R Weinberger², and Julia R Greer¹
¹⁾ Sandia National Laboratories, ²⁾ California Institute of Technology

Experiments have shown that plasticity in confined volume single crystals can be controlled either through single arm sources or dislocation nucleation; the transitions of which are size and microstructure dependent. Here, we develop a simple continuum model that captures the activation energy and activation volume of dislocation nucleation from free surfaces. The nucleation strength dependence on crystal orientation, surface facets and material properties are investigated and compared against traditional single arm source operation. This provides a map for transitions from conventional source limited plasticity controlled by single arm sources to surface nucleation.

This research was supported in part by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S. Department of Energy Contract No. DE-AC04-94AL85000. ATJ and JRG gratefully acknowledge the financial support of the National Science Foundation through ATJs NSF Graduate Research Fellowship and JRGs CAREER grant (DMR-0748267).