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#‘ Sampling: Why & What’s Good?

Problem: generate a M dimensional sample design with N
points at which to evaluate a simulator

Why sample simulator input?

* To calculate statistics of outputs with uncertain inputs

 To optimize e.g., guess several times and pick best guess

* To construct meta-models (fast surrogates for slow simulators)

What qualities do we want in a sample design?
* Design should be space-filling
 Low-dimensional projections of points should be well spaced
« Sample point locations should be uncorrelated with each other
* Regularity is bad, leads to biased results
* Nesting: want a SEQUENCE of designs that inherit all points
from earlier members in the sequence
@lﬁa;&lﬁf%ﬂes
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%i Sample Design Quality Metric:
Centered L2 Discrepancy

* Lots of metrics; fortunately one of them is almost always
the most important

* “Discrepancy” (some norm of difference between points
per sub-volume and uniform density): lower is better

— “Koksma-Hlawka-like inequality” bounds error in a computed
mean in terms of discrepancy

— Centered L2 Discrepancy (usually most important metric)
— Wrap-Around L2 Discrepancy (important for periodic variables)

« Unfortunately, discrepancy is expensive (O(M N2) ops) to
calculate for designs with large numbers of points, N, so...

«Can’t guess a large number of designs & pick the best
« WARNING: Regularity is easy way to get low
discrepancy @ Sanda
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“Binning Optimality”

A
| a New Space-filling Metric

A sample design is “Binning Optimal” (in base 2) if

Short answer:
Every sub-bin that should contain a point does

this is Binning Optimal
Long answer: 1 ; ; —
*When you recursively subdivide |
M-dimensional hypercube into 2M ™.
disjoint congruent sub-cube bins, | -«
all bins of same generation |
contain same number of points
 The above must hold true until ) )
bins are so small that they each 0, -
contain either 0 or 1 points X
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#‘ Degree of Binning Non-Optimality...

...can be used to compare sample designs that are NOT
binning optimal: Two numbers (g,s) . Latin Hypercube Sampling

«“g” is the smallest # of Generations above .. : -
the smallest size bins at which all bins :
have the same # of points.

« “s” maximum # of points in any bin of the
Smallest size.

« Can compare degree of binning non-
optimality of all m-D subsets of dimensions
for 1<m<M; an M by 3 array of numbers.
The third number, “f” is the Fraction of m-D
designs that are not binning optimal.
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Degree of Binning Non-Optimality

‘ Can Be Evaluated in O(N log(N)) Ops

1 BPD
 Generate bin ids as indices

into a Morton space-filling
curve, also known as a “Z- S

curve.” O(N log(N))+O(N M)

2 BPD

%*

work to collect leading Bits

Per Dimension (BPD)
* Quicksort bin ids: O(N log(N))
work |

» Tally bins ids: O(N) work 3BPD
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« A FFT of difference of sequential sorted Z-curve bin

ids reveals regularity (cyclic patterns)
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} Latin Hypercube Sampling (LHS)

 Form of stratified random sampling
that converges with fewer points
than Monte Carlo Sampling

« Each column contains 1 point
« Each row contains 1 point

* Quality of design depends on
pairing of dimensions used to
form points (tough problem)

* Cell-centered LHS with randomly
paired dimensions
— gets 1D projections “perfect”
—is NOT space-filling

Latin Hypercube Sampling

This is not
Binning Optimal

1 Sandia
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} Jittered Sampling

e Jittered Sampling = Tensor product sampling + random offset
* Better 1D projections than Tensor Product sampling

- Worse 1D projections than LHS

« Each cell contains a point = space-filling as cell size > 0

Tensor Product Sampling

Jittered Sampling

2 |3
0O |1 |0

x = These are Binning R
Optimal @ Sandia
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% Binning Optimal Symmetric Latin
Hypercube Sampling (BOSLHS)

* Gets 1D projections right | ~ BOSLHS

*|s space-filling

- Combines most of best features
of LHS and Jittered sampling .

* Design quality is better than : ;

*|s very fast. generated Nested
BOSLHS M=8 dim, N=21°=65536
points design in 8.21 seconds

* Currently limited to M=2F < 16
dimensions (low degree of binning
non-optimality for non integer p,
working on extending to M > 16)
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Other Methods: Centered L2 Discrepancy
(Lower is Better)

. Centered L2 Discrepancy M=4

10

Vs: ' How Does BOSLHS Compare With

- Centered L2 Discrepancy M=8

10 ¢

: o]

A 1]
10 F 10 ¢
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b : 5
e L
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D -3 . X _3' : :
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: Monte Carlo : : Monte Carlo :
afl O Jittered Sampling : all O Jittered Sampling :
10 E_ CC rand LHS .., .............. _E 10 é_ CC rand LHS ................. _. ............... _E
: Nested BOSLHS | : 5 Nested BOSLHS | |
<[ | =¥ Sobol : : 1 =[| —% Sobol
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k " ' The

Sobol Sequence Has
Lower Discrepancy But Is Regular
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Regularity in sample designs results in biased statistics @
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A

*Need to get leading ceil(log2(N)/m) BPD “right” to
be binning optimal in m-dimensions

Nested Sub-Space Filling BOSLHS

*m=1 is easy (Latin Hypercube Sampling)

m=M=2P (space filling) isn't too hard, just need a
lists of which bins to fill in (Dalbey & Karystinos 2011)

*Other m (space and/or sub-space filling) are harder
*Also making it nested/inherited is harder still

*First cut was to randomly match first log2(N)/M
BPD of M/2 2D BOSLHS designs to M-D design
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First Cut of Nested
Sub-Space Filling BOSLHS

M=4 N=256 Nested, First Cut Subspace Filling, BOSLHS CDZ(X)=0.01634

1 S ??Q(Xx%% 1 : > 0.16
y %%%ggﬁ b BT
Foan %g}% e o %@& i 15 _
RS % This FFT

e
ﬁéﬁx%%%gé %%: R %g%g 0.12}
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1 T
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X
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% gx%x;i&ix%
. | 23 B TR .
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 Want binning optimality in more subsets of dimensions

Nested Sub-Space Filling BOSLHS

* Good sub-space filling properties lets one discard
dimensions and still have good space filling properties

*Ran into difficulties because of initial design (end points
of a rotated orthogonal axis) in nested sequence.

*Need to keep leading BPD (from Sylvester construction
of Hadamard matrices) to ensure it's still binning
optimal but can change less significant BPD

« Undertaking “piecewise brute force” (use solutions from
previous pieces to reduce work) examination of optimal

starting designs -
l:l National
Laboratories



In 8D, an Optimal Choice of First 2 BPD

16 pts, 2 BPD, BOS design #1: CD

,(X)=0.361915 (9,,5,,,f,))=(1,4,0.142857)
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2 'Can Randomly Match First 2 BPD
to 8 1D LHS designs to Make it BOSLHS

16 pts, 4 BPD, BOSLHS design #1: CD

(X)=0.27774 (g5, f,)=(0,1,0)
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4" Previous 8D, 2 BPD, 16 Point Design

Was 1 of 64 equivalent optimal
designs found by brute force
matching of 128 optimal 4D
designs with leading BPD from
8D Sylvester Hadamard Matrix

1429

\Was space-filling in all 3D, 3D,
oD, 7D, and 8D projections

m
1

2
3
4
)
6
V4
38

OO0 IO |0 (=N (e
=== =D N =D D )

N

\Was space-filling in 24/28 of 2D projections
and 56/70 of 4D projections



, CD,(X) #Equiv s f
: 0.361915 64

4 0142857
. 0.368682| 192 3| 0.571429

But th_ere were other designs [ - i  oaere
that differed in S,, f2 and 0.373236] 512 3| 0.571429
. ’ 0.375327| 192 2| 0.428571

centered L2 dlscrepancy 0.376533| 1536] 3| 0.571429
: : 0.379801| 1536 3| 0.571429
*Notice that the # of equivalent [ozsoees 153 3 0571420
' 0.381856] 64 3| 0.571429
deSIQHS, _82’ an(_j f2 are 0.383041]  512| 3 0.571429
symmetric vertlcally 0.384223] 3072 3| 0.571429
0.385402] 512 3| 0.571429

. - 0.386577| 64 3| 0.571429
Compare the next 4 deSIQnS’ 0.387427| 1536 3| 0.571429
2 were selected from the top [osssses 153 3 0571429
0.391763] 1536 3| 0.571429

group, 2 were selected from 0.392919] 192 2| 0.428571
the bottom group 0.394905| 512 3| 0.571429
0.396052| 512 4| 0.357143

0.399161 192 3| 0.571429

0.405306) 64| 4] 0.142857|




Design #1 (Top Group)
(X)=0.361915 (g,,,5,,.,)=(1,4,0.142857)

16 pts, 2 BPD, BOS design #1: CD2 ol

LGS G gy R e i v I N G e | spmegpegengeng ey | M pemprempmeseg | A
RS 8 : :

3!4 ....... ............ ....... 3;4 3!4 ...... ............. ...... 3,4 ....... ...... ...... ...... 3{4 st 3,4 ..... ...... ....... ......

N 204 214 [ s 2 ISt Tt NI JPY) DS St B S N P71 o A IR e e

1’4 ...... ...... ....... ....... 1,4 ....... ........ ....... 1’4 1,4 ...... ............. ...... 1!4 ....... ...... ...... ...... 1,4

| P

0 : : ; 0 : : ; 0 ; : ; 0 ;. . : ; 0 ; ; : : 0 Bl : : 0 : :
0 1/4 2/4 314 1 0 14 214 34 1 0 1/4 2/4 314 1 0 144 2/4 314 1 0 1/4 2/4 374 1 0 1/4 2/4 314 1 0 1/4 2/4 314 1

1 1 1 1 ....... I ..... ...... 1

3i4 344 3i4 344 34 314 34

1’4 ...... ...... ....... ....... 1,4

TN S g st Lt R S AR CE e B8 B Bl

0 : : : 0 : ! 0 ; P 0 : ; ! 0 ! ; 1 : 0 : ; : : 0 : ! : :
0 1/4 24 314 1 0 144 2/4 34 0 1/4 2/4 314 1 0 144 24 314 1 0 14 2/4 314 1 0 1/4 2/4 314 1 0 1/4 2/4 314 1

1 1

3/4 3/4

3’4 ...... ............. ...... 3}4 ....... 3,4

5" 214 214 2i4 S Loy i

xw 2/4 >'cl.n 2i4 |-

gl i < 204
I e 14l el | e 14l e B '

@
~ ool

0
N e S e S e
B E % y N i 2 ] : & : % 1 - 1 .I 3 4 i 8 Z 1 3 i
o L s 3 LR R o 3 L by FRER. g 201 88 §
0 144 214 34 1 0 1/4 214 314 1 0 14 214 34 1 0 14 214 314 1 0 1/ 214 34 1 0

114

1

i : : ; T - s A g g 1

3,4 ....... ............ ....... 3;4 ...... ....... ...... ...... 3,4 ...... ............. ...... 3}4 ....... o ...... g 3,4 ...... s ...... ...... 3}4 R ...... R ......

204l ............ ....... xh 241 ....... ...... ...... xco 2/4 xh 2/4 xco 2041 ....... ...... ...... xCD 2/4

-”4 ....... ............ ....... 1,4 ...... ....... ...... ...... -”4 ...... ............. ...... 1!4 ....... ...... ...... ...... -”4 ...... ....... ...... ...... -”4 ..... ...... ....... ......
E 3 2 5 : 2 g i 3 80311 1537 3157

0

0 1/4 2/4 314 1 0 1/4 2/4 314 1

0 1/4 2/4 314 1

X4 X5 X5 X5 XG Xs )(7




Design #2 (Top Group)
(X)=0.361915 (g,,,5,,.,)=(1,4,0.142857)

16 pts, 2 BPD, BOS design #2: CD2 ol
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Design #3 (Bottom Group)
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Design #4 (Bottom Group)

16 pts, 2 BPD, BOS design #4: CD,(X)=0.405306 (g,,.5,,,f,)=(1,4,0.142857)
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It may be possible (and easy/fast) to

estart with a leading BPD design that is space-
filling in the full M dimensional space and
most subsets of dimensions,

add matched leading BPD designs to evenly
fill in “holes” to obtain a nested sequence of

designs, and

*avoid regularity by randomly matching leading
BPD with M one dimensional LHS designs

What Does This Mean?
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4" Conclusions

*Defined new space-filling metric "Binning
Optimality” that evaluates in O(N log(N)) time

Found related way to detect regularity in sample
designs

*Developed fast algorithm for Nested Binning
Optimal Symmetric Latin Hypercube Sampling
(BOSLHS) that

— is also Binning Optimal in some Low D subsets
—combines best features of LHS & Jittered

Sampling
Sandia
@ I.Naal}:)org?tljﬁes
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4" Current / Ongoing Work

« Sub-space filling BOSLHS

« Extension to larger (> 16) and arbitrary (non power of
2) numbers of dimensions (sub-space filling BOSLHS
could solve the Iatter)

« Better numerical quantification of “regularity”
 ? Induce correlations between dimensions?

« How well do emulators built from BOSLHS designs
predict (paper submitted to Statistics & Computing)

« Gradient Enhanced Kriging emulators
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irst Cut Results (Dims 1&2, 3&4):
Eyeball Metric M =4D

N=128 N=1024 N=4096

2D-Subset Nested BOSLHS M=4 N=128/4096 CDQ(X)=0.025565 2D-Subset Nested BOSLHS M=4 N=1024/4096 CDQ(X)=0.006744 2D-Subset Nested BOSLHS M=4 N=4096/4096 CDZ(X)=0.00318505
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o First Cut Results:
| Centered L2 Discrepancy (Lower is Better)

-Centered L2 Discrepancy M=4 Centered L2 Discrepancy M=4
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Results: What Complete Irregularity
(Monte Carlo Sampling) Looks Like

Monte Carlo Sampling M=4 N=256 CD2(X)=0.0447803
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First Cut Results:

A
# Nested BOSLHS Is Not Regular

2D-Subset Nested BOSLHS M=4 N=256/4096 CD2(X)=0.0159709
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g '
4" Results

« BOSLHS has low discrepancy without being regular

« BOSLHS also scores well in other metrics: it has high

“‘coverage,” low correlations between dimensions, and a
low (t,m,s)-net rating

« VERY fast: MATLAB generated a N=2'° point M=8
dimensional space-filling nested BOSLHS design in
~8.21 seconds on an Intel 2.53 GHz processor
(algorithms reported in literature take “minutes” for
non-nested space-filling N =100 point designs)

« By comparison, it took ~298.2 seconds (O(N?M) ops)
to evaluate discrepancy for same design
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}‘ Sample Design Quality Metrics

Other “partial” metrics

« “Coverage” (fraction of hypercube's volume filled by
convex hull of points, VERY expensive for even moderately
high dimensions): higher coverage is better

« Condition number of sample design's correlation matrix
(can be evaluated in O(M?N) ops): lower is better

« “t” quality metric when design Is considered to be a
tms-net (quasi-Monte Carlo; metric moderately expensive
O((m-t+1+5)Cs S ™) ops where s=M, b™=N): lower “t” is
better

* NEW! degree of Binning Non-Optimality (can be
evaluated in O(N log(N)) time): lower is better
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4-D Example

e Difference in 4 dimensions is in
choosing maximally spaced bins

« In 2D, only 22=4 sub-bins per level,
the 2*2=4 end points of 1
“orientation” (rotated set of
orthogonal axes)

—If 1 point in bin, new sub-bin is
opposite old one

—If 2 points (1 axis), 2 new sub-bins
are other axis

—Then go 1 bin deeper

In 4D, 24=16 sub-bins per level, 2

orientations with 2*4=8 bins each

— After first axis, randomly select order
of other axes in same orientation

— Then choose other orientation

—Then go 1 bin deeper

~
>
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"%esults Centered L2 Discrepancy

(Lower is Better)

.Centered L2 Discrepancy M=4 _Centered L2 Discrepancy M=8
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WD,,(X)

el

Results: Wrap Around L2
Discrepancy (Lower is Better)

- Wrap Around L2 Discrepancy, M=4D

10

-1
2
[ & Tensor Product
: Monte Carlo
| e Jittered Sampling
[ CCrand LHS
L| ===~ BOSLHS
|| % Sobol
0 T --"1 I * 3 ’
10 L 10 " N "

Plots are for

N

WD,,(X)

g

. Wrap Around L2 Discrepancy, M=8D

10

O,
o EUURNINE RO S S—
o (e B Tensor Product s
: Monte Carlo
(| @ Jittered Sampling
_ CCrand LHS
- === BOSLHS
5 —#%— Sobol
1 - 3 3 I 4
10 0 N ’ )
N
average of 40 random designs
Sandia
National
Laboratories



14

w24

4

Results: Eyeball Metric M=4D

=128

Nested BOSLHS N=128/4096 CDZ(X)=0.028994

N =1024

1

1

Nested BOSLHS N=1024/4096 CDQ(X)=0.00732929
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« BOSLHS 1s visibly space-filling!
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Results: Nested BOSLHS Is Not Regular

-~

Nested BOSLHS M=4 N=256/4096 CD2(X)=0.0190745
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i Cor

ompared To Original, Nested BOSLHS

Less Regular But Higher Discrepancy
BOSLHS M=4 N=256 CD2(X)=0.0153393
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Nested BOSLHS N=64/4096 M=4 CD,(X)=0.0411594

o

4-D Example ) CP PP U S BN NS SO
- Difference in 4 dimensions is in - RN PR R R R RN T
ChOOSing maximally Spaced bins 1,4..1 - 15 - T 3 ....3
*In 2D, only 22=4 sub-bins per level, * W w1 0w w
the 2*2=4 end points of 1 O S — O S—
“orientation” (rotated set of e e L
orthogonal axes) T AP N o
—If 1 point in bin, new sub-bin is < AR RN B
opposite old one s B B N
—If 2 points (1axis), 2 new sub-bins [ - . . o ¥
are other axis A
—Then go 1 bin deeper T o g P
. In 4D, 24=16 sub-bins per level, 2 i S I R
orientations with 2*4=8 bins each == . ¢ w0
— After first axis, randomly select order ., : R N T S
of other axes in same orientation e o '
—Then choose other orientation R
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Results: Coverage

(higher is better)

“Coverage” for M = 4 Dimensions: Average of 40 runs

N | Binning Optimal | Cell Centered | Monte Carlo | Jittered Tensor Product
Symmetric LHS | Random LHS | Sampling Sampling | Sampling
8 | 0.0717773 0.027062 0.0178996
16 | 0.135135 0.104126 0.0916156 0.128427 | 0.0625
32 | 0.285717 0.233105 0.219465
64 | 0.417035 0.372359 0.361626
128 | 0.56022 0.522201 0.511982
256 | 0.678416 0.647304 0.645049 0.667668 | 0.316406
512 | 0.773748 0.754804 0.749725
1024 | 0.843177 0.832896 0.831007
2048 | 0.896093 0.890245 0.886593
4096 | 0.932229 0.928693 0.927748 0.929509 | 0.586182
8192 | 0.956723 0.954248 0.953466
16384 | 0.97319 0.97129 0.971217
32768 | 0.983415 0.982499 0.982312
65536 | 0.989815 0.989387 0.98926 0.98965 0.772476
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Condition Number of the Correlation Matrix for M = 4 Dimensions: Average of 40 runs

esults: Condition # of Correlation

Matrix (lower is better)

N | Binning Optimal | Cell Centered | Monte Carlo | Jittered Tensor Product
Symmetric LHS | Random LHS | Sampling Sampling | Sampling
811 14.6273 8.23719
16 | 3.2505 4.14988 3.75258 2.39394 1
32 | 1.49974 2.27709 2.15406
64 | 1.37672 1.76306 1.82367
128 | 1.2064 1.4508 1.49656
256 | 1.11022 1.32572 1.33407 1.10916 1
512 | 1.05589 1.21341 1.2108
1024 | 1.0368 1.1546 1.14725
2048 | 1.02121 1.09974 1.09939
4096 | 1.01246 1.07576 1.07075 1.01254 1
8192 | 1.00717 1.04643 1.04922
16384 | 1.00403 1.03608 1.03365
32768 | 1.0027 1.02297 1.02461
65536 | 1.00166 1.01872 1.01742 1.00145 1

@
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B _ Results: (t,m,s)-net, “t” quality
metric (lower is better)

(t, m, s)-net Rating for M = 4 Dimensions: Average of 40 runs

N | Binning Optimal | Cell Centered | Monte Carlo | Jittered Tensor Product
Symmetric LHS | Random LHS | Sampling Sampling Sampling
8| (1,3,4) (2,3,4) (3,3,4)
16 | (2,4,4) (3,4,4) (4,4,4) (3,4,4) (3.4,4)
32 1(2,5,4) (4,5,4) (5,5,4)
64 | (3,6,4) (5,6,4) (6,6,4)
128 | (4,7,4) (6,7,4) (7,7,4)
256 | (5,8,4) (7,8,4) (8,8,4) (6,8,4) (6,8,4)
512 | (5,9,4) (8,9,4) (9,9,4)
1024 | (6,10,4) (9,10,4) (10,10, 4)
2048 | (7,11 ,4) (10,11 ,4) | (11,11 ,4)
4096 | (8,12 ,4) (11,12,4) | (12,12,4) | (9,12,4) | (9,12,4)
8192 | (8,13 ,4) (12,13 ,4) | (13,13 ,4)
16384 | (9,14 ,4) (13,14 ,4) | (14,14 ,4)
32768 | (10,15,4) (14,15,4) | (15,15, 4)
65536 | (11,16 ,4 ) (15,16 ,4) | (16,16,4) | (12,16,4) | (12,16, 4) @ﬁg{‘iﬁ‘,‘;’a.
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*" O(N log(N)) BOSLHS Algorithm

. Start with n = 2M points that are well distributed in (0, 1)V.

. Select n/2 of the coordinates in each dimension other than

the first to negate in such a way as to obtain n points that
are well distributed in (0, 1) ® (=1, 1M1,

. Reflect the current n points through the origin to create n
additional mirror points; this ensures that the design is
symmetric.

. Translate the 2n points from (-1, 1)M to (0, 2)M, scale
them to (0, 1)M , and then set n = 2n.

. Repeat steps 2 through 4 until the desired number of
points has been obtained, i.e. until n = N.
@ ﬁg’ltligiréllal
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*" O(N log(N)) BOSLHS Algorithm

The tough part is step 2

Select n/2 of the coordinates in each dimension other
than the first to negate in such a way as to obtain n
points that are well distributed in (0, 1) ® (=1, 1)M-1.

The easy (fast) answer is to recast the problem...
* Don't try change signs of dimensions individually
* Send nearby points to octants that are far apart

The Z-order quicksort will put nearby points in
sequential order in O(N log(N)) ops

We just need a listing of octants in maximally
spaced order
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