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Sampling:  Why  &  What’s  Good?

Problem:  generate  a  M  dimensional  sample  design  with  N
points  at  which  to  evaluate  a  simulator

Why  sample  simulator  input?
• To  calculate  statistics  of  outputs  with  uncertain  inputs

• To  optimize  e.g.,  guess  several  times  and  pick  best  guess
• To  construct  meta-models  (fast  surrogates  for  slow  simulators)

What  qualities  do  we  want  in  a  sample  design?
• Design  should  be  space-filling
• Low-dimensional  projections of  points  should  be  well  spaced
• Sample  point  locations  should  be  uncorrelated  with  each  other
• Regularity  is  bad,  leads  to  biased  results

• Nesting: want  a  SEQUENCE  of  designs  that  inherit  all  points  
from  earlier  members  in  the  sequence



Sample Design  Quality  Metric:
Centered L2  Discrepancy

• Lots  of  metrics;  fortunately  one  of  them  is  almost  always  
the  most  important 

• “Discrepancy” (some  norm  of  difference  between  points  
per  sub-volume  and  uniform  density): lower is  better
– “Koksma-Hlawka-like  inequality”  bounds  error  in  a  computed  

mean  in  terms  of  discrepancy

– Centered L2  Discrepancy (usually  most  important  metric) 

– Wrap-Around  L2  Discrepancy (important  for  periodic  variables) 

• Unfortunately,  discrepancy  is  expensive  (O(M N2) ops)  to 
calculate  for  designs  with  large  numbers  of  points, N, so...

• Can’t  guess  a  large  number  of  designs  &  pick  the  best

• WARNING:  Regularity  is  easy  way  to  get  low  
discrepancy



“Binning Optimality”
a New  Space-filling  Metric

A  sample  design  is  “Binning  Optimal” (in  base 2) if

Short  answer: 
Every  sub-bin  that  should  contain  a  point  does

Long  answer:

• When you  recursively subdivide   
M-dimensional  hypercube into  2M

disjoint  congruent  sub-cube  bins,   
all  bins  of  same  generation    
contain  same  number  of  points

• The  above  must  hold  true  until  
bins  are so  small  that they  each 
contain  either  0 or  1  points



Degree  of  Binning  Non-Optimality...

...can be used to compare sample designs that are NOT 
binning optimal:  Two numbers (g,s)

• “g” is the smallest # of Generations above 
the smallest size bins at which all bins   
have the same # of points.

• “s” maximum # of points in any bin of the 
Smallest size.

• Can compare degree of binning non-
optimality of all m-D subsets of dimensions 
for 1<m<M; an M by 3 array of numbers.  
The third number, “f” is the Fraction of m-D 
designs that are not binning optimal.

m g s f

1 0 1 0

2 2 3 1



• Generate  bin  ids  as  indices  
into  a  Morton  space-filling  
curve,  also known  as  a  “Z-
curve.”   O(N log(N))+O(N M)  
work to  collect  leading  Bits  
Per Dimension (BPD)

• Quicksort bin  ids:  O(N log(N))  
work 

• Tally  bins  ids: O(N) work

Degree  of  Binning  Non-Optimality
Can  Be  Evaluated  in  O(N log(N))  Ops

• A  FFT  of  difference  of  sequential  sorted  Z-curve bin  
ids  reveals  regularity  (cyclic  patterns) 

1 BPD 2 BPD

3 BPD 4 BPD



• Form  of  stratified  random  sampling  
that  converges  with  fewer  points  
than  Monte  Carlo  Sampling

• Each  column  contains  1  point

• Each  row  contains  1  point

• Quality of  design  depends  on 
pairing  of  dimensions  used  to  
form  points  (tough  problem) 

• Cell-centered  LHS  with  randomly 
paired  dimensions

– gets  1D  projections  “perfect”

– is  NOT space-filling

Latin Hypercube  Sampling  (LHS)

This  is  not
Binning  Optimal

m g s f

1 0 1 0

2 2 3 1



Jittered  Sampling

• Jittered Sampling = Tensor  product  sampling + random  offset

• Better 1D  projections  than Tensor  Product  sampling

• Worse  1D  projections  than  LHS

• Each cell  contains a  point  space-filling as  cell  size  0

These are Binning  
Optimal

m g s f

1 2 4 1

2 0 1 0

m g s f

1 2 3 1

2 0 1 0



Binning  Optimal  Symmetric  Latin
Hypercube  Sampling  (BOSLHS)

• Gets  1D  projections  right

• Is  space-filling

• Combines  most  of  best  features  
of  LHS  and  Jittered  sampling

• Design  quality  is  better  than 
regular  LHS  or  Jittered  sampling 

• Is  very fast:  generated  Nested
BOSLHS  M=8  dim,  N=216=65536  
points  design  in  8.21  seconds 

• Currently  limited  to  M=2p < 16 
dimensions  (low  degree  of  binning 
non-optimality  for  non  integer  p, 
working  on  extending  to  M > 16)

m g s f

1 0 1 0

2 0 1 0



How  Does  BOSLHS  Compare  With
Other  Methods:  Centered L2  Discrepancy 

(Lower  is  Better) 

10.2
6

Plots  are  for  average  of  40  random  designs



The  Sobol Sequence  Has 
Lower  Discrepancy  But  Is  Regular

10.2
6

Regularity  in  sample  designs  results  in  biased  statistics

This FFT 
shows
Strong 
Cyclic 

Patterns

m g s f

1 0 1 0

2 1 2 0.333

3 0 1 0

4 0 1 0



•Need  to  get  leading  ceil(log2(N)/m)  BPD  “right”  to  
be  binning  optimal  in  m-dimensions

•m=1  is  easy (Latin Hypercube Sampling)

•m=M=2p (space filling)  isn’t  too hard,  just  need  a 
lists  of  which  bins  to  fill  in  (Dalbey &  Karystinos 2011)

•Other  m  (space  and/or  sub-space  filling)  are  harder

•Also  making  it  nested/inherited  is  harder  still

•First  cut  was  to  randomly  match  first  log2(N)/M  
BPD  of  M/2  2D  BOSLHS  designs  to  M-D  design

Nested  Sub-Space  Filling  BOSLHS



First  Cut  of  Nested 
Sub-Space  Filling  BOSLHS

m g s f

1 0 1 0

2 2 4 0.667

3 1 3 1

4 0 1 0

This FFT
says it’s 

not regular



• Want  binning  optimality  in  more  subsets  of dimensions

• Good  sub-space  filling  properties  lets  one  discard  
dimensions  and  still  have  good  space filling properties

• Ran  into  difficulties  because  of  initial  design (end  points 
of  a  rotated  orthogonal axis)  in  nested  sequence.

• Need  to  keep  leading  BPD  (from  Sylvester  construction 
of  Hadamard matrices)  to  ensure  it’s  still  binning  
optimal  but  can  change  less  significant  BPD

• Undertaking  “piecewise brute force”  (use  solutions  from 
previous  pieces  to  reduce  work)  examination  of  optimal  
starting  designs

Nested  Sub-Space  Filling  BOSLHS



In  8D,  an  Optimal  Choice  of  First  2  BPD



Can  Randomly  Match  First  2  BPD 
to  8  1D  LHS  designs  to  Make  it  BOSLHS



Previous  8D,  2 BPD,  16  Point  Design

•Was  1  of  64  equivalent  optimal  
designs  found  by  brute  force  
matching  of  128  optimal  4D  
designs  with  leading  BPD  from  
8D  Sylvester  Hadamard Matrix

•Was  space-filling  in  all  3D,  5D, 
6D,  7D,  and  8D  projections 

m g s f
1 2 4 1
2 1 4 0.1429
3 0 1 0
4 1 2 0.2
5 0 1 0
6 0 1 0
7 0 1 0
8 0 1 0

•Was  space-filling  in  24/28  of  2D  projections
and 56/70  of  4D  projections



But  there  were  other  designs  
that  differed  in  s2, f2, and 
centered  L2 discrepancy

•Notice  that  the  # of equivalent  
designs, s2, and f2 are  
symmetric  vertically 

•Compare  the  next  4  designs,  
2  were  selected  from  the  top  
group,  2  were selected  from  
the  bottom  group

CD2(X) #Equiv s2 f2

0.361915 64 4 0.142857

0.368682 192 3 0.571429

0.372019 512 4 0.357143

0.373236 512 3 0.571429

0.375327 192 2 0.428571

0.376533 1536 3 0.571429

0.379801 1536 3 0.571429

0.380993 1536 3 0.571429

0.381856 64 3 0.571429

0.383041 512 3 0.571429

0.384223 3072 3 0.571429

0.385402 512 3 0.571429

0.386577 64 3 0.571429

0.387427 1536 3 0.571429

0.388596 1536 3 0.571429

0.391763 1536 3 0.571429

0.392919 192 2 0.428571

0.394905 512 3 0.571429

0.396052 512 4 0.357143

0.399161 192 3 0.571429

0.405306 64 4 0.142857



Design  # 1  (Top  Group)



Design  # 2  (Top  Group)



Design  # 3  (Bottom  Group)



Design  # 4  (Bottom  Group)



What  Does  This  Mean?

It  may  be  possible  (and  easy/fast)  to  

•start  with  a  leading  BPD  design  that  is  space-
filling  in  the  full  M dimensional  space  and  
most  subsets  of  dimensions,  

•add  matched  leading  BPD  designs  to  evenly  
fill  in  “holes”  to  obtain  a  nested  sequence  of  
designs,  and

•avoid regularity by  randomly  matching  leading    
BPD  with  M  one dimensional  LHS designs



Conclusions

•Defined  new  space-filling  metric  “Binning  
Optimality” that  evaluates  in  O(N log(N))  time

•Found  related  way  to  detect  regularity  in  sample  
designs

•Developed  fast  algorithm  for  Nested Binning  
Optimal  Symmetric  Latin  Hypercube  Sampling  
(BOSLHS)  that

– is also Binning Optimal in some Low D subsets 

–combines  best  features  of  LHS  &  Jittered  
Sampling



• Sub-space filling  BOSLHS

• Extension  to  larger ( > 16)  and  arbitrary  (non power  of  
2)  numbers  of  dimensions (sub-space filling BOSLHS  
could  solve  the  latter) 

• Better  numerical  quantification  of  “regularity”

• ? Induce correlations between dimensions?

• How  well  do  emulators  built  from  BOSLHS  designs  
predict  (paper  submitted  to  Statistics  &  Computing)

• Gradient  Enhanced  Kriging  emulators

Current / Ongoing  Work
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First  Cut  Results (Dims 1&2, 3&4):
Eyeball  Metric  M = 4D

• Plotted  all  6  combinations  of  2  out  of  M = 4  dimensions
• BOSLHS  is  visibly  space-filling!

N=128 N=4096N=1024



First Cut Results:  
Centered L2  Discrepancy  (Lower  is  Better) 

10.2
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Plots  are  for  average  of  40  random  designs
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Results:  What  Complete  Irregularity 
(Monte  Carlo  Sampling)  Looks  Like



10.2
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First  Cut  Results:  
Nested  BOSLHS  Is  Not  Regular



Results

• BOSLHS  has  low  discrepancy  without  being  regular

• BOSLHS  also  scores  well  in  other  metrics:  it  has  high 
“coverage,”  low  correlations  between  dimensions,  and  a  
low  (t,m,s)-net  rating  

• VERY fast: MATLAB  generated  a  N=216 point  M=8 
dimensional space-filling  nested BOSLHS  design  in  
~8.21  seconds  on an  Intel  2.53  GHz  processor 
(algorithms  reported  in  literature  take  “minutes”  for      
non-nested space-filling  N = 100  point  designs) 

• By comparison,  it  took  ~298.2  seconds  (O(N2M)  ops)    
to  evaluate  discrepancy  for  same  design



Sample Design  Quality  Metrics
Other  “partial”  metrics

• “Coverage” (fraction of  hypercube's volume  filled  by   
convex  hull  of points,  VERY  expensive  for  even  moderately 
high  dimensions): higher coverage  is  better

• Condition number  of  sample  design's  correlation  matrix 
(can  be  evaluated  in  O(M2N)  ops):  lower  is  better

• “t” quality  metric  when design  is  considered to  be  a  
tms-net (quasi-Monte  Carlo;  metric  moderately  expensive 
O((m-t+1+s)Cs s bm)  ops  where  s=M,  bm=N): lower  “t”  is  
better

• NEW!  degree of Binning  Non-Optimality (can  be  
evaluated  in  O(N log(N))  time):  lower is  better



4-D  Example

• Difference  in  4  dimensions  is  in 
choosing  maximally  spaced  bins

• In  2D,  only  22=4  sub-bins  per  level,  
the  2*2=4  end  points  of  1 
“orientation”  (rotated  set  of  
orthogonal  axes)
– If  1 point  in  bin,  new  sub-bin  is 

opposite  old  one

– If  2  points  (1 axis),  2  new  sub-bins 
are  other  axis

– Then  go 1  bin  deeper

• In 4D, 24=16  sub-bins  per  level,  2 
orientations  with  2*4=8  bins  each
– After  first  axis,  randomly  select  order  

of  other  axes  in  same  orientation

– Then  choose  other  orientation

– Then  go  1  bin  deeper



Results:  Centered L2  Discrepancy
(Lower  is  Better) 

10.2
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Plots  are  for  average  of  40  random  designs



Results:  Wrap  Around  L2  
Discrepancy  (Lower  is  Better) 

10.2
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Plots  are  for  average  of  40  random  designs



Results:  Eyeball  Metric  M=4D

• Plotted  all  6  combinations  of  2  out  of  M=4  dimensions 
• BOSLHS  is  visibly  space-filling!

N = 128 N = 4096N = 1024
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Results:  Nested  BOSLHS  Is  Not  Regular



Compared  To  Original,  Nested  BOSLHS 
Less  Regular  But  Higher  Discrepancy

10.2
6



4-D  Example

• Difference  in  4  dimensions  is  in 
choosing  maximally  spaced  bins

• In  2D,  only  22=4  sub-bins  per  level,  
the  2*2=4  end  points  of  1 
“orientation”  (rotated  set  of  
orthogonal  axes)
– If  1 point  in  bin,  new  sub-bin  is 

opposite  old  one

– If  2  points  (1 axis),  2  new  sub-bins 
are  other  axis

– Then  go 1  bin  deeper

• In 4D, 24=16  sub-bins  per  level,  2 
orientations  with  2*4=8  bins  each
– After  first  axis,  randomly  select  order  

of  other  axes  in  same  orientation

– Then  choose  other  orientation

– Then  go  1  bin  deeper



Results: Coverage 
(higher is better) 



Results: Condition # of Correlation
Matrix (lower is better) 



Results: (t,m,s)-net, “t” quality 
metric (lower is better) 



O(N log(N))  BOSLHS Algorithm

1. Start with n = 2M points that are well distributed in (0, 1)M.

2. Select n/2 of the coordinates in each dimension other than 
the rst to negate in such a way as to obtain n points that 
are well distributed in (0, 1) ⊗ (−1, 1)M −1.

3. Reflect the current n points through the origin to create n 
additional mirror points; this ensures that the design is 
symmetric.

4. Translate the 2n points from (−1, 1)M to (0, 2)M , scale 
them to (0, 1)M , and then set n = 2n.

5. Repeat steps 2 through 4 until the desired number of 
points has been obtained, i.e. until n = N.



O(N log(N))  BOSLHS Algorithm

1 2

2

3

3

32

4

4



O(N log(N))  BOSLHS Algorithm

The tough part is step 2

Select n/2 of the coordinates in each dimension other 
than the rst to negate in such a way as to obtain n 
points that are well distributed in (0, 1) ⊗ (−1, 1)M −1 .

The easy (fast) answer is to recast the problem...
• Don't try change signs of dimensions individually
• Send nearby points to octants that are far apart

The Z-order quicksort will put nearby points in 
sequential order in O(N log(N)) ops

We just need a listing of octants in maximally 
spaced order


