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v‘l\ll'agnetically-driven implosions on Z can be used
to create extreme conditions in the laboratory
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We are working toward an evaluation of a new
Magnetized Liner Inertial Fusion (MagLIF)* concept
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Idea: Directly drive solid liner containing fusion fuel
An initial ~10 T axial magnetic field is applied

= Inhibits thermal conduction losses

= Enhances alpha particle energy deposition

= May help stabilize implosion at late times

During implosion, the fuel is heated using the
Z-Beamlet laser (<10 kJ needed)

= Preheating reduces the compression needed to
obtain ignition temperatures to 20-30 on Z

= Preheating reduces the implosion velocity needed
to “only” 100 km/s (slow for ICF)

Simulations suggest scientific breakeven may be
possible on Z (fusion yield = energy into fusion fuel);
something not yet been achieved in any laboratory

* S. A. Slutz et al., “Pulsed-power-driven cylindrical liner implosions of laser preheated
fuel magnetized with an axial field,” Physics of Plasmas 17, 056303 (2010).




———
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A major threat to the concept is the MRT instability;

simulations imply a thick liner can minimize its impact
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 The Magneto-Rayleigh-Taylor
instability degrades the yield as
the aspect ratio is increased
(due to decreased liner pr)
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* Simulations of AR=6 Be liner

* Include ~60 nm surface roughness

and resolve waves down to ~80 um
e Simulations suggest wavelengths
of 200-400 um dominate near

stagnation
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High-quality experimental data is needed for
100 ns implosions to benchmark MagLIF simulations

= Little existing data in relevant regime

= The few magneto-RT instability growth studies
that have been done with solid liners have
>{1us time scales (e.g., PEGASUS¥)

= |n most ~100 ns experiments, liners reach
plasma state quickly during implosions and
strong shocks can develop

= Some work with modulated-diameter wire

arrays done (B. Jones, PRL 2005) but ablation
physics dominates

= MRT studies complicated by diffusion of the
current into the plasma liner

= Distributed magnetic pressure

Radiographic Data

= Local plasma heating & ablation A=2, 0.5 mm
Ay=25 um
* R.E. Reinovsky et al., IEEE Trans. Plasma Sci. (2002). r-h ﬁgggi:al‘
5 | ~6 MA, 7 us rise-time current; 24 mm radius, 20 mm tall, 0.4 mm thick Al 1100. D
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We tested MRT growth predictions on Z using Al liners
with small sinusoidal perturbations (A=200, 400-um)

- 55-60 keV

- pre-shot
radiograph

(W Ka source)

2 mm diam.
W rod on axis
(suppress

_____________

_____________________________

» Solid cylindrical liner (Al 1100 alloy)
* 6.5 mm tall, 6.34 mm diameter, AR=10
» 10 nm surface finish (diamond-turned)

» 12 sinusoidal perturbations:
six 400-um wavelength, 20-um amplitude ,
six 200-um wavelength, 10-um amplitude —

¢ largets made by General Atomics \\-)yﬁichael Jones
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Our Z experiments used 2-frame 6.151 keV
monochromatic crystal backlighting diagnostic

JDetector “°“S'"9 a " | 2-frame 6.151 keV Crystal Imaging
l = |« Monochromatic (~0.5 eV bandpass)
| = = * 15 micron resolution (edge-spread)
Limiting 18 - S T N » Large field of view (10 mm x 4 mm);
_Apenufgs»/?/ y DM adh s S a >2 Megapixel camera
" | - Debris mitigation
= Original concept
= S.A. Pikuz et al., RSI (1997).
= 1.865 keV backlighter at NRL
= Y. Aglitskiy et al., RSI (1999).
Frame 1 Laser Spot
= Explored as NIF diagnostic option
Crystal omera J.A. Koch et al., RSI (1999)
" A. KOCh et al., .
| l Load
P - = Single-frame 1.865 keV and 6.151
i keV implemented on Z facility
\ F?@Q}S 2 Laser Targets = D.B. Sinars et al., RSI (2004).
= Two-frame 6.151 keV on Z facility
Radiograph lines of sight £3° from horizontal = G.R.Bennett et al., RSI (2008).
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The 6.151 keV radiographs have 15 um spatial resolution
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Reproducible drive currents (¥1.5%) and liners
enabled an 8-frame movie to be obtained over 5 shots
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Zooming in, we see ablation, jetting, and small-scale
instabilities in addition to the seeded instability growth
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Zooming in, we see ablation, jetting, and small-scale
instabilities in addition to the seeded instability growth

200 um Data
Ablation 3.3 T 33T " 67.7ns)
| 2.7

Gl 83.0 ns|
The current concentrated near the liner 3-°m

surface at early times heats the outer
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Zooming in, we see ablation, jetting, and small-scale
instabilities in addition to the seeded instability growth

200 um Data

coalesce

Simulated density
map with rB, contours
LASNEX: T.,s ~30eV; T

jets
13

Ablated material

to form jets visible in
the radiographs
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Zooming in, we see ablation, jetting, and small-scale
instabilities in addition to the seeded instability growth

Small-scale instabilities appear to have
similar character to instabilities growing
on initially unperturbed regions

3 z1965a (65.7 ns; 17.2 MA)
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The data is being used to benchmark
our modeling & simulation tools
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Time-dependent dispersion relation Limiting case is growing exponential term,

for the perturbation amplitude* t / N 14!
(92§ € — &)@fo kg(t)dt where
— = kg(t)§ o IP(Y)
ot g=-
. 47TmL R(t)
This has two unstable roots. , _
the decaying solution partly cancels growth

* E.G. Harris, Phys. Fluids 5, 1057 (1962).

but at early times
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Our initial comparisons were against 2D LASNEX—we
have now begun comparisons against 3D GORGON
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Two additional images were obtained using 1-frame,
0° backlighter of unperturbed regions and regions
seeded with small (7»-25 -200 um) perturbations
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Our LASNEX simulations capture the ablation and
jetting well down to ~50 um wavelength scales

(a) Axial Dist. (mm)
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The instabilities in the perturbed regions are
highly-correlated azimuthally in the late frame
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The instabilities in the flat region at that time appear

to be only partially correlated along azimuthal direction
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Our LASNEX simulations capture the perturbation

amplitude growth down to ~50 um wavelength scales
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Penetrating 6.151 keV radiographs of Be liners allow
us to observe both the inner and outer liner surfaces

Example downline 6.151 keV radiograph

22060 Frame 1 (Transmission)

Top-down view of x-ray

path through load region 1.0
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pist. (cm)

We obtained two images of a Be liner during the
implosion, which were Abel-inverted to get a density map
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The results of the Abel inversion are consistent with
the initial mass/length of the liner, show pmax~4.1 g/cc

Running Mass Integral (g/cm) vs. Radius (cm)
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We have collected data on multi-
mode MRT growth in Be liners at
high radial convergence
Beryllium Liner MRT Experiments
25 T T T T T T T
AR=6 LASNEX 1D outer (NOTM.]
AR=6 LASNEX 1D, [norm.] RN
inner e e S N
20 72105 Load Current [MA] v NS —_
22106 Load Current [MA] J# \\\.‘\-; . £
22172 Load Current [MA] / MNY £
22173 Load Current [MA] R %
i / :
g / 3
£ o
: !
E10 / g
. p . é
,// -
/ ~—
5f ,/ >~\\‘\\
/ ) ‘\‘\ { [
0 ____,,,—r’/l/ , , . , \ . l‘\\;_
0 20 40 60 80 100 120 140 160
Time (ns) AR=6:

loutero = 3-47 mm
Minnero = 2.89 mm

25

R.D. McBride et al.,
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density (g/cc)

Z Experiments
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for comparison to simulations

Gorgon 3D Simulations
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These results are just the beginning—many
interesting scientific and practical questions remain!

We have performed the first controlled measurements of MRT growth
in solid liner implosions driven by <1 usecond generators

The data reveal several phenomena such as ablation, jetting, and both
small- and large-scale instability growth. The data are providing insight
into the necessary physics that our simulation tools need to capture.

A few of the many questions remaining:

= Do we need to accurately model the small-scale features seen in
the data (A<50 um), since the characteristic wavelengths near
stagnation are much larger (200-400 um)?

= Can we model MRT growth on “unperturbed” liner surfaces? How
best do we make quantitative comparisons to code results?

= Will adding an axial magnetic field increase the liner stability near
the axis (i.e., when Bz approaches B06)?

= Can we model & measure the wavelength cascading process?
Multi-mode coupling? Flux compression? Helical perturbations?

D.B. Sinars et al., Phys. Rev. Lett. (2010).
D.B. Sinars et al., Phys. Plasmas (2011). r-h Sandia

National
R.D. McBride et al., manuscript in preparation. RN




