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Abstract. The term formal verification refers to the
application of mathematical methods to determining the
validity of a system implementation with respect to a set of
specifications. Formal verification has been used widely in
digital system designs as a way to effectively ensure functional
correctness. There exist two well-studied approaches to formal
verification: Model Checking (MC) and Automated Theorem
Proving (ATP). Of these approaches, ATP is more powerful —
able to handle arbitrarily large and complex systems; however,
it is very rare that a theorem prover proves a theorem’s
validity without human intervention. MC, on the other hand,
requires no human intervention but is limited in ability to very
simple systems due to the state explosion problem. The state
explosion problem is especially dominant in stateful systems
such as memory where the very large state space makes MC
infeasible.

In our work, we explore the trade-offs between ATP and
MC to determine the proper balance in a hybrid approach that
maximizes automation. We show that neither can accomplish
the verification alone, and propose a novel decomposition
method to drastically reduce the computational complexity for
verifying a subset of stateful systems. We demonstrate the
utility of our approach in formally verifying a random access
memory (RAM) implementation and discuss how our
technique could be applied to other stateful systems.

Keywords — formal verification; automated theorem proving;
model checking; BDD; random access memory

1. INTRODUCTION

In certain high consequence systems, the requirement
that safety and liveness properties are upheld is of paramount
importance. The most common method for determining
whether a system implementation is working to spec is
simulation based validation. A large set of test inputs and
expected outputs must be created in an attempt to cover all
runtime paths that the system may exhibit. The system is
then run on the given inputs and checked. Correct operation
during such validation is then used to claim that the system
works correctly and is ready to be put into production.
However, such tests cannot be exhaustive, and the reliance
upon simulation based validation for producing high
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consequence systems is known to be a costly mistake [5][7].
Formal verification aims to eliminate these consequences
by offering mathematically and logically sound techniques
for determining whether a design implementation is
specification adherent. Since its inception, two approaches
have taken hold as viable techniques for formal verification:
Model Checking (MC) and Automated Theorem Proving
(ATP). MC is the exhaustive examination of a system’s
reachable states that ensures desired properties hold. ATP is
the logical derivation of desired properties from a
mathematical definition of the system implementation and a
collection of axioms. Each technique has its own strengths
and weaknesses (as shown in Table I) and neither can really
be considered a cure-all for the formal verification problem.

TABLE 1. AUTOMATED THEOREM PROVING VS MODEL CHECKING
Automated'Theorem Model Checking
Proving
e Ability to handle very | e Easy  generation  of
complex systems model from HDL source
Strengths e Expressive logic o Automatic verification
e Generation of machine | e Generation of counter
checkable proof examples
e Requires human input e Design size limitation
Weaknesses | ® No counter example e Not feasible for complex
e Not automated data path

A key observation made when comparing ATP and MC
is that one’s weakness is the other’s strength. Where ATP is
unable to perform without human intervention, MC requires
no human oversight; and where MC cannot handle complex
systems, ATP is not limited by the system’s complexity.
Since these two techniques are complementary, an obvious
solution would be to combine the best features of each and
create a completely automatable verifier that is not limited to
simple systems.

Much work has been done to this end, and while progress
has been made to combine the techniques of ATP and MC
into a hybrid verification tool, success has been limited to
problems that are not easily generalized.
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Figure 1 — Formal Definition for RAM Kripke Structure

Very early work in combing ATP and MC attempted to
partition a system into properties that are control intensive
(to be used with MC) and data intensive (to be used with
ATP) [11]. The limitation of such an approach is that most
systems, especially high consequence systems, have very
complex interactions between these two categories, making
partitioning infeasible or very hard. Some alternative
approaches emerged to supplement model checking with
proof assistants that aim to decompose a complete
verification into several model-checkable subtasks [9].
Examples of decomposition rules include temporal splitting,
data abstraction, and compositional verification. Among the
listed, abstraction is a commonly used technique that can
reduce the verification of a complete system to the
verification of an abstract system.

Another verification approach aims to loosely integrate
MC and ATP under into deductive environment [12]. This
environment provides capabilities such as modular
debugging and verification through abstraction and MC. The
major obstacle for a tight integration of MC and ATP is the
successful abstraction across domains and discovery of good
abstract representations. Our approach takes advantage of the
automation of MC in combinatorial logic from NuSMV and
avoids the state explosion problem by decomposing our
model into small function preserving partitions. In order to
maintain soundness, we employ a theorem prover (ACL2)
and are consequentially able to scale up verification results
to arbitrarily large models. This approach is general enough
that it can be applied to other digital systems.

We choose RAM as a case study because of its wide
application, especially in high consequence systems. With
state-of-the-art semiconductor process technology, memory
design and verification has drawn a lot of attention in both
analog and digital aspects [8]. Verification of memory has
been an important and challenging problem. Memory is
unique because (1) there are normally a very large number of
cells; (2) each of these cells has identical functionality and
controlled by the same control signals; and 3) there are
generally many structural symmetries in RAM architectures.

Verification of memory started with switch-level
simulation [3], which works very well for small sized
memories. Later on different techniques have been

published, such as symbolic trajectory evaluation (STE) of
memory arrays [10] and bounded model checking of
embedded memories [6]. The STE based verification is
essentially a form of symbolic simulation and is able to
overcome the infeasible simulation coverage issue by
reducing the system model — taking advantage of the
structural symmetry of RAM. Bounded model checking
(BMC) made the handling of large embedded memory
designs feasible through an effective abstract model [6]. In
this approach, each memory bit is abstracted and constraints
are added at every analysis step. However, because BMC is
employed, soundness is not guaranteed for general systems.

In this paper, we present a novel framework for
verification of stateful hardware systems and employ its
utility in verifying a RAM design, emphasizing the
importance of automation and soundness.

In section II, we formally define our RAM model as a
Kripke structure and demonstrate the pitfalls of straight
forward MC. In section IIl we go on to present our
decomposition approach and prove its soundness. We go on
to present our results in section IV and conclude with
suggested future research in section V.

II.  RANDOM ACCESS MEMORY

Before we can discuss the formal verification of a RAM
system, we must first attempt to formally define our system
in a way that is easy to understand.

A. Definitions

We describe a Kripke structure that reflects the semantics
of a generic RAM implementation. Figure 1 formally
describes the finite state w-automaton that we used in model
checking. We define a state as a 5-tuple (I, A4, T, 0,Y) where
I represents the input value, A the input address, T the
Read/Write control bit, O the output value, and Y an ordered
N-length list of M-bit values representing the values being
stored within the RAM.

We define the transition relation between states by the
Boolean relations read and write.

Read. For the read relation, two states S and S' are
related if the following three statements hold.:



AG (((mem[a] & (1« b)) > O) A (status # WRITE | addr +# a)) - AX(mem[a]& (1 < b) > 0)

AG (((mem[a] & (1« b)) = O) A (status # WRITE | addr +# a)) - AX(mem[a]& (1 < b) =0)

AG (input & (1 K b) > 0 A status = WRITE & addr = a) - AX (mem[a] & (1 « b) > 0)

AG (input & (1 K b) = 0 A status = WRITE & addr = a) - AX (mem[a] & (1 « b) =0)

a€Zy,b€EZy

Figure 2 — Optimized liveness specification for memory writes
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Semantically, the read relation ensures that when a state
transition is initiated by a read operation, the next state must
(1) maintain the integrity of values being stored and should
update the output value to either (2) reflect the value being
stored in memory if the address is valid or (3) to O if the
address line is not valid.
1) Write. For the write relation to hold, two states S
and S’ must satisfy the following expressions:
L Vi (#A-Y' =Y)
2. Vi, (i=4-Y =masky(D))
3. 0'=0
These rules ensure that when a state transition is initiated
by a write operation, the next state should (1) maintain
integrity of values Y; where A # i, (2) update the value Y;
where A =i to masky(I), and (3) ensure that the output
value does not change. Notice that these rules were crafted
in order to preserve the safety of the system. That is, the
mask function ensures that only values of the proper bit-
width are stored in memory, and the update step implicitly
ensures that writes to illegal addresses do not corrupt the
memory content.

B. Specifications

We next describe the formal specifications that we want
the model checker to verify. Here, we simply present the
naive specifications expressed in Computation Tree Logic
(CTL). Optimizations for reducing complexity will be
presented in the next section. We enforce two liveness and
one safety properties:

1) Liveness. The first property that we check is whether
our implementation correctly implements the read operation.
We define the property Read Liveness (RL) to be: If the
status bit = READ and the address = A, then in the next
state, the output should be Y [A].

AG(addr = a A status = R) > AX output = mem|a];
a €Zy
The second liveness property ensures that the write
operation is correct. Write Liveness (WL) is defined as: If
the status bit = WRITE and the address = A and the
masked _input =1, then if A is a valid address, in the next

state Y[A] = I will be true. Furthermore, if address # A’

then in the next state, Y[A'] will equal the current value of

Y[A'].

AG (addr = a A status = WRITE A masked_input = i)
- AX mem[a] = j;a € Zy,i € Zyea

AG (addr # a A status = WRITE Amem[a] = k)
- AXmem[a]l =k;a € Zy, k € Z,64
2) Safety - The only safety property we enforce is that at
all states, the values stored in memory should be members
of a specified range of integers defined by the value M in
our definition. In our specifications, we state Safety to be:
For each memory address A, the value stored at Y[A]
should be in the range of values 0 to 2M — 1.
AG (0 < mem[a] Amem[a] < 2M — 1);a € Zy

C. Optimized specifications

In order to obtain viable runtime results for model
checking, we needed to rewrite our Write Liveness property
to avoid O(N - 2M) specifications. We accomplish this by
performing a bit-level comparison across the M bits of data
values. The improved specifications are shown in Figure 2.
Using this optimization, we are able to cover the same

properties in O(N - M) specifications.

D. Limitations

Despite our efforts to express our RAM model in a way
that would make the model checking problem tractable, the
fact of the matter remains that RAM is a stateful system and
subject to the state explosion problem. Unable to model
check RAM of size larger than 100 bytes, we began looking
at other approaches to the problem. Using a theorem prover,
we would be able to trivially verify our properties, however,
for our solution, we required a completely automatable
system, and thus direct theorem proving would not suffice.

Our next thought was to take a hybrid approach. We
developed an idea for decomposing RAM into smaller pieces
and model checking the pieces individually. While this
seems trivial, the implications of being able to reduce an
intractable problem into smaller tractable parts were very
appealing. Our first step would be to formally prove that
such an approach would be work.
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Figure 3 Syntax and operational semantics for RAM as modeled in ACL2

III. DECOMPOSITION OF RAM

In order to maintain soundness in our RAM verifier while
taking advantage of a decomposition property, we had to first
ensure that the decomposition step was sound and did not
affect the system’s validity. We used the ACL2[1] theorem
prover to prove that a RAM satisfying the properties
described in section IV can be divided into small elements
that will also satisfy the properties. Furthermore, we proved
that two smaller RAMs that satisfy the properties could be
concatenated together and the resulting RAM would also
satisfy the properties. Finally, we defined the mapping for
READ and WRITE operations from the large RAM onto the
decomposed pieces and prove their semantic equivalence.

A. Decomposition Proof

In ACL2, we model memory as a 3-tuple (m, k, s) where
m is an ordered list of size s and k is the value mask that is
applied upon memory writes.

We define the syntax and operational semantics for our
model in Figure 3. In the remainder of this section, we prove
property adherence for our model, the equivalence of the
decomposed operations with their corresponding simple
operations on the original memory, and conclude with a
soundness proof for decomposed property verification. In
the following theorems, let R = (m, k,s) € RAM,p € Z,.

Theorem 1 (Liveness for Read and Write). If the read

operation is invoked with a valid memory address, then the
resulting output should be the corresponding value located in
memory. Similarly, if the write operation is invoked with a
valid memory address, then the resulting memory should be
identical to the original with the exception that the value at
the designated memory address has been updated to reflect
the input value.

Proof. The proof of this theorem is a straight-forward
application of the definitions for Read and Write operations.

Theorem 2 (Safety for Read and Write). When a write
operation is performed on a RAM with a valid memory
address, given that the RAM is initially safe, the resulting
RAM will also be safe. Here, safety is defined as in section
III, namely that after every read or write operation, every
value being stored should be within a specified range.

Proof. For this theorem, we perform an exhaustive proof
across operations (namely read and write). For read
operations, the proof is trivial since reads have no affects on
the values stored in memory, as shown in the operational
semantics.  Writes performed, however, do affect the
memory store. Let R = (4,k,0) be a RAM that satisfies
safety with respect to the system parameter k = 2" — 1. We
aim to prove the safety of R’ = write(R,adr,val) .
Consider that R' is safe iff (val & k) is in the range (0.. k).
By definition, (val & k) is in the range (0..k). Since R is
given to be safe, it follows that (0..x) S (0..k) and that
safety is preserved.



Theorem 3 (Decomposition and Inverse). = When
memory is decomposed into two partitions, these partitions
can each be classified as a RAM by definition. Furthermore,
the composition of two RAMs sharing the same mask value
into a single memory yields a RAM. Finally, the ordered
composition of partitions resulting from decomposition of a
RAM results in a RAM that is semantically equivalent to the
original.

compose(Ry, R;) = R & decompose(R,p) = (Ry, R1)

Theorem 4 (Decomposed Read Liveness). If a
decomposed read operation is performed on two partitions of
RAM, the resulting output is the same as that of the read
operation performed on the parent RAM.

Let R’ = decompose(R,p)
readgecomp(Ro, Ry, addr)
= read(compose(Ry, R1), addr)
read (R, addr)

Theorem 5 (Decomposed Write Liveness). When a
decomposed write operation is performed on two partitions
of a parent RAM, the resulting partitions are equivalent to
those resulting from the decomposition of the updated RAM.

Let R' = decompose(R,p)
Writegecomp (Ro, Ry, adr,val)
= decompose(write(R, adr, val), p)

Proof. Proofs of theorems 3 — 5 follow from a
straightforward application of definitions from Figure 3.

Theorem 6 (Decomposition Soundness). If a RAM is
decomposed into partitions, and those partitions satisfy the
safety and liveness properties for RAM stated in section
II1.B, then the original RAM also satisfies these properties.

Proof. For decomposition soundness, we prove each
property separately as its own lemma, namely Read Liveness
(RL), Write Liveness (WL), and Safety. In the following
lemmas, let decompose(R,p) = (R}, R1),p € Zj.

Lemma 1. RL(R{) ARL(R}) = RL(R).

Proof.  Let Ry = (i, k,p). By definition, RL(Ry) =
AG (addr = i A status = R) - AX output = p,lil;i €
Z,. Similarly, let Ry = (uy,k,s —p). Again, by definition,
this time taking the offset p into account RL(R]) =
AG (addr = (i — p) A status = R) - AX output =
pzli = pl;i € Zs/Z,. From here, it follows RL(Ry) A
RL(R]) = AG (addr =i A status = R) - AX output =
memlil; i € Zy,(s_p) = Zs = RL(R).

Lemma 2. WL(R)) AWL(R;) » WL(R).

Lemma 3. Safety(Ry) A Safety(R;) = Safety(R).

Proof. For Lemmas 2 and 3, the proof takes a similar
form to the proof given in Lemma 1. The underlying
property that allows decomposition soundness to hold is the
fact that all semantics of RAM can be described in a
piecewise fashion and that each property is enforced over
these individual pieces.

From these soundness lemmas, we conclude that
decomposition is sound with respect to our properties.

B. Implications

The utility of such a decomposition property is an
obvious advantage to model checking as it allows one to
convert a problem of size O(N - 2M) into N problems of size

0(2M). Furthermore, because the transition space of such a
graph is sparse, the construction of an efficient Binary
Decision Diagram (BDD) is easy, further reducing the
problem’s complexity into something computable on
commodity hardware.

In addition to reduced complexity, the division of one
problem into N problems is an obvious candidate for parallel
computing, thus yielding further computational benefits.

IV. RESULTS

In this section, we describe the run-time performance for
our verification system. We begin with a runtime analysis
using a model checker only. We choose NuSMV, an open
source symbolic model checker as our base line for
measuring performance.

A. NuSMV Model Checking

We captured NuSMV’s performance for increasingly
large memory size. Recall that in our model, M is the word
width and N is the number of words being modeled in our
RAM. We found that we could achieve the best performance
when running with coi, df, and dynamic flags enabled (cone-
of-influence, do-not-compute-reachable-set, and dynamic-
variable-reordering respectively). We refer the reader to the
user manual for a detailed description of how these options
improve the efficiency for model checking in NuSMV [2].
All results here were obtained on a Windows 7 64-bit PC
with an Intel Core 15-2500 3.3GHz CPU and 8GB of RAM.

We first look at a runtime comparison using our initial
set of naive specifications that included some Linear
Temporal Logic (LTL) specifications not mentioned here
(Fig. 4-a). Sampling ten runs per data point, we demonstrate
the importance of efficient specifications and conclude that
beyond a memory size of about 12 words, this approach
would not complete in a reasonable amount of time (we
terminated execution at 3 days for M=16).

B. Hybrid Verifier

We next compare runtimes across our two verification
approaches — first on NuSMV with optimized specifications,
and then in our hybrid approach (Fig. 4-b). The performance
gain from efficient specifications is obvious, however, we
again see state explosion beyond about 600 bits of RAM.
We attribute this success of model checking 2690 states to
NuSMV’s efficient BDD representation for our model, but
reiterate that most modern digital systems have more than
100 bytes of RAM.

Our hybrid verifier performed the best over-all. In the
graph, we compute the total decomposition runtime as the
time required to verify our proof in ACL2 + the time
required to run N instances of decomposed RAM in
NuSMV. We expect the linear growth to continue well
beyond the point where simple model checking fails.
Furthermore, we speculate that parallelization would yield
even better runtimes, and we note that the re-verification of
our machine proof is actually a one-time cost but we decided
to include it for completeness.
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V.  CONCLUSION REFERENCES
In this paper we present a novel approach to formally  [l1] ACL2 Automated Theorem Proving Tool

verifying the subset of stateful digital systems that exhibits
the decomposition property as defined here. When utilized,
this property allows a verifier to model check partitions of
the system individually, eliminating the unnecessary
overhead of checking specifications in states that are
inconsequential to the specification’s validity and avoiding
the state explosion problem.

We emphasize that using this framework, we maximize
automation — a key feature in promoting its use in design
verification. Furthermore, because we integrate the use of a
theorem prover to validate our decomposition property, our
verifier is sound.

In the future, we hope to include other digital systems in
this class of decomposable designs and possibly build a
classifier that is able to automatically determine when a
state space can be partitioned without compromising
soundness.  Such an automated system would prove
invaluable in promoting the use of formal verification for
creating provably secure systems.
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