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Abstract. The term formal verification refers to the 
application of mathematical methods to determining the 
validity of a system implementation with respect to a set of 
specifications.  Formal verification has been used widely in 
digital system designs as a way to effectively ensure functional 
correctness. There exist two well-studied approaches to formal 
verification: Model Checking (MC) and Automated Theorem 
Proving (ATP).  Of these approaches, ATP is more powerful –
able to handle arbitrarily large and complex systems; however, 
it is very rare that a theorem prover proves a theorem’s 
validity without human intervention.  MC, on the other hand, 
requires no human intervention but is limited in ability to very 
simple systems due to the state explosion problem.  The state 
explosion problem is especially dominant in stateful systems 
such as memory where the very large state space makes MC 
infeasible.

In our work, we explore the trade-offs between ATP and 
MC to determine the proper balance in a hybrid approach that
maximizes automation.  We show that neither can accomplish 
the verification alone, and propose a novel decomposition 
method to drastically reduce the computational complexity for 
verifying a subset of stateful systems.  We demonstrate the 
utility of our approach in formally verifying a random access 
memory (RAM) implementation and discuss how our 
technique could be applied to other stateful systems.

Keywords – formal verification; automated theorem proving;
model checking; BDD; random access memory

I. INTRODUCTION

In certain high consequence systems, the requirement 
that safety and liveness properties are upheld is of paramount 
importance.  The most common method for determining 
whether a system implementation is working to spec is 
simulation based validation.  A large set of test inputs and 
expected outputs must be created in an attempt to cover all 
runtime paths that the system may exhibit.  The system is 
then run on the given inputs and checked.  Correct operation 
during such validation is then used to claim that the system 
works correctly and is ready to be put into production.  
However, such tests cannot be exhaustive, and the reliance 
upon simulation based validation for producing high 

consequence systems is known to be a costly mistake [5][7].
Formal verification aims to eliminate these consequences 

by offering mathematically and logically sound techniques 
for determining whether a design implementation is 
specification adherent.  Since its inception, two approaches 
have taken hold as viable techniques for formal verification: 
Model Checking (MC) and Automated Theorem Proving 
(ATP). MC is the exhaustive examination of a system’s 
reachable states that ensures desired properties hold. ATP is 
the logical derivation of desired properties from a 
mathematical definition of the system implementation and a 
collection of axioms.  Each technique has its own strengths 
and weaknesses (as shown in Table I) and neither can really 
be considered a cure-all for the formal verification problem.

TABLE I. AUTOMATED THEOREM PROVING VS MODEL CHECKING

Automated Theorem 
Proving

Model Checking

Strengths

 Ability to handle very 
complex systems

 Expressive logic
 Generation of machine 

checkable proof

 Easy generation of  
model from HDL source

 Automatic verification
 Generation of counter 

examples

Weaknesses
 Requires human input 
 No counter example
 Not automated

 Design size limitation
 Not feasible for complex 

data path

A key observation made when comparing ATP and MC 
is that one’s weakness is the other’s strength.  Where ATP is 
unable to perform without human intervention, MC requires 
no human oversight; and where MC cannot handle complex 
systems, ATP is not limited by the system’s complexity.  
Since these two techniques are complementary, an obvious
solution would be to combine the best features of each and 
create a completely automatable verifier that is not limited to 
simple systems.

Much work has been done to this end, and while progress 
has been made to combine the techniques of ATP and MC 
into a hybrid verification tool, success has been limited to 
problems that are not easily generalized. 
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Very early work in combing ATP and MC attempted to 
partition a system into properties that are control intensive 
(to be used with MC) and data intensive (to be used with 
ATP) [11]. The limitation of such an approach is that most 
systems, especially high consequence systems, have very 
complex interactions between these two categories, making 
partitioning infeasible or very hard. Some alternative 
approaches emerged to supplement model checking with 
proof assistants that aim to decompose a complete 
verification into several model-checkable subtasks [9].
Examples of decomposition rules include temporal splitting, 
data abstraction, and compositional verification. Among the 
listed, abstraction is a commonly used technique that can 
reduce the verification of a complete system to the 
verification of an abstract system.

Another verification approach aims to loosely integrate 
MC and ATP under into deductive environment [12]. This
environment provides capabilities such as modular 
debugging and verification through abstraction and MC. The 
major obstacle for a tight integration of MC and ATP is the
successful abstraction across domains and discovery of good 
abstract representations. Our approach takes advantage of the 
automation of MC in combinatorial logic from NuSMV and 
avoids the state explosion problem by decomposing our 
model into small function preserving partitions. In order to 
maintain soundness, we employ a theorem prover (ACL2)
and are consequentially able to scale up verification results
to arbitrarily large models. This approach is general enough 
that it can be applied to other digital systems.

We choose RAM as a case study because of its wide 
application, especially in high consequence systems. With 
state-of-the-art semiconductor process technology, memory 
design and verification has drawn a lot of attention in both
analog and digital aspects [8]. Verification of memory has 
been an important and challenging problem. Memory is 
unique because (1) there are normally a very large number of 
cells; (2) each of these cells has identical functionality and 
controlled by the same control signals; and 3) there are 
generally many structural symmetries in RAM architectures.

Verification of memory started with switch-level 
simulation [3], which works very well for small sized 
memories. Later on different techniques have been 

published, such as symbolic trajectory evaluation (STE) of 
memory arrays [10] and bounded model checking of 
embedded memories [6]. The STE based verification is 
essentially a form of symbolic simulation and is able to 
overcome the infeasible simulation coverage issue by 
reducing the system model – taking advantage of the 
structural symmetry of RAM. Bounded model checking 
(BMC) made the handling of large embedded memory 
designs feasible through an effective abstract model [6]. In 
this approach, each memory bit is abstracted and constraints 
are added at every analysis step. However, because BMC is 
employed, soundness is not guaranteed for general systems. 

In this paper, we present a novel framework for 
verification of stateful hardware systems and employ its 
utility in verifying a RAM design, emphasizing the 
importance of automation and soundness.  

In section II, we formally define our RAM model as a 
Kripke structure and demonstrate the pitfalls of straight 
forward MC.  In section III we go on to present our 
decomposition approach and prove its soundness.  We go on 
to present our results in section IV and conclude with 
suggested future research in section V.

II. RANDOM ACCESS MEMORY

Before we can discuss the formal verification of a RAM 
system, we must first attempt to formally define our system 
in a way that is easy to understand.

A. Definitions

We describe a Kripke structure that reflects the semantics 
of a generic RAM implementation. Figure 1 formally 
describes the finite state �-automaton that we used in model 
checking.  We define a state as a 5-tuple (�, �, �, �, �) where 
� represents the input value, � the input address, � the 
Read/Write control bit, � the output value, and � an ordered 
�-length list of �-bit values representing the values being 
stored within the RAM.

We define the transition relation between states by the 
Boolean relations ���� and �����.

Read.  For the ���� relation, two states � and �� are 
related if the following three statements hold:

� =  {(�, �, �, �, �)|� ∈ ℤ��� , � ∈ ℤ, � ∈ {����, �����}, � ∈ ℤ��� , � ∈ ℤ�
� }

�� = (0,0, ⊥, 0,0�)
� ⊆ � × � = {(�, ��) | �� = ���� ∧ ����(�, ��) ∨ �� = ����� ∧ �����(�, ��)}

�: � → 2�� =  ��(�, �, �, �, �)� = {����� = �, ������� = �, ������� = �, ������ = �} ∪ {������� = ��  |� ∈ ��}

�����(�, �, �, �, �), (��, ��, �� , ��, ��)� = ��(��
� = ��)

�∈��

� ∧ (� ∈ ℤ� → �� = ��) ∧ (� ∉ ℤ� → �� = 0 )

������(�, �, �, �, �), (��, ��, ��, ��, ��)� = ��(� ≠ � → ��
� = ��) ∧ �� = � → ��

� = �����(�)�

�∈��

� ∧ (�� = �)

�����(�) = � & (2� − 1), Where “&” is the bitwise “AND” operation.

Figure 1 – Formal Definition for RAM Kripke Structure



1. ∀�∈��
��

� = ��

2. � ∈ ℤ� → �� = ��

3. � ∉ ℤ� → �� = 0
Semantically, the ���� relation ensures that when a state 

transition is initiated by a read operation, the next state must 
(1) maintain the integrity of values being stored and should 
update the output value to either (2) reflect the value being 
stored in memory if the address is valid or (3) to 0 if the 
address line is not valid.

1) Write.  For the ����� relation to hold, two states �
and �� must satisfy the following expressions:

1. ∀�∈��
(� ≠ � → ��

� = ��)

2. ∀�∈��
�� = � → ��

� = �����(�)�

3. �� = �
These rules ensure that when a state transition is initiated 

by a write operation, the next state should (1) maintain 
integrity of values �� where � ≠ � , (2) update the value ��

where � = � to �����(�) , and (3) ensure that the output 
value does not change.   Notice that these rules were crafted 
in order to preserve the safety of the system.  That is, the 
���� function ensures that only values of the proper bit-
width are stored in memory, and the update step implicitly
ensures that writes to illegal addresses do not corrupt the 
memory content.

B. Specifications

We next describe the formal specifications that we want 
the model checker to verify.  Here, we simply present the 
naive specifications expressed in Computation Tree Logic 
(CTL).  Optimizations for reducing complexity will be 
presented in the next section.  We enforce two liveness and 
one safety properties:

1) Liveness. The first property that we check is whether 
our implementation correctly implements the read operation.  
We define the property Read Liveness (RL) to be: If the 
status bit = ���� and the address = �, then in the next 
state, the output should be �[�].

��(���� = � ∧ ������ = �) → �� ������ = ���[�];
� ∈ ℤ�

The second liveness property ensures that the write 
operation is correct.  Write Liveness (WL) is defined as: If 
the status bit = ����� and the address = � and the 
masked_input = �, then if � is a valid address, in the next 

state �[�] = � will be true.  Furthermore, if address ≠ ��

then in the next state, �[��] will equal the current value of 
�[��].
�� (���� = � ∧ ������ = ����� ∧ ������_����� = �)

→ �� ���[�] = �; � ∈ ℤ� , � ∈ ℤ���

�� (���� ≠ � ∧ ������ = ����� ∧ ���[�] = �)
→ �� ���[�] = �; � ∈ ℤ� , � ∈ ℤ���

2) Safety - The only safety property we enforce is that at 
all states, the values stored in memory should be members 
of a specified range of integers defined by the value � in 
our definition.  In our specifications, we state Safety to be: 
For each memory address A, the value stored at Y[A] 
should be in the range of values 0 to 2� − 1.

�� (0 ≤ ���[�] ∧ ���[�] ≤  2� − 1); � ∈ ℤ�

C. Optimized specifications

In order to obtain viable runtime results for model 
checking, we needed to rewrite our Write Liveness property 
to avoid �(� ⋅ 2�) specifications.  We accomplish this by 
performing a bit-level comparison across the � bits of data 
values.  The improved specifications are shown in Figure 2.  
Using this optimization, we are able to cover the same 
properties in �(� ⋅ �) specifications.

D. Limitations

Despite our efforts to express our RAM model in a way 
that would make the model checking problem tractable, the 
fact of the matter remains that RAM is a stateful system and 
subject to the state explosion problem. Unable to model 
check RAM of size larger than 100 bytes, we began looking 
at other approaches to the problem. Using a theorem prover, 
we would be able to trivially verify our properties, however, 
for our solution, we required a completely automatable 
system, and thus direct theorem proving would not suffice.

Our next thought was to take a hybrid approach. We 
developed an idea for decomposing RAM into smaller pieces 
and model checking the pieces individually.  While this 
seems trivial, the implications of being able to reduce an 
intractable problem into smaller tractable parts were very 
appealing.  Our first step would be to formally prove that 
such an approach would be work.

�� ������[�] & (1 ≪ �)� > 0� ∧ (������ ≠ ����� | ���� ≠ �)� → ��(���[�]& (1 ≪ �) > 0)

�� ������[�] & (1 ≪ �)� = 0� ∧ (������ ≠ ����� | ���� ≠ �)� → ��(���[�]& (1 ≪ �) = 0)

�� (����� & (1 ≪ �) > 0 ∧ ������ = ����� & ���� = �) → �� (���[�] & (1 ≪ �) > 0)

�� (����� & (1 ≪ �) = 0 ∧ ������ = ����� & ���� = �) → �� (���[�] & (1 ≪ �) = 0)

� ∈ ℤ� , � ∈ ℤ�

Figure 2 – Optimized liveness specification for memory writes



III. DECOMPOSITION OF RAM

In order to maintain soundness in our RAM verifier while 
taking advantage of a decomposition property, we had to first 
ensure that the decomposition step was sound and did not 
affect the system’s validity.  We used the ACL2[1] theorem 
prover to prove that a RAM satisfying the properties 
described in section IV can be divided into small elements
that will also satisfy the properties.  Furthermore, we proved 
that two smaller RAMs that satisfy the properties could be 
concatenated together and the resulting RAM would also 
satisfy the properties.  Finally, we defined the mapping for 
���� and ����� operations from the large RAM onto the 
decomposed pieces and prove their semantic equivalence.

A. Decomposition Proof

In ACL2, we model memory as a 3-tuple (�, �, �) where 
� is an ordered list of size � and � is the value mask that is 
applied upon memory writes.

We define the syntax and operational semantics for our 
model in Figure 3.  In the remainder of this section, we prove 
property adherence for our model, the equivalence of the
decomposed operations with their corresponding simple 
operations on the original memory, and conclude with a 
soundness proof for decomposed property verification.  In 
the following theorems, let � = (�, �, �) ∈ ���, � ∈ ℤ�.

Theorem 1 (Liveness for Read and Write). If the read 

operation is invoked with a valid memory address, then the 
resulting output should be the corresponding value located in 
memory.  Similarly, if the write operation is invoked with a 
valid memory address, then the resulting memory should be 
identical to the original with the exception that the value at 
the designated memory address has been updated to reflect 
the input value.

Proof.  The proof of this theorem is a straight-forward 
application of the definitions for Read and Write operations.

Theorem  2 (Safety for Read and Write).  When a write 
operation is performed on a RAM with a valid memory 
address, given that the RAM is initially safe, the resulting 
RAM will also be safe.  Here, safety is defined as in section 
III, namely that after every read or write operation, every 
value being stored should be within a specified range. 

Proof.  For this theorem, we perform an exhaustive proof 
across operations (namely read and write).  For read 
operations, the proof is trivial since reads have no affects on 
the values stored in memory, as shown in the operational 
semantics.  Writes performed, however, do affect the 
memory store.  Let � = (�, �, �) be a RAM that satisfies 
safety with respect to the system parameter � = 2� − 1.  We 
aim to prove the safety of �� = �����(�, ���, ���) .  
Consider that �� is safe iff (��� & �) is in the range (0. . �).  
By definition, (��� & �) is in the range (0. . �).  Since � is 
given to be safe, it follows that (0. . �) ⊆ (0. . �) and that 
safety is preserved.

(��� ≥ 0) ∧ (��� < �)

�����(�, �, �), ���� ⟶ ����

(������ ����)

(��� ≥ 0) ∧ (��� < �)

������(�, �, �), ���, ���� ⟶ ��(�..�����) ∷ (��� & �) ∷ �(�����)..(���), �, ��
 (������ �����)

(� > 0) ∧ (� < �)

����������(�, �, �), �� ⟶ ����..(���), �, ��, ���..(���), �, (� − �)� �
(�������������)

��������(�� , �, ��), (��, �, ��)� ⟶ (�� ∷ �� , �, �� + ��)
(�����������)

(��� ≥ 0) ∧ (��� < �� + ��)

�����������(�� , �, ��), (��, �, ��), ���� ⟶ ���� < ��?  �����(��, �, ��), ���� ∶  �����(��, �, ��), ��� − ����
(���������� ����)

(��� ≥ 0) ∧ (��� < �� + ��)

������������(��, �, ��), (��, �, ��), ���, ���� ⟶

���� < ��? �������(�� , �, ��), ���, ����, (��, �, ��)� ∶ �(��, �, ��), ������(��, �, ��), ��� − �� , ������

(���������� �����)

(�, �, �) RAM
� ∈ ℤ��

� , � ≤ � value-list
� ∈ {0,1}∗ mask
� = ‖�‖ ∈ ℤ� size
([0,0, … ,0], {1}�, �) Initial RAM

Figure 3 Syntax and operational semantics for RAM as modeled in ACL2



Theorem 3 (Decomposition and Inverse).  When 
memory is decomposed into two partitions, these partitions 
can each be classified as a RAM by definition.  Furthermore, 
the composition of two RAMs sharing the same mask value 
into a single memory yields a RAM.  Finally, the ordered 
composition of partitions resulting from decomposition of a 
RAM results in a RAM that is semantically equivalent to the 
original.

�������(��
� , ��

� ) = � ↔ ���������(�, �) = (��
� , ��

� )
Theorem 4 (Decomposed Read Liveness).  If a 

decomposed read operation is performed on two partitions of 
RAM, the resulting output is the same as that of the read 
operation performed on the parent RAM.  

��� �� = ���������(�, �)
����������(��

� , ��
� , ����)
≡ ����(�������(��

� , ��
� ), ����)

≡ ����(�, ����) 
Theorem 5 (Decomposed Write Liveness).  When a 

decomposed write operation is performed on two partitions 
of a parent RAM, the resulting partitions are equivalent to 
those resulting from the decomposition of the updated RAM. 

��� �′ = ���������(�, �)
�����������(��

� , ��
� , ���, ���)

≡ ���������(�����(�, ���, ���), �)
Proof.  Proofs of theorems 3 – 5 follow from a 

straightforward application of definitions from Figure 3.
Theorem 6 (Decomposition Soundness).  If a RAM is 

decomposed into partitions, and those partitions satisfy the 
safety and liveness properties for RAM stated in section 
III.B, then the original RAM also satisfies these properties.

Proof.  For decomposition soundness, we prove each 
property separately as its own lemma, namely Read Liveness 
(RL), Write Liveness (WL), and Safety.  In the following 
lemmas, let ���������(�, �) = (��

� , ��
� ), � ∈ ℤ�.

Lemma 1. ��(��
� ) ∧ ��(��

� ) → ��(�).
Proof.  Let  ��

� = (��, �, �).  By definition , ��(��
� ) ≡

 �� (���� = � ∧ ������ = �) → �� ������ = ��[�]; � ∈
ℤ� .  Similarly, let ��

� = (��, �, � − �).  Again, by definition,
this time taking the offset p into account ��(��

� ) =
�� (���� = (� − �) ∧ ������ = �) → �� ������ =
��[� − �]; � ∈ ℤ� ℤ�⁄ .   From here, it follows  ��(��

� ) ∧
��(��

� ) ≡  �� (���� = � ∧ ������ = �) → �� ������ =
���[�]; � ∈ ℤ��(���) = ℤ� = ��(�).

Lemma 2. ��(��
� ) ∧ ��(��

� ) → ��(�).
Lemma 3. ������(��

� ) ∧ ������(��
� ) → ������(�).

Proof. For Lemmas 2 and 3, the proof takes a similar 
form to the proof given in Lemma 1.  The underlying 
property that allows decomposition soundness to hold is the 
fact that all semantics of RAM can be described in a 
piecewise fashion and that each property is enforced over 
these individual pieces.

From these soundness lemmas, we conclude that 
decomposition is sound with respect to our properties.

B. Implications

The utility of such a decomposition property is an 
obvious advantage to model checking as it allows one to 
convert a problem of size �(� ⋅ 2�) into � problems of size 

�(2�).  Furthermore, because the transition space of such a 
graph is sparse, the construction of an efficient Binary 
Decision Diagram (BDD) is easy, further reducing the 
problem’s complexity into something computable on 
commodity hardware.

In addition to reduced complexity, the division of one 
problem into � problems is an obvious candidate for parallel 
computing, thus yielding further computational benefits.

IV. RESULTS

In this section, we describe the run-time performance for 
our verification system.  We begin with a runtime analysis 
using a model checker only.  We choose NuSMV, an open 
source symbolic model checker as our base line for 
measuring performance. 

A. NuSMV Model Checking

We captured NuSMV’s performance for increasingly 
large memory size.  Recall that in our model, � is the word 
width and � is the number of words being modeled in our 
RAM.  We found that we could achieve the best performance 
when running with coi, df, and dynamic flags enabled (cone-
of-influence, do-not-compute-reachable-set, and dynamic-
variable-reordering respectively).  We refer the reader to the 
user manual for a detailed description of how these options
improve the efficiency for model checking in NuSMV [2].  
All results here were obtained on a Windows 7 64-bit PC 
with an Intel Core i5-2500 3.3GHz CPU and 8GB of RAM.

We first look at a runtime comparison using our initial 
set of naïve specifications that included some Linear 
Temporal Logic (LTL) specifications not mentioned here 
(Fig. 4-a).  Sampling ten runs per data point, we demonstrate 
the importance of efficient specifications and conclude that 
beyond a memory size of about 12 words, this approach 
would not complete in a reasonable amount of time (we 
terminated execution at 3 days for M=16).

B. Hybrid Verifier

We next compare runtimes across our two verification 
approaches – first on NuSMV with optimized specifications, 
and then in our hybrid approach (Fig. 4-b).  The performance 
gain from efficient specifications is obvious, however, we 
again see state explosion beyond about 600 bits of RAM.  
We attribute this success of model checking 2��� states to 
NuSMV’s efficient BDD representation for our model, but 
reiterate that most modern digital systems have more than 
100 bytes of RAM.

Our hybrid verifier performed the best over-all.  In the 
graph, we compute the total decomposition runtime as the 
time required to verify our proof in ACL2 + the time 
required to run � instances of decomposed RAM in 
NuSMV.  We expect the linear growth to continue well 
beyond the point where simple model checking fails.  
Furthermore, we speculate that parallelization would yield 
even better runtimes, and we note that the re-verification of 
our machine proof is actually a one-time cost but we decided 
to include it for completeness.



V. CONCLUSION

In this paper we present a novel approach to formally 
verifying the subset of stateful digital systems that exhibits 
the decomposition property as defined here.  When utilized, 
this property allows a verifier to model check partitions of 
the system individually, eliminating the unnecessary 
overhead of checking specifications in states that are 
inconsequential to the specification’s validity and avoiding 
the state explosion problem.

We emphasize that using this framework, we maximize 
automation – a key feature in promoting its use in design 
verification.  Furthermore, because we integrate the use of a 
theorem prover to validate our decomposition property, our 
verifier is sound.

In the future, we hope to include other digital systems in 
this class of decomposable designs and possibly build a 
classifier that is able to automatically determine when a 
state space can be partitioned without compromising 
soundness.  Such an automated system would prove 
invaluable in promoting the use of formal verification for
creating provably secure systems.
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Figure 4a&b Runtime comparisons for RAM verification system. 


