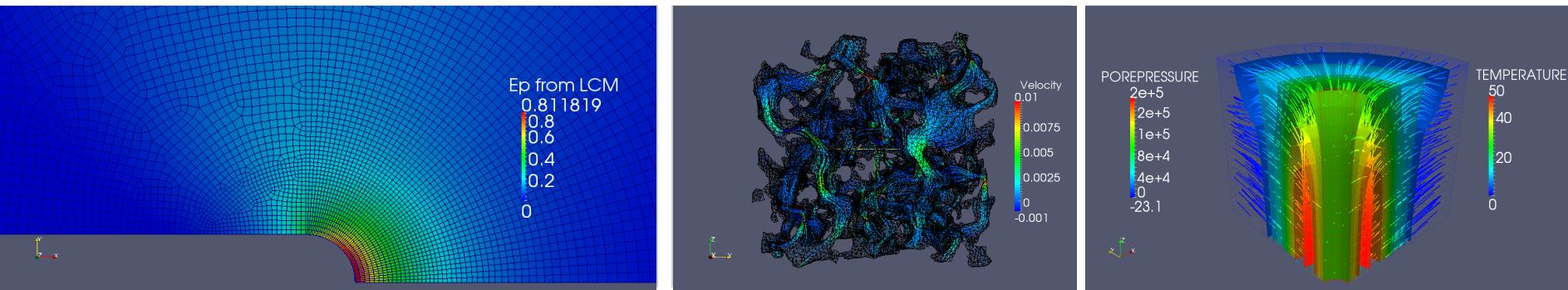


Exceptional service in the national interest



A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain

WaiChing Sun, Jakob T Ostien, James W Foulk III

Mechanics of Materials Department

Sandia National Laboratories, California

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

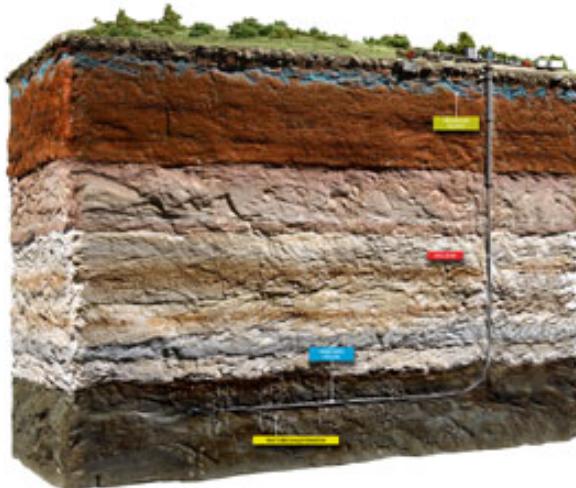
Collaborators on Related Projects

- James W Foulk III, Sandia National Laboratories, CA
- Alejandro Mota, Sandia National Laboratories, CA
- Qiushi Chen, Sandia National Laboratories, CA (now Clemson University)
- Jonathan A Zimmerman, Sandia National Laboratories, CA
- Andrew Salinger, Sandia National Laboratories, NM

Motivations

Geothermal energy

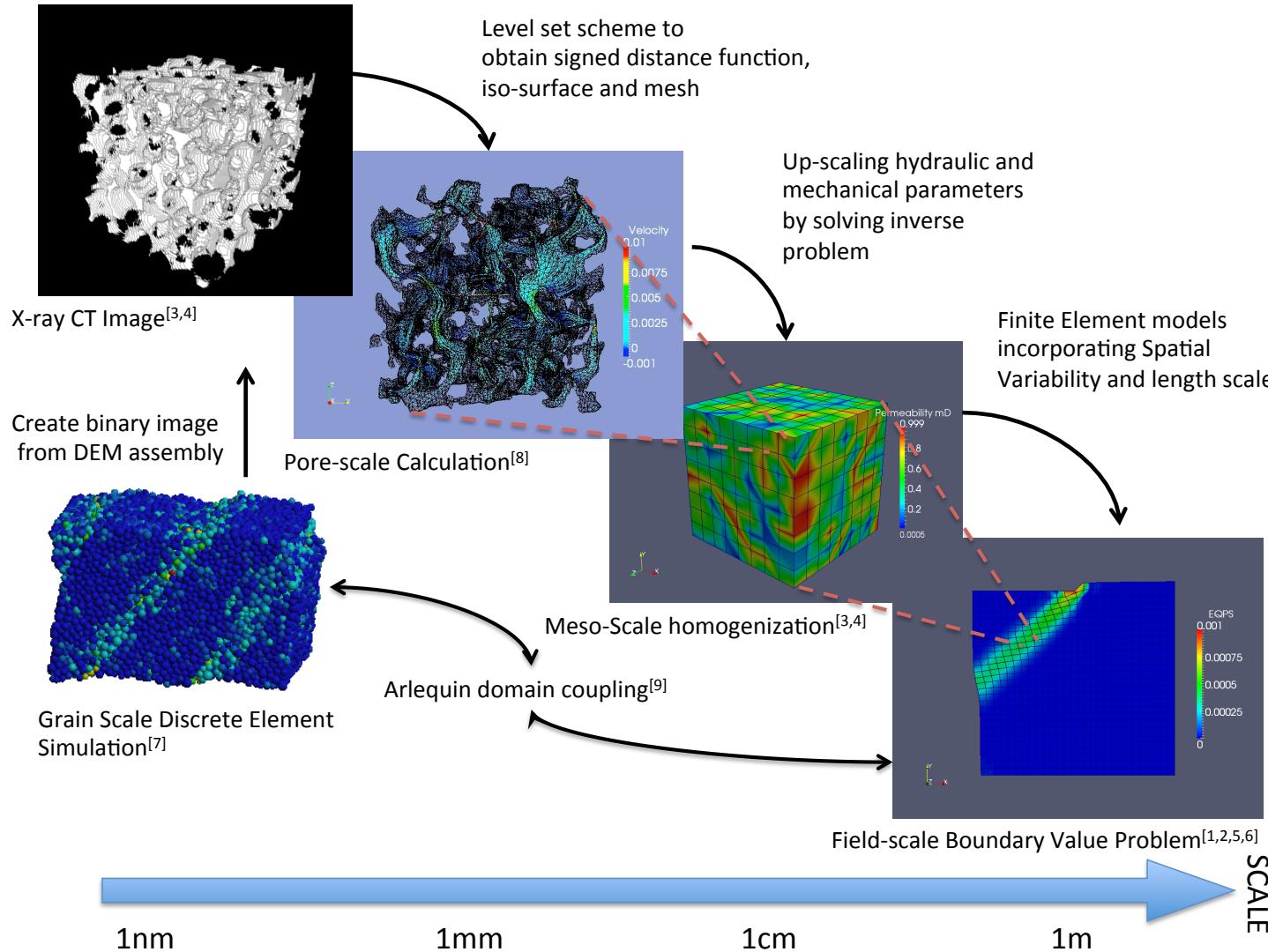
Rainfall induced slope instability



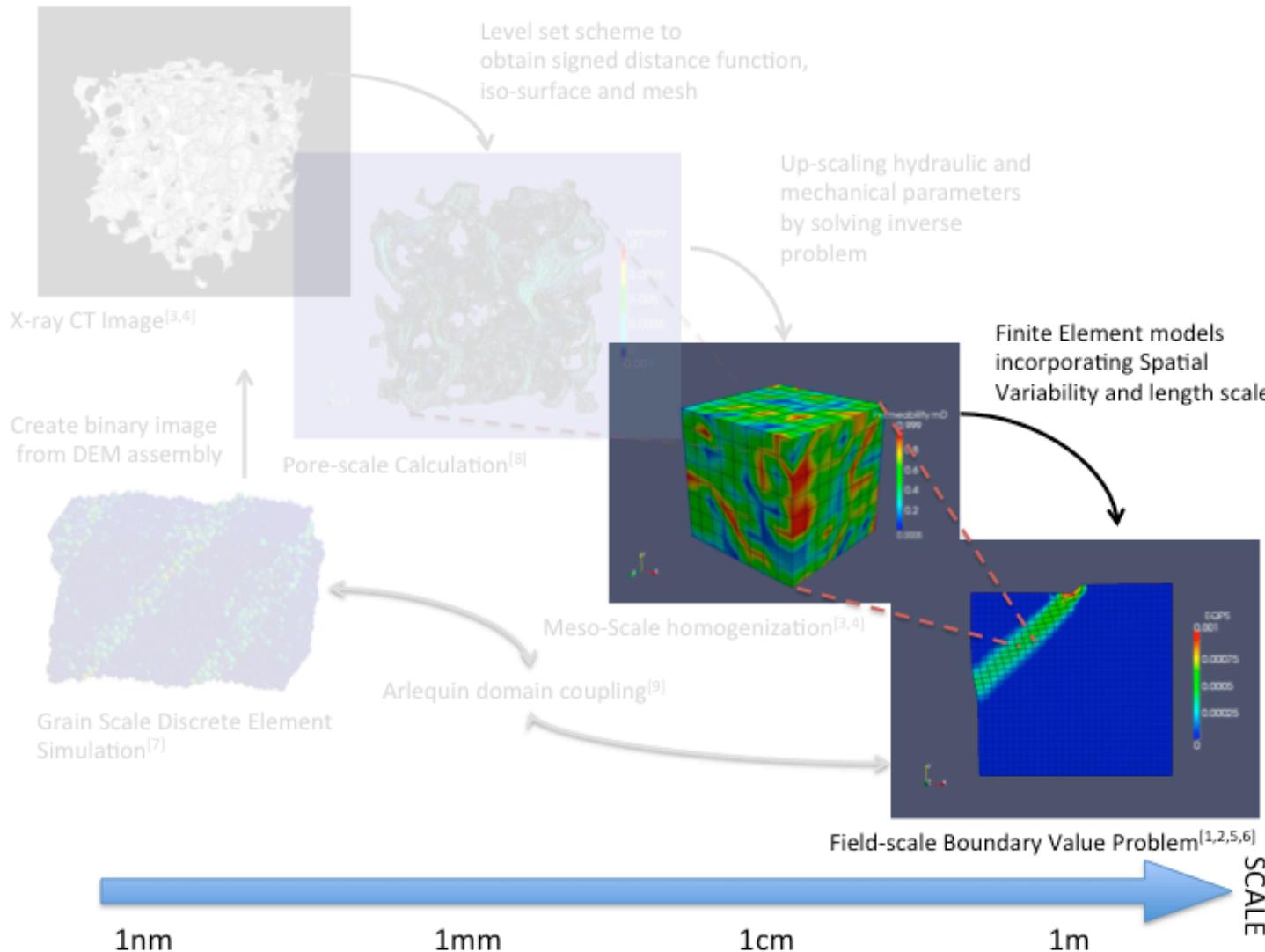
Hydraulic fracture (fracking)

Soil liquefaction

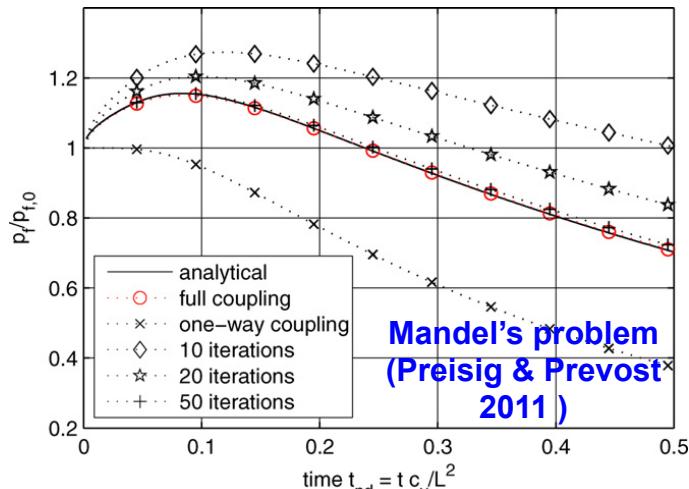
Multi-scale nature of porous media



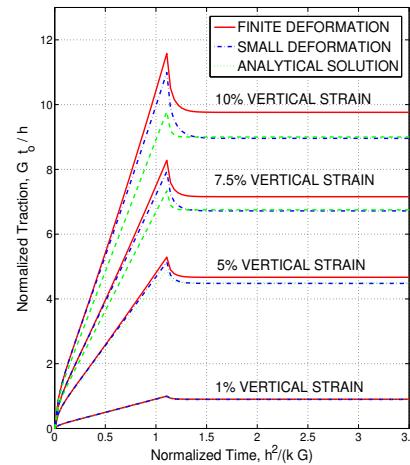
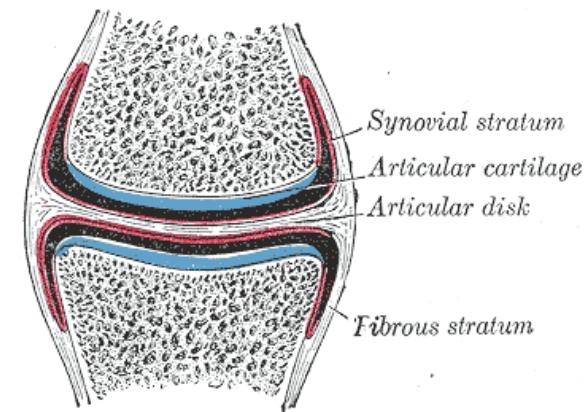
Thermo-hydro-mechanics Finite Element Model at Continuum Scale



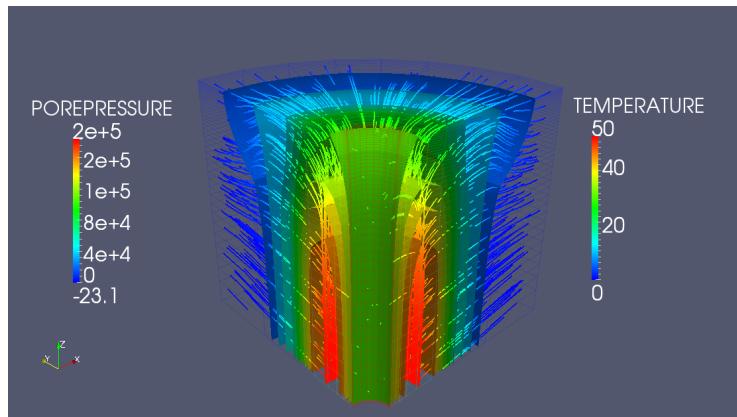
Key Features of THM Models



- ✓ Preserving Mandel-Cryer effect

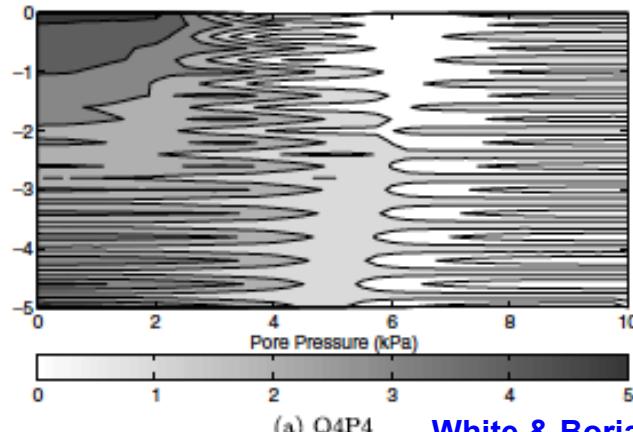


- ✓ Modeling large isochoric deformation at undrained limit or critical state without locking



- ✓ Fully coupled thermo-hydro-mechanical coupling

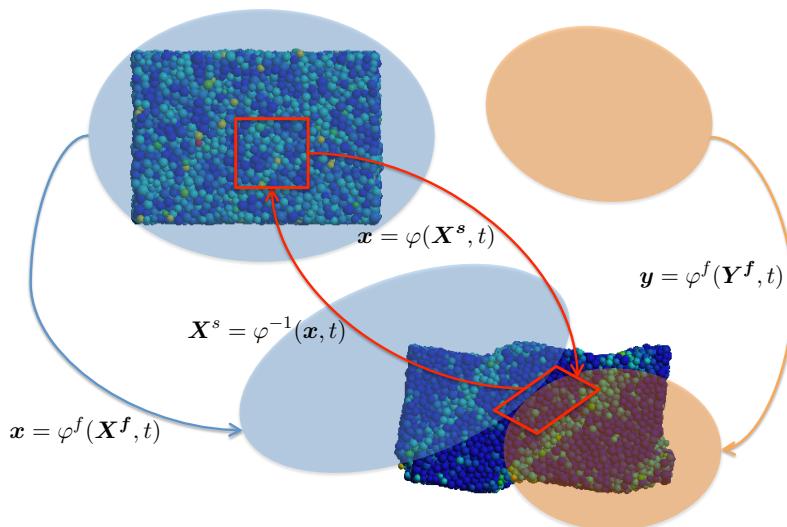
7/29/13



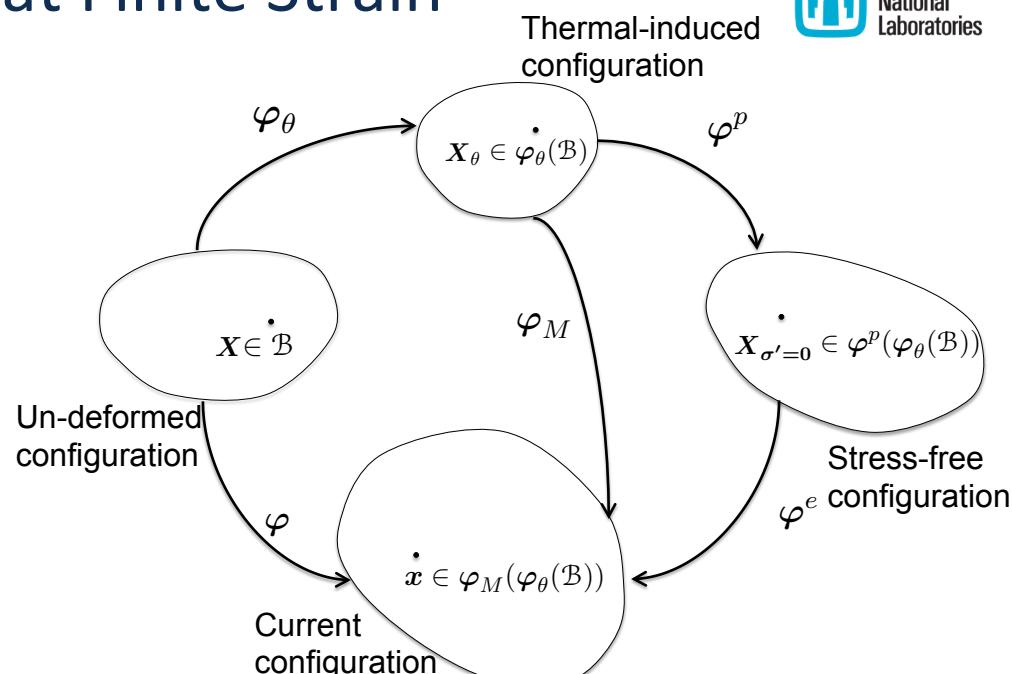
White & Borja, 2009

- ✓ Eliminating spurious pressure mode due to lack of inf-sup condition

Kinematics of THM Problem at Finite Strain



Trajectories of the solid and fluid constituent.



Multiplicative decomposition of the thermo-hydro-mechanics problem

Multiplicative decomposition of skeleton deformation gradient

$$\mathbf{F} = \frac{\partial \varphi(\mathbf{X}, t)}{\partial \mathbf{X}} = \mathbf{F}_M \cdot \mathbf{F}_\theta ; \quad \mathbf{F}_\theta = \frac{\partial \varphi_\theta(\mathbf{X}, t)}{\partial \mathbf{X}} ; \quad \mathbf{F}_M = \frac{\partial \varphi_M(\mathbf{X}_\theta, t)}{\partial \mathbf{X}_\theta}$$

Concept of Effective Stress

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}' - B p^f \mathbf{I},$$

$$B = 1 - \frac{K}{K_s}$$

$$\mathbf{P}(\mathbf{F}, \mathbf{z}, p^f, \theta) = \mathbf{P}'(\mathbf{F}, \mathbf{z}, \theta) - J B p^f \mathbf{F}^{-T}$$

$$\mathbf{P}(\mathbf{F}_M, \mathbf{z}, p^f) = \mathbf{P}'(\mathbf{F}_M, \mathbf{z}) - J B p^f \mathbf{F}^{-T},$$

Strong Form of THM Problem at Finite Strain

□ Balance of Linear Momentum

$$\nabla^X \cdot \mathbf{P} + J(\rho^s + \rho^f) \mathbf{G} = 0$$

where $\mathbf{P}(\mathbf{F}_M, \mathbf{z}, p^f) = \mathbf{P}'(\mathbf{F}_M, \mathbf{z}) - JBp^f \mathbf{F}^{-T}$,

□ Balance of Mass

$$\left(\frac{B}{J} - 3\alpha_s(\theta - \theta_o)\right)j + \frac{1}{M}\dot{p}^f - 3\alpha^m\dot{\theta} + \frac{1}{\rho_f}\nabla^X \cdot W = 0.$$

where

$$W = JF^{-1} \cdot w. \quad \text{and} \quad w = \rho_f k \cdot \left[-\nabla^x p^f + \rho_f (G - a^f) \right] - \rho_f s_T \nabla^x \theta,$$

↑ Darcian flow
 ↑ Soret effect
 (neglected here)

□ Thermal energy transport equation

$$c_F \dot{\theta} = [D_{\text{mech}} - H_\theta] + [-\nabla^X \cdot \mathbf{Q}_\theta - \frac{\Phi^f c_{F^f}}{\rho_f} \mathbf{W} \cdot \mathbf{F}^{-T} \nabla^X \theta + R_\theta],$$

where

$$H_\theta = H_\theta^s + H_\theta^f, \quad \text{and} \quad H_\theta^s = -\theta \frac{\partial}{\partial \theta} \mathbf{P}' : \dot{\mathbf{F}} = -3K\alpha_{sk}\theta \frac{\dot{J}}{J} \quad \text{Solid Structural Heating}$$

↑
 Total
 structural
 Heating

$$H_\theta^f = -\theta \frac{\partial}{\partial \theta} 3\alpha^m (\theta - \theta_o) \dot{p}^f = -3\alpha^m \theta \dot{p}^f. \quad \text{Fluid contribution}$$

Remarks on Estimating Effective Thermal Conductivity from Microstructures

- Volume averaging effective conductivity

$$\mathbf{k}_\theta = \phi^f \mathbf{k}_\theta^f + (1 - \phi^f) \mathbf{k}_\theta^s$$

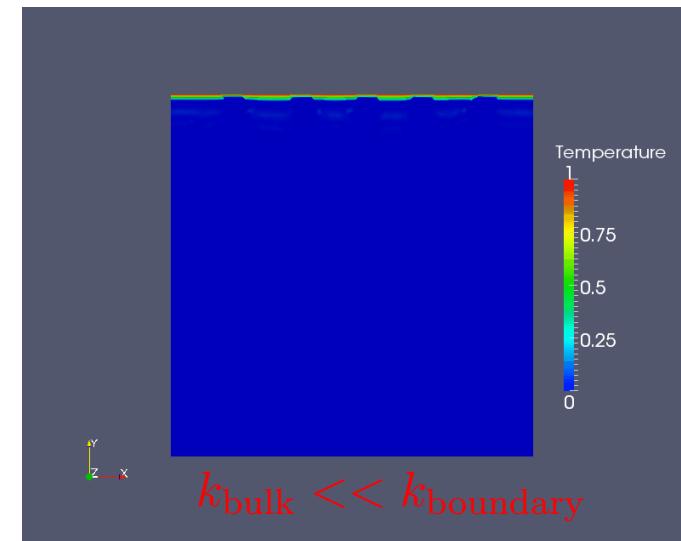
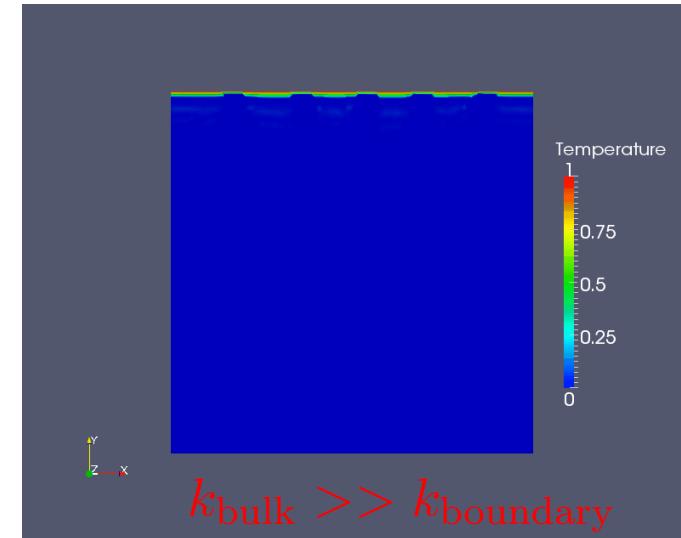
(cf. Preisig & Prevost, IJGGC 2011)

- Homogenized effective conductivity via Eshelby equivalent inclusion method (for spherical inclusions)

$$\mathbf{k}_\theta = \left(k_\theta^f + \frac{\phi^f (k_\theta^s - k_\theta^f) k_\theta^f}{(k_\theta^s - k_\theta^f) \phi^f + k_\theta^f} \right) \mathbf{I}$$

(cf. Zhou & Meschke, IJNAMG 2013)

Important Note: In general, the temperature of the pore-fluid and solid skeleton are not the same in the same REV, unless sufficient diffusion takes place. This difference is neglected in current formulation.



Solution of transient heat equation of two-phase materials

Stabilization for Equal-order THM Finite Element

❑ Combined Inf-sup Condition (not satisfied)

$$\sup_{\mathbf{w}^h \in V_u^h} \frac{\int_{\mathcal{B}} \left(p^{fh} B + 3\theta K \alpha_{sk} \right) \nabla^{\mathbf{x}} \cdot \mathbf{w}^h \, dV}{\|\mathbf{w}^h\|_{V_u^h}} \geq C_o \left(\|p^{fh}\|_{V_p^h} + \|\theta^h\|_{V_\theta^h} \right)$$

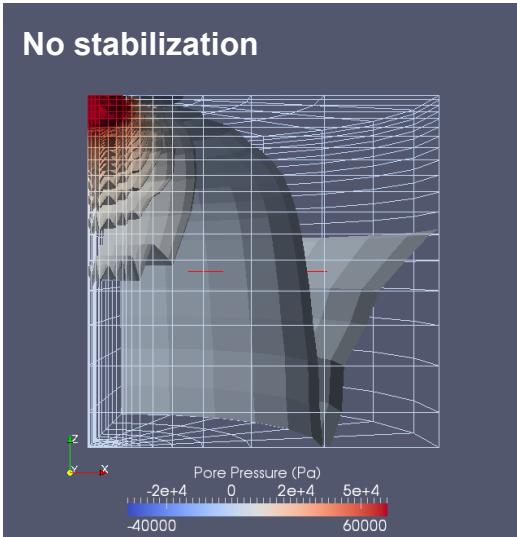
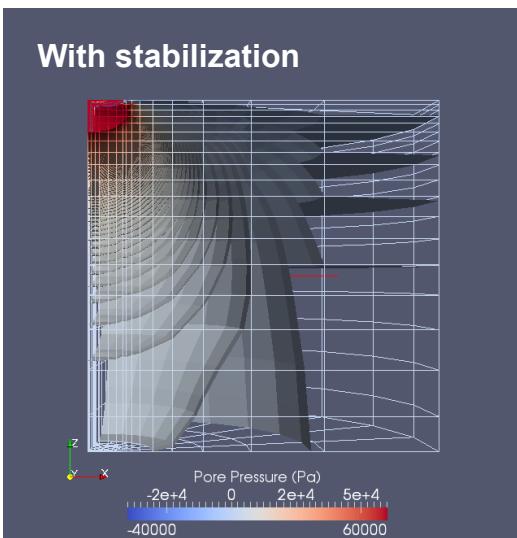
❑ Combined Weak Inf-sup Condition (still satisfied)

$$\sup_{\mathbf{v}^h \in V_u^h, \mathbf{v} \neq \mathbf{0}} \frac{\int_{\mathcal{B}} \left(p^{fh} B + 3K \alpha_{sk} \theta^h \right) \nabla^{\mathbf{x}} \cdot \mathbf{v}^h \, dV}{\|\mathbf{v}^h\|_1} \geq C_1 \left(\|p^{fh}\|_{V_{p^f}^h} + \|\theta^h\|_{V_\theta^h} \right) - C_2 h \left(\|\nabla^{\mathbf{x}} p^{fh}\|_{V_{p^f}^h} + \|\nabla^{\mathbf{x}} \theta^h\|_{V_\theta^h} \right)$$

❑ Projection-based Stabilization

$$\begin{aligned} \hat{H}^{\text{stab}}(\psi, p_{n+1}^{fh}, \theta_{n+1}^h) = & \sum_{K \in \mathcal{B}} \int_K C(\psi - \Pi \psi) B(p_{n+1}^{fh} - p_n^{fh} - \Pi(p_{n+1}^{fh} - p_n^{fh})) \, dV \\ & + \sum_{K \in \mathcal{B}} \int_K C(\psi - \Pi \psi) (3\alpha^m) (\theta_{n+1}^h - \theta_n^h - \Pi(\theta_{n+1}^h - \theta_n^h)) \, dV . \end{aligned}$$

 Stabilization parameter
 Interpolated temperature changes
 Projected element-wise constant temperature changes



Combined F-bar Formulation

Isochoric-volumetric split (Hughes 1975, Simo 1975)

$$F = F_{\text{vol}} \cdot F_{\text{iso}}$$

Replacing volumetric split with assumed term

$$\overline{F} = \bar{J}^{1/3} F_{\text{iso}} = \bar{J}^{1/3} J^{-1/3} F$$

↑ ↑
 Modified $\det(F)$ Original $\det(F)$

Relaxing too much, we get instability

Relaxing too little, we get the volumetric locking

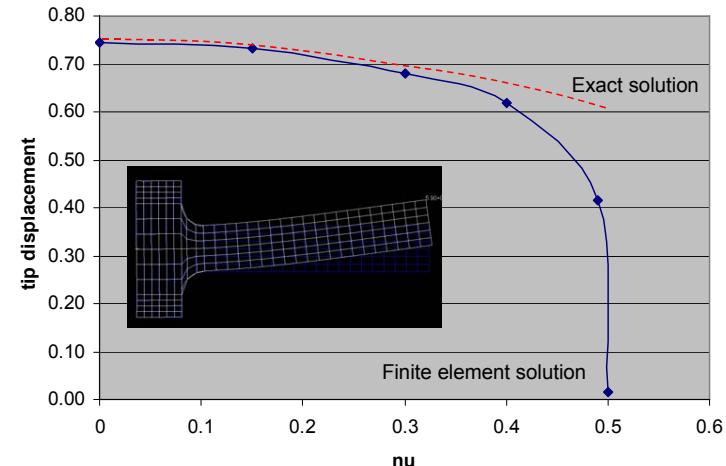
□ Combined F-bar approach

$$\tilde{\mathbf{F}} = \alpha \mathbf{F} + (1 - \alpha) \overline{\mathbf{F}}. \quad \text{← Why this is wrong?}$$

□ Current Approach via Lie algebra

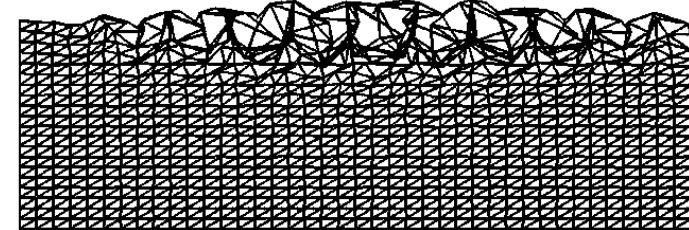
$$\widetilde{J} = \exp \left(\frac{1-\beta}{V_{\mathcal{B}^e}} \int_{\mathcal{B}^e} \log J \, dV + \beta \log J \right).$$

$$\tilde{J}_M = \exp \left(\log \tilde{J} - 3 \left(\frac{1-\beta}{V_{\mathcal{B}^e}} \int_{\mathcal{B}^e} \alpha_{sk}(\theta - \theta_o) \, dV + \beta \alpha_{sk}(\theta - \theta_o) \right) \right)$$



Standard F leads to Volumetric Locking

$$\lambda_{\text{cr}} = 90.3557, \alpha = 0 \times \text{E}$$



Pure F-bar leads to instability
(Brocardo, Micheloni, Krysl,
IJNME2009)

Optimal Stabilization Parameter Estimation

1D poromechanics governing equation

$$c \frac{\partial^2 \hat{p}}{\partial x^2} = \frac{\partial \hat{p}}{\partial t}, \quad c = \frac{k}{\mu} \frac{M' H}{H + \nu \beta M'}; M' = \frac{M(K + 4G/3)}{K + 4G/3 + B^2 M}$$

Three node stencil (standard Galerkin method)

$$-\hat{p}_{A-1} + 2\hat{p}_A - \hat{p}_{A+1} + \frac{h^2}{6\vartheta c \Delta t} (\hat{p}_{A-1} + 4\hat{p}_A + \hat{p}_{A+1}) = 0$$

Three node stencil (Stabilized Galerkin method)

$$-\hat{p}_{A-1} + 2\hat{p}_A - \hat{p}_{A+1} + \frac{h^2}{12\vartheta c \Delta t} [(2 - \gamma)\hat{p}_{A-1} + (8 + 2\gamma)\hat{p}_A + (2 - \gamma)\hat{p}_{A+1}] = 0$$

Growth/decay rate

$$\cosh \frac{h}{(\sqrt{\vartheta c \Delta t})^h} = \frac{(1 + h^2/\vartheta c \Delta t)(4 + \gamma)/6}{(1 - h^2/\vartheta c \Delta t)(2 - \gamma)/12}$$

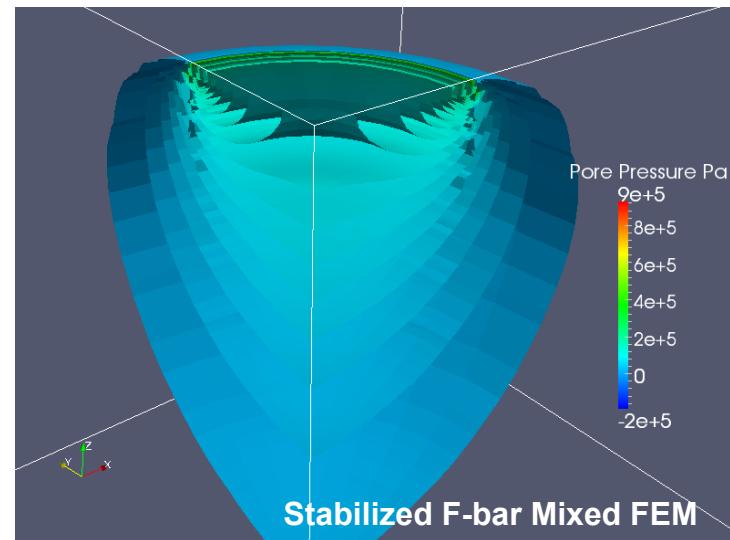
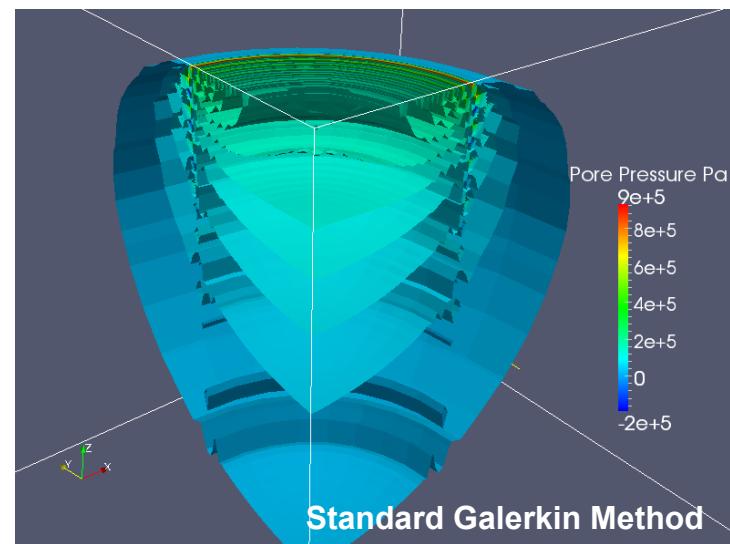
To have real growth/decay rate, we need

$$\gamma > 2 - 12 \frac{\vartheta c \Delta t}{h^2} > 0$$

$$\gamma = (2 - 6 \frac{\vartheta c \Delta t}{h^2}) \left(\frac{1}{2} + \frac{1}{2} \tanh(2 - 12 \frac{\vartheta c \Delta t}{h^2}) \right)$$

Safety factor

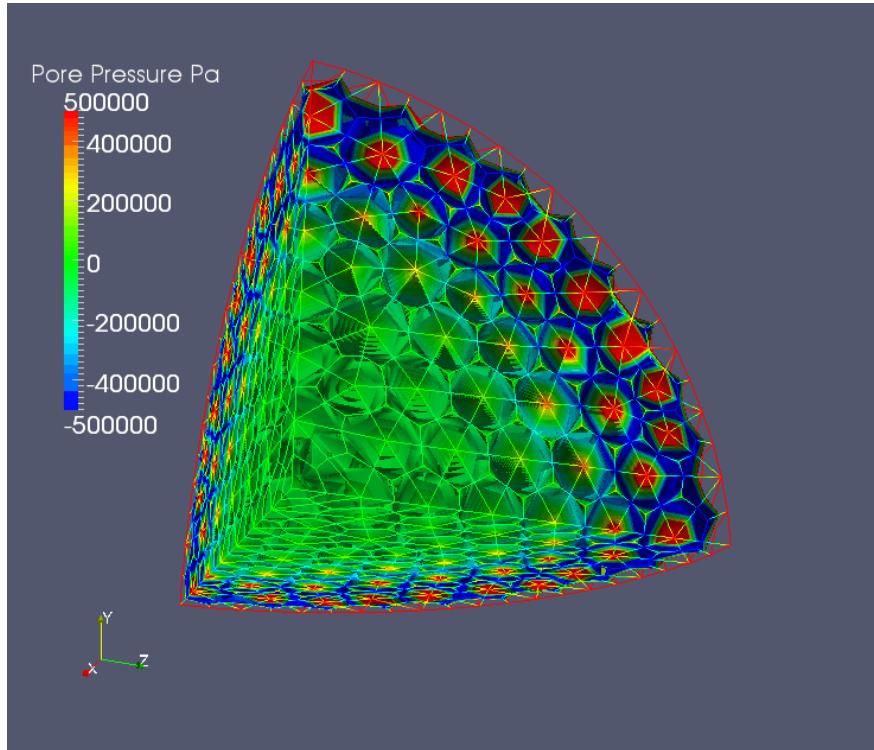
Turn off stabilization
without introducing switch



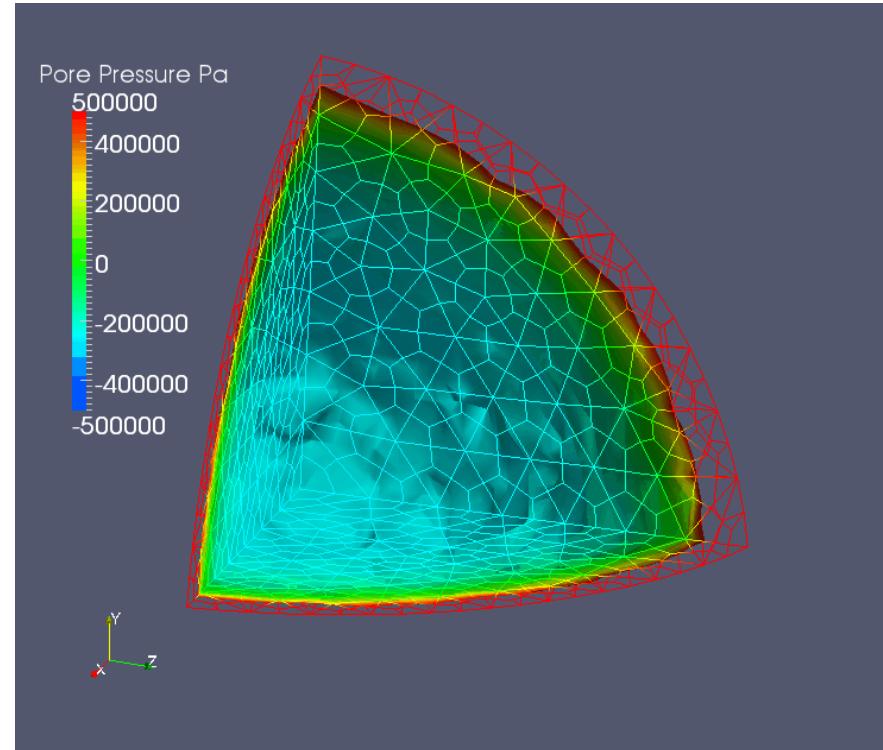
Thermo-hydro-mechanical Responses of Porous Sphere in Thermal Reservoir

X Under-diffusion with spurious patterns

✓ Diffusion with optimal stabilization



without Stabilization

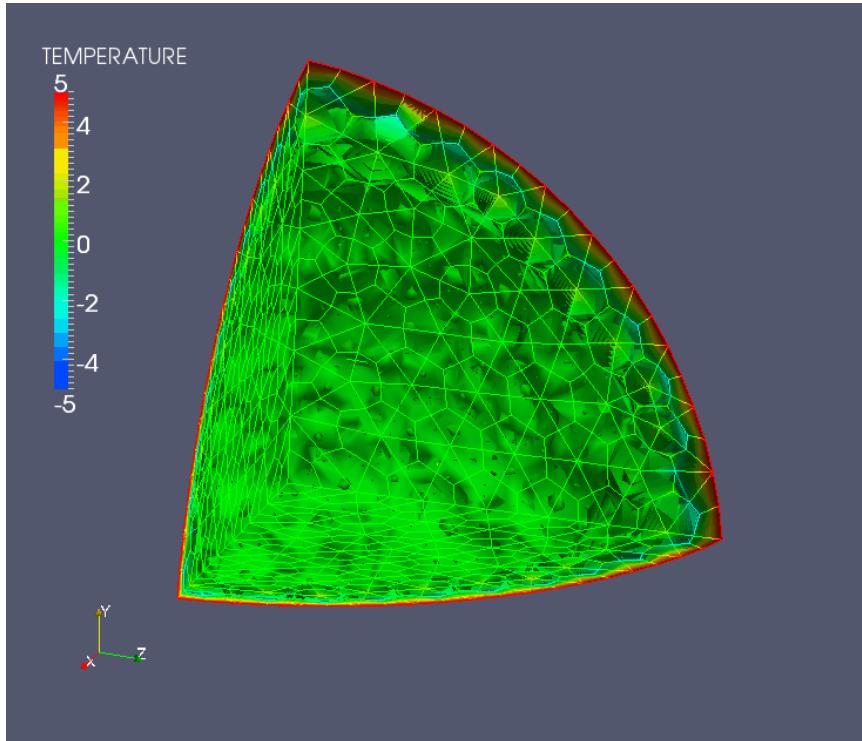
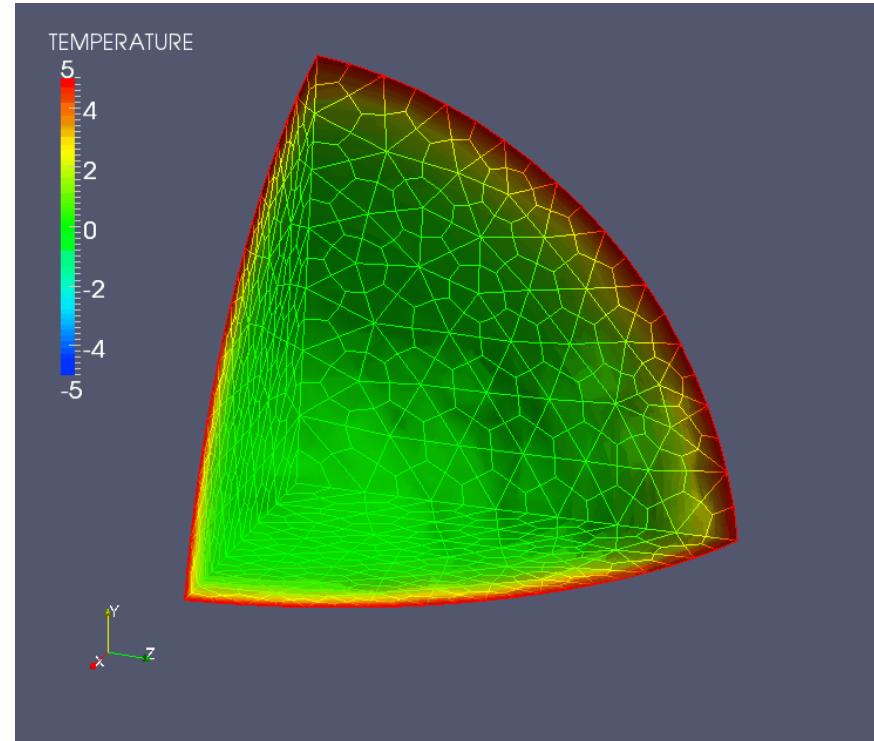


with Stabilization

Thermo-hydro-mechanical Responses of Porous Sphere in Thermal Reservoir

X Under-diffusion with spurious patterns

✓ Diffusion with optimal stabilization

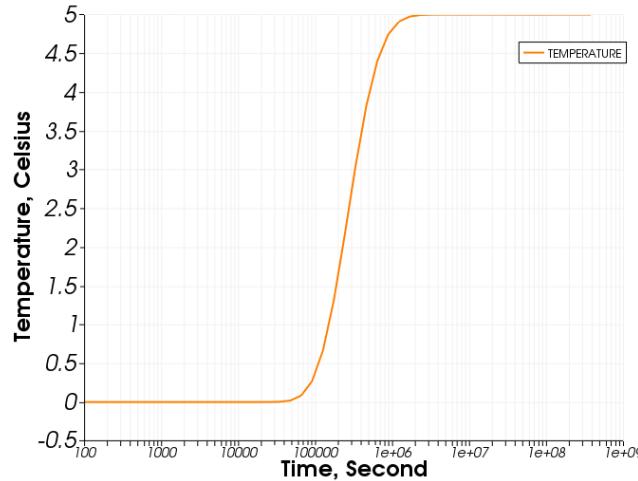


Generalized Mandel-Cryer Effect for THM problems

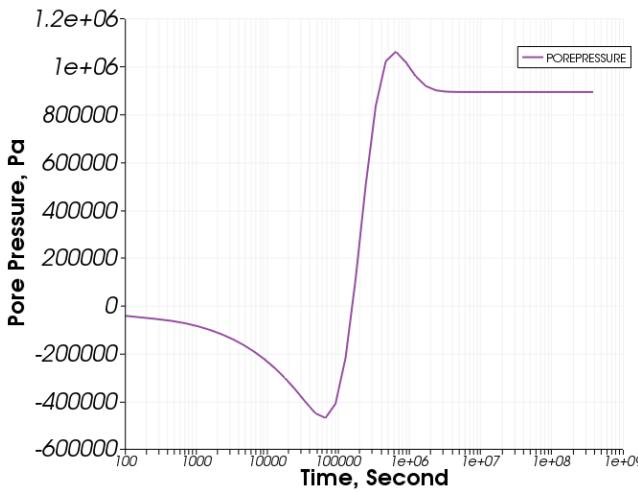
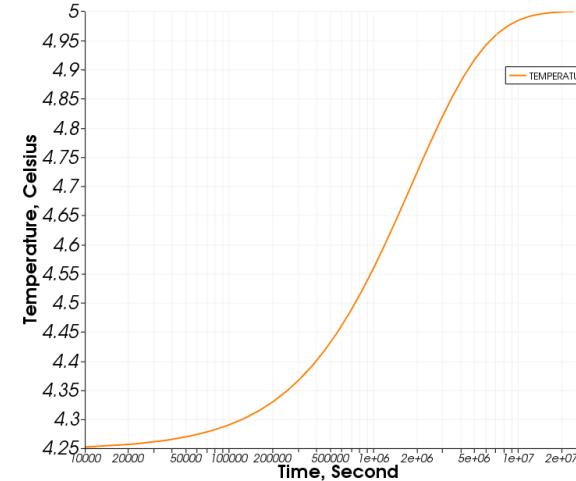
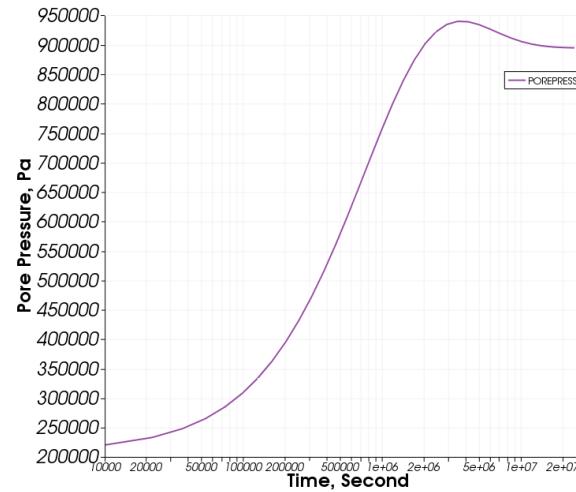
✓ Solution with optimal stabilization
(Stabilization parameter C=2)

✗ Over-diffusion solution (Stabilization parameter C=200000)

Temperature

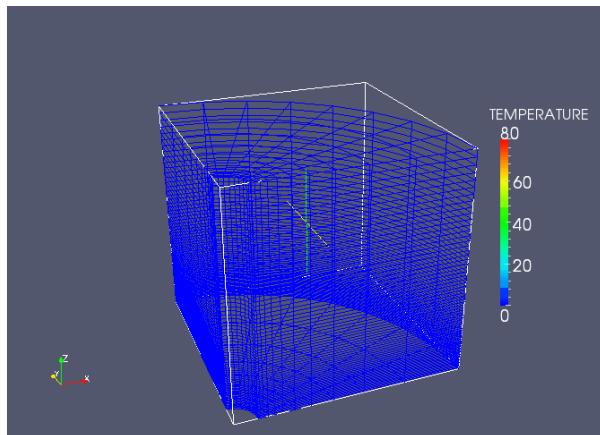


Pore pressure

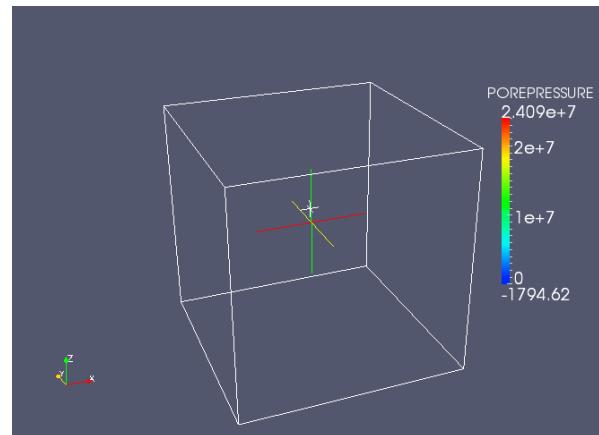


Heat pump problem

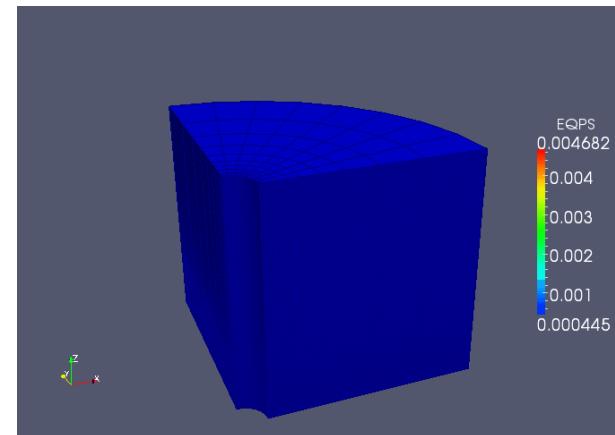
1. Hot liquid is injected into a elasto-plastic porous medium
2. Pore-fluid diffusion and heat diffusion occur at different rate
3. Porous medium expands even though no mechanical load is applied.



Temperature



Pore pressure



equivalent plastic strain

Conclusion and Future Perspective

- For the 1st time, A **fully coupled, finite deformation, stabilized** thermo-hydro-mechanics finite element model is implemented.
- This model preserves Mandel-Cryer effect, and is able to **eliminate spurious oscillation** due to the lack of inf-sup condition.
- **Localization element** is introduced as localization limiter to cure mesh dependence.
- **Unsaturated flow** will be further tested against analytical solutions and classical problems in the literatures.
- Further **validation and verification** tests must be performed to ensure correctness of the proposed model .
- In some cases the tangential matrix might be **ill-conditioned** (high condition number). As a result, pre-conditioner is needed.

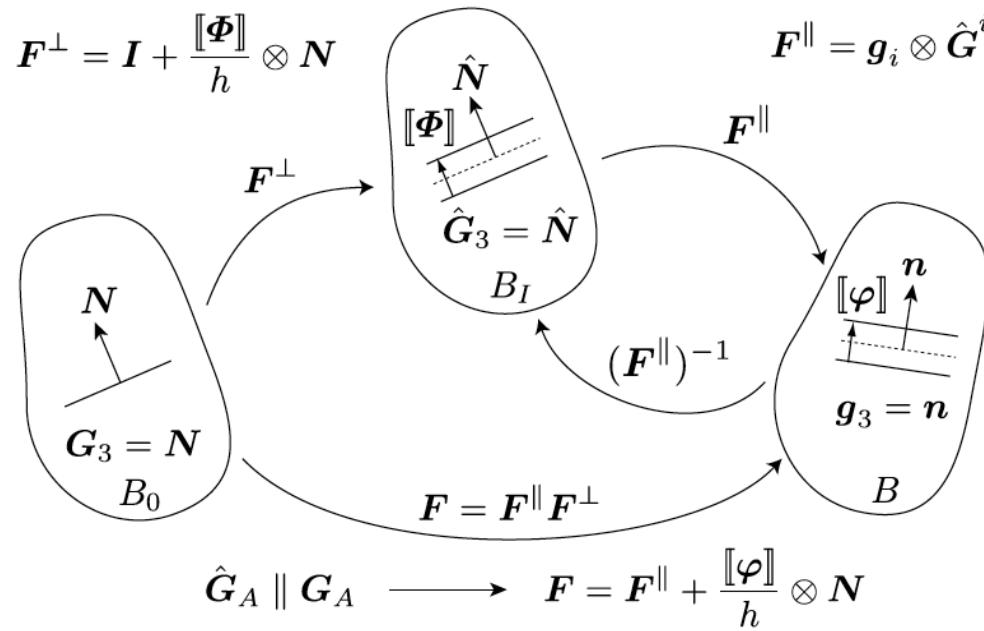
Bibliography

- W.C. Sun, J.T. Ostien and A.G. Salinger, a stabilized enhanced deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain, in press, *International Journal for Numerical and Analytical Methods in Geomechanics*.
- J.W. Foulk III, W.C. Sun, G. Wagner, C. San Marchi, B. Somerday, the evolution of hydrogen concentration in 21 Cr-6Ni-9Mn austenitic stainless steel, in preparation.
- A. Mota, W.C. Sun, J.T. Ostien, J.W. Foulk III and K.N., Long, Lie-group interpolation and variational recovery for internal variables, in press, *Computational Mechanics*.
- W.C. Sun, Y.L. Young, Influence of soil heterogeneity on finite strain sedimentation-consolidation phenomena, submitted to *International Journal for Numerical and Analytical Methods in Geomechanics*.
- W.C. Sun, M.R. Kuhn, J.W. Rudnicki, Permeability in shear bands: a multiscale DEM-LBM analysis on shear band, in press, An unified method to predict diffuse and localized instabilities in sands, accepted, *Geomechanics and Geoengineering*.
- W.C. Sun, J.W. Rudnicki, J.E. Andrade and P. Eichhubl, Connecting microstructural attributes and permeability from 3-D tomographic images of in situ compaction bands using multi-scale computation, *Geophysical Research Letter*, doi : 10.1029/2011GL047683, 2011.
- W.C. Sun, J.E. Andrade, J.W. Rudnicki, A multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability, *International Journal of Numerical Methods in Engineering*, Vol. 88, No.12, 1260-1279, 2011.
- R.I. Borja and W.C. Sun, Co-seismic sediment deformation during the 1989 Loma Prieta Earthquake, *Journal of Geophysical Research*, Vol.113, B08314,doi:10.1029/2007JB005265, 2008.
- R.I. Borja and W.C. Sun, Estimating inelastic sediment deformation from local site response simulations, *Acta Geotechnica*, Vol. 2, Number 3, 2007, pp.183-195.

Thank you!

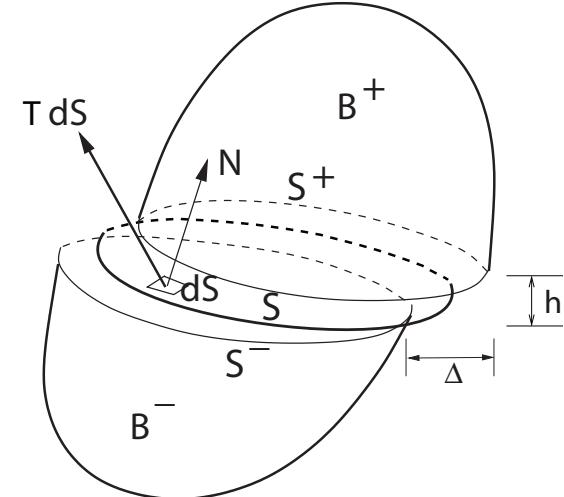
Extra Slides

Formulation of the localization element

$$F^\perp = I + \frac{[\Phi]}{h} \otimes N$$


$$[\Phi] = (F^\parallel)^{-1} [\varphi]$$

$$\hat{G}_A \parallel G_A \longrightarrow F = F^\parallel + \frac{[\varphi]}{h} \otimes N$$



From Yang, Mota Ortiz, 2006;
Foulk et al 2013

Deformation power of the solid skeleton

$$\begin{aligned} P^D &= \sum_{\pm} \int_{B_0^{\pm}} \mathbf{P} \cdot \dot{\mathbf{F}} dV + \int_{S_0} \mathbf{P} \cdot \dot{\mathbf{F}} h dS \\ &= \sum_{\pm} \int_{B_0^{\pm}} \mathbf{P} \cdot \dot{\mathbf{F}} dV + \int_{S_0} \mathbf{P} \cdot \left[\dot{\mathbf{F}}^{\parallel} h + [\dot{\varphi}] \otimes \mathbf{N} \right] dS \\ &= \sum_{\pm} \int_{B_0^{\pm}} \mathbf{P} \cdot \dot{\mathbf{F}} dV + \int_{S_0} \left[h \mathbf{P} \cdot \dot{\mathbf{F}}^{\parallel} + \mathbf{T} \cdot [\dot{\varphi}] \right] dS \end{aligned}$$

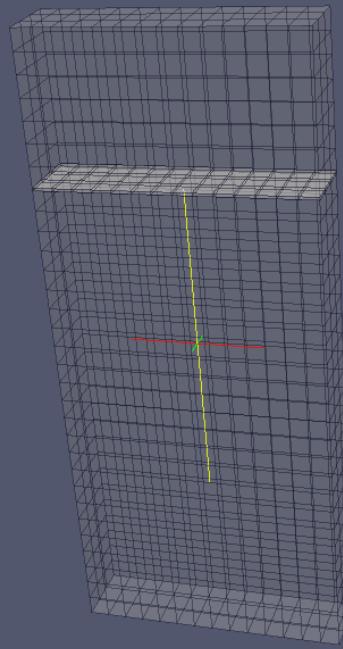
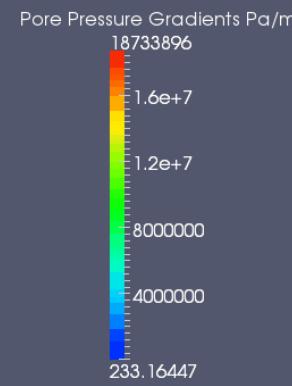
$$\boxed{\mathbf{F} = \mathbf{F}^{\parallel} \mathbf{F}^{\perp}}$$

deformation of mid-surface membrane

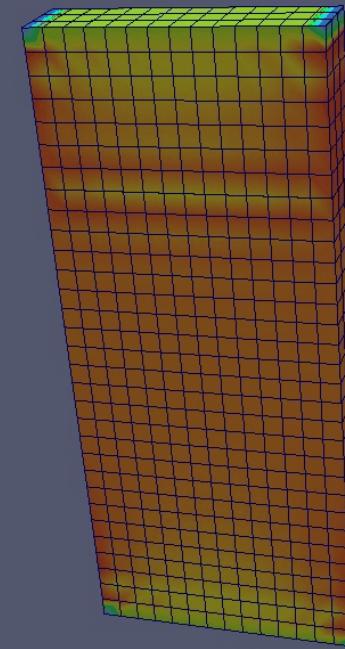
homogenized displacement jump

Globally undrained Simple Shear Test of Fully saturated media with flow barrier in the surface element (Pore Pressure)

Without sealed rock joint



With sealed rock joint



- In geometrical nonlinear regime, pore-fluid flow is significantly influenced by geometrical changes.
- Capturing localized hydraulic features triggered by deformation is important to analyze overall reservoir properties.