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Fig.3.Spatial distribution of rotation in free-rotation grain assembly at vertical strain = 5, 10, 
15, 20%. Color indicates rotation (radian) of individual grains.  
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Fig. 5 Permeability of the fully saturated specimen at
the steady state. The undeformed mesh is plotted in
white.
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Fig. 6 Dimensionless traction response obtained via
stabilized finite element method and analytical solution
at the top of the fully saturated specimen .(γ/Lo =
1%, 5%, 7.5%, 10% and to = 30.0)

global L2 projection is performed to map integra-
tion point data to the nodes and then use basis
functions of the finite element to interpolate the
scalar permeability field. Interested readers is re-
ferred to [26] for detail.

5.2 Bending of a Slender Poroelastic Beam

We simulate the beam bending problem in [46]
for three reasons – (1) to compare the finite ele-
ment simulations against the analytical solution
when an assumed deformation gradient is used,
(2) to check whether the stabilization schemes are
capable of eliminating spurious oscillation modes
in multi-dimensional problems, and (3) to verify
whether volumetric locking can be overcome by
the assumed deformation gradient formulation.

Consider a long and slender beam composed
of poroelastic material is subjected to a three-
point bending load where fluid is drained through
the top, bottom and lateral surfaces, as shown in
Figure 7.

Fig. 7 Bending of poroelastic beam: (a) dimensions of
the 3D model; (b) three-point bending scheme; and (c)
longitudinal section. Figure reproduced from [46].

By assuming that the shear and transverse
stress are both small, Scherer, Prevost and Wang
[46] show that the small strain load relaxation
function can be approximated by

P (τu)

Pu
=

1 + ν

1 + νu
+

νu − ν

1 + νu
S1(τu)S2(

c

a
, τu) (84)

where Pu is the initial load required to hold the
deflection at the undrained limit and P is the
applied load requires to hold the same deflection
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all equations. Validation and verification of each equation by itself
is thus possible with the same implementation, which reduces the
likelihood of bugs and increases code reusability.

Different formulations are used for solving the individual equa-
tions: The momentum and the energy equations (Eqs. (1) and (12))
are solved using standard Galerkin while the pressure equation
(Eq. (4)) is solved using stabilized Galerkin (see Preisig and Prévost,
2010). For the saturation equation, which is a transport equation, a
more sophisticated approach is needed in order to avoid the typical
instabilities that usually occur when standard Galerkin is used. The
finite volume method with one-point upwinding is known to avoid
such instabilities, and a vertex-centered implementation avoids a
cumbersome and inaccurate remapping of values from cell cen-
ters to nodes (for an error analysis of cell-to-node projections the
reader is referred to Goumiri and Prévost, 2010). The saturation
equation is solved in a different stagger than the other equations
since its coupling with pressure, geomechanics and energy is weak.
Tests showed that performing multiple iterations between the two
staggers only marginally affect the results. In general only a single
iteration was performed. All simulations were completed using the
DYNAFLOW numerical code (Prévost, 1981).

4. Coupled geomechanics: one-way coupling, iterative
coupling and full coupling

A lot of literature is devoted to the question as to whether for
a specific situation the poromechanics equations (geomechanics
and fluid flow) have to be solved using a fully coupled method, or if
approximate one-way coupling could model the situation satisfac-
torily. One-way coupling generally refers to the common practice in
reservoir simulation to first solve the fluid flow problem assuming
a simplified mechanical behavior of the reservoir, and then solve
the geomechanical problem using the updated pore fluid pressures.
When solving the fluid flow problem the mechanical behavior is
approximated by uniaxial consolidation, that is, the term b∇ · v

∼
s

is approximated by cmṗf , where the uniaxial rock compressibility
cm = b2/(Ks + 4/3!s) is derived from one-dimensional consolidation.
No feedback from geomechanics to fluid flow is present and there-
fore no iterations are necessary. Lewis et al. (1991) discuss what
situations permit this simplified treatment and come to the con-
clusion that one-way coupling should almost always be avoided.

Another method consists in iteratively coupling pressure and
geomechanics by first solving the pressure equation while keep-
ing the displacement constant, before solving the momentum
equation while keeping the fluid pressure constant. This has to
be repeated until some convergence criterion has been satisfied
(Settari and Walters, 1999). Explicit coupling is a special case of iter-
ative coupling where only one iteration is performed. In this case,
information from geomechanics is fed into the fluid flow equation
at the next time step only.

Remark 1. It is important to note that full coupling can be done in
multiple ways, using direct solvers, staggered schemes or iterative
solvers (see Prévost, 1997). When done correctly all these meth-
ods should recover the correct coupled behavior, since the same
coupled system of equations is solved. Iterative coupling, on the
other hand, refers to the consecutive solution of separate systems
of equations. Iterative coupling is generally done when, for exam-
ple, different numerical codes and/or different grids are used for
fluid flow and geomechanics.

It can easily be verified whether a numerical scheme correctly
models the coupling by solving the Mandel problem (Mandel,
1953): A layer of width 2L is compressed vertically. The top and bot-
tom boundaries are fully impermeable, while the lateral boundaries
drain (pf = 0 imposed at x = ± L). The distributed load applied to the

Fig. 1. Mandel problem: a vertical load of q is applied to a porous medium through
a  rigid, horizontal plate.

top surface is q = − 2. The fluid is incompressible ("u = 0.5), the Pois-
son’s ratio of the solid matrix is taken as "s = 0. The initial pressure
due to the load q is pf,0 = − 1/3(1 + "u)q = 1. All material parameters
are non-dimensionalized such that the diffusivity coefficient equals
1:

cv = k
!f

M
Ks + 4

3 !s

Ks + b2M + 4
3 !s

(19)

For Kf, Ks $ Ks M tends to infinity and cv simplifies to cv = k/!f (Ks +
4/3!s).

Symmetry allows modeling of only half of the width (see Fig. 1).
The top surface is rigid; all its nodes therefore have the same vertical
displacement. The horizontal displacements are unconstrained on
the top, right and bottom boundaries.

An analytical solution, developed by Mandel (1953),  is given in
Coussy (2004):

pf (x, tnd)
pf,0

= 2
∞∑

n=1

cos(˛nx/L) − cos(˛n)
˛n − sin(˛n) cos(˛n)

sin(˛n) exp
(
−˛2

ntnd

)
(20)

where the tnd = t(cv/L2) is the dimensionless time. ˛n is determined
from the equation:

tan ˛n

˛n
= 1 − "s

1 − "u
(21)

Fig. 2 shows the evolution of the pore pressure at the symmetry
line. While the result of the fully coupled simulation closely match
the analytical solution, the result from one-way coupling fails to
capture the so-called Mandel–Cryer effect, viz. the temporary rise
in pore pressure in early times. The results using iterative coupling
with 10, 20 and 50 iterations at every time step are also shown.

Fig. 2. Full coupling vs. one-way coupling and iterative coupling: normalized pres-
sure at symmetry line as a function of non-dimensional time.

Mandel’s problem 
(Preisig & Prevost 

2011 ) 
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White & Borja, 2009 

ü  Modeling large isochoric deformation at undrained 
limit or critical state without locking 

ü  Preserving Mandel-Cryer effect  

ü  Fully coupled thermo-hydro-
mechanical coupling 

ü  Eliminating spurious pressure mode due 
to lack of inf-sup condition 
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Fig. 2 Multiplicative decomposition of the thermohydromechanics deformation.

of thermal effect is generally neglected, perhaps due to the lack of detailed thermal properties in field and
experimental settings. As a result, F θ can be characterized by the thermal expansion coefficient αsk(θ),
i.e.,

F θ = exp[

� θ

θ̂
αsk(θ̂)dθ̂]I .. (2.16)

If the thermal expansion coefficient is constant, then, we have

F θ = exp[αsk(θ − θo)]I ; Jθ = exp[3αsk(θ − θo)], (2.17)

where θo is the reference temperature at which there is no thermal deformation. Notice that linearizing the
thermal expansion defined in (2.17) leads to the classical thermal strain �v = log Jθ = 3αsk(θ−θo). Recall
that the configuration ϕθ(B) is stress free, and the thermal-induced deformation gradient is isotropic,
thus F = F θFM = FMF θ. As a result, Equation (2.13) can be rewritten as,

P (FM , z, pf ) = P �(FM , z)− JBpfF−T , (2.18)

in which the thermal expansion alone does not induce any change in the effective stress of the solid
skeleton.

2.3 Balance of Fluid Content

The balance of fluid content in the non-isothermal condition has been derived by McTigue in [34] by
extending the isothermal balance principle in [47]. In this study, our new contribution is to provide the
derivations for the balance of fluid mass suitable for total Lagrangian formulation. First of all, let us
define the Lagrangian fluid content M f : B × [0, T ] → R+ as the fluid mass per unit reference volume.
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Fig. 1 Trajectories of the solid and fluid constituents ϕs = ϕ and ϕf. The motion ϕ conserves all the mass of the solid
constituent, while the fluid may enter or leave the body of the solid constituent. Figure reproduced from [58].

where ρα is mass of the α constituent divided by the current volume of the α constituent, while ρα is the
partial density of the α constituent, defined as the mass of the α constituent divided by the volume of
the mixture in the current configuration. φs is the volume fraction of the solid constituent in the current
configuration. φf is the porosity of the porous medium in the current configuration, which is referred as
Eulerian porosity in [18]. For fully saturated porous media, φs + φf = 1. Thus, the total current density
also reads,

ρ = (1− φf)ρs + φfρf (2.4)

where the densities of the solid and fluid constituents both depend on the pore pressure and the temper-
ature.

2.2 Balance of Linear Momentum

Under the non-isothermal condition, solid skeleton may deform due to mechanical loadings, thermal
expansion (or contraction) and interactions with pore-fluid. Assuming that the mixture theory is valid
for porous media, we have,

σ = σs + σf = φsσs + φfσf. (2.5)

where σs and σf are the intrinsic partial Cauchy stress defined in the volume of the solid grains V s and
pore space V f respectively. The total Cauchy stress is the volume averaged stress defined in the current
volume V = V s + V f. Neglecting the shear resistance of the pore fluid, intrinsic partial stress of fluid
consistent σf is therefore isotropic and holds the following relation with the macroscopic pore pressure
pf, i.e.,

σf = φfσf = −φfpfI = −pfI. (2.6)

The partial stress of the solid constituent σs depends on the effective stress σ� and the stress exerted on
the solid grains by the pore fluid Kpf/KsI , i.e.,

σs = σ� +
K
Ks

pfI. (2.7)

Trajectories of the solid and fluid constituent.  
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This definition is from [39], which assumes that the non-uniform localization of stress at the grain scale,
grain crushing, and damage are all insignificant to the skeleton (cf. [64] p.8-11). By substituting (2.6)
and (2.7) into (2.5), the total Cauchy stress now reads,

σ = σ� −BpfI, (2.8)

where B is the Biot’s coefficient defined as [39],

B = 1− K
Ks

. (2.9)

Typically, Biot’s coefficient B is close to unity for sand, but can be ranged from 0.5 to 0.8 for rocks or
concrete. Notice that B in (2.8) have been defined in a number of different ways in the literature. For
instance, Terzaghi and Rendulic defined B as a function of the effective area of solid grains [54, 59]. For
bio-materials and composites, Cowin and Doty generalize the effective stress concept in [8] and introduce
the effective stress coefficient tensor B in [20], i.e.

σ = σ� − pfB. (2.10)

This definition of effective stress is not adopted in this work, but will be considered in future study. The
balance of linear momentum therefore reads,

∇x·σ + ρG+ hs + hf = 0, (2.11)

where G is the acceleration due to gravity. hs and hf are the interactive body force per unit reference
volume exerted on their corresponding phases due to drag, lift, virtual mass effect, history effects and
the relative spinning (Magnus effect) which balances out internally, i.e., hs + hf = 0 [46]. In the total
Lagrangian formulation, balance of linear momentum in 2.11 is rewritten in reference configuration via
the Piola transformation [25], i.e.,

∇X ·P + JρG = 0, (2.12)

where P denotes the total first Piola-Kirchhoff stress and J is the determinant of the deformation gradient
of the solid skeleton F . Similar to the total Cauchy stress, the total first Piola-Kirchhoff stress can be
partitioned into two parts, the effective first Piola-Kirchhoff stress P � and the pull-back of the pore fluid
contribution JBpfF−T . The effective first Piola-Kirchhoff stress P � is the amount of stress carried by
the solid skeleton. For solid skeleton exhibiting elasto-plastic responses,the effective first Piola-Kirchhoff
stress can be determined from the deformation gradient and the internal variable(s) z of the solid skeleton.

P (F , z, pf , θ) = P �(F , z, θ)− JBpfF−T . (2.13)

Under non-isothermal condition, the multiplicative decomposition of the deformation gradient can be
written as [25],

F =
∂ϕ(X, t)

∂X
= FM · F θ ; F θ =

∂ϕθ(X, t)
∂X

;FM =
∂ϕM (Xθ, t)

∂Xθ
(2.14)

where F θ and FM are the pure thermal and mechanical splits of the deformation gradient.
As shown in Figure 2, the mechanical split FM of the deformation gradient can be further decomposed

into the elastic and plastic parts such that ,

FM = F · F−1
θ = F e · F p ; F p =

∂ϕp(Xθ, t)
∂Xθ

; F e =
∂ϕe(Xσ�=0, t)

∂Xσ�=0
(2.15)

where ϕθ(B) is the intermediate thermal effective-stress-free configuration caused by thermal expansion
or contraction. Similarly, ϕp(ϕθ(B)) is the intermediate effective-stress-free configuration, which can be
obtained by deforming the current configuration via ϕe−1. Notice that we do not consider the possibility
of having the pore pressure split for the deformation gradient of the solid skeleton. In addition, we
assume that the thermal is isotropic. To replicate the thermal effect accurately, anisotropy of thermal
effect must be considered for composite or reinforced materials. Nevertheless, for geomaterials, anisotropy
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8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media
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8.6 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-

values computed are never exactly zero. Thus, theoretical specking, computer simulation

involving material approaching diffuse bifurcation should still be able to converge to unique

solution. The finite precision of arithmetic operation also introduces similar impact on the

fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in

computer unless symbolic operation is carried out.
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Fig. 2 Multiplicative decomposition of the thermohydromechanics deformation.

of thermal effect is generally neglected, perhaps due to the lack of detailed thermal properties in field and
experimental settings. As a result, F θ can be characterized by the thermal expansion coefficient αsk(θ),
i.e.,

F θ = exp[

� θ

θ̂
αsk(θ̂)dθ̂]I .. (2.16)

If the thermal expansion coefficient is constant, then, we have

F θ = exp[αsk(θ − θo)]I ; Jθ = exp[3αsk(θ − θo)], (2.17)

where θo is the reference temperature at which there is no thermal deformation. Notice that linearizing the
thermal expansion defined in (2.17) leads to the classical thermal strain �v = log Jθ = 3αsk(θ−θo). Recall
that the configuration ϕθ(B) is stress free, and the thermal-induced deformation gradient is isotropic,
thus F = F θFM = FMF θ. As a result, Equation (2.13) can be rewritten as,

P (FM , z, pf ) = P �(FM , z)− JBpfF−T , (2.18)

in which the thermal expansion alone does not induce any change in the effective stress of the solid
skeleton.

2.3 Balance of Fluid Content

The balance of fluid content in the non-isothermal condition has been derived by McTigue in [34] by
extending the isothermal balance principle in [47]. In this study, our new contribution is to provide the
derivations for the balance of fluid mass suitable for total Lagrangian formulation. First of all, let us
define the Lagrangian fluid content M f : B × [0, T ] → R+ as the fluid mass per unit reference volume.
The fluid content is therefore a function of the porosity and the fluid density, i.e.,

M f = Jρf = Jφfρf = Φfρf, (2.19)

where Φf(X, t) = J(X, t)φf(ϕ(X, t), t) is the Lagrangian porosity, the ratio between current void volume
to the initial total volume (cf. [18], p.5). In the current configuration, the balance of fluid mass content
reads, i.e.,

D
Dt

�

ϕ(B)
φfρfdv = −

�

∂ϕ(B)
w · n da. (2.20)

Stabilized FEM for thermo-hydro-mechanics at finite strain 5

This definition is from [39], which assumes that the non-uniform localization of stress at the grain scale,
grain crushing, and damage are all insignificant to the skeleton (cf. [64] p.8-11). By substituting (2.6)
and (2.7) into (2.5), the total Cauchy stress now reads,

σ = σ� −BpfI, (2.8)

where B is the Biot’s coefficient defined as [39],

B = 1− K
Ks

. (2.9)

Typically, Biot’s coefficient B is close to unity for sand, but can be ranged from 0.5 to 0.8 for rocks or
concrete. Notice that B in (2.8) have been defined in a number of different ways in the literature. For
instance, Terzaghi and Rendulic defined B as a function of the effective area of solid grains [54, 59]. For
bio-materials and composites, Cowin and Doty generalize the effective stress concept in [8] and introduce
the effective stress coefficient tensor B in [20], i.e.

σ = σ� − pfB. (2.10)

This definition of effective stress is not adopted in this work, but will be considered in future study. The
balance of linear momentum therefore reads,

∇x·σ + ρG+ hs + hf = 0, (2.11)

where G is the acceleration due to gravity. hs and hf are the interactive body force per unit reference
volume exerted on their corresponding phases due to drag, lift, virtual mass effect, history effects and
the relative spinning (Magnus effect) which balances out internally, i.e., hs + hf = 0 [46]. In the total
Lagrangian formulation, balance of linear momentum in 2.11 is rewritten in reference configuration via
the Piola transformation [25], i.e.,

∇X ·P + JρG = 0, (2.12)

where P denotes the total first Piola-Kirchhoff stress and J is the determinant of the deformation gradient
of the solid skeleton F . Similar to the total Cauchy stress, the total first Piola-Kirchhoff stress can be
partitioned into two parts, the effective first Piola-Kirchhoff stress P � and the pull-back of the pore fluid
contribution JBpfF−T . The effective first Piola-Kirchhoff stress P � is the amount of stress carried by
the solid skeleton. For solid skeleton exhibiting elasto-plastic responses,the effective first Piola-Kirchhoff
stress can be determined from the deformation gradient and the internal variable(s) z of the solid skeleton.

P (F , z, pf , θ) = P �(F , z, θ)− JBpfF−T . (2.13)

Under non-isothermal condition, the multiplicative decomposition of the deformation gradient can be
written as [25],

F =
∂ϕ(X, t)

∂X
= FM · F θ ; F θ =

∂ϕθ(X, t)
∂X

;FM =
∂ϕM (Xθ, t)

∂Xθ
(2.14)

where F θ and FM are the pure thermal and mechanical splits of the deformation gradient.
As shown in Figure 2, the mechanical split FM of the deformation gradient can be further decomposed

into the elastic and plastic parts such that ,

FM = F · F−1
θ = F e · F p ; F p =

∂ϕp(Xθ, t)
∂Xθ

; F e =
∂ϕe(Xσ�=0, t)

∂Xσ�=0
(2.15)

where ϕθ(B) is the intermediate thermal effective-stress-free configuration caused by thermal expansion
or contraction. Similarly, ϕp(ϕθ(B)) is the intermediate effective-stress-free configuration, which can be
obtained by deforming the current configuration via ϕe−1. Notice that we do not consider the possibility
of having the pore pressure split for the deformation gradient of the solid skeleton. In addition, we
assume that the thermal is isotropic. To replicate the thermal effect accurately, anisotropy of thermal
effect must be considered for composite or reinforced materials. Nevertheless, for geomaterials, anisotropy
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in (8) is decoupled from the pore-fluid response.
Hence, this assumption enables us to use any
single-phase stress integration algorithm to obtain
the effective first Piola-Kirchhoff stress. By apply-
ing the standard mixture theory and neglecting
the inertial force , the balance of linear momentum
reads,

∇X ·P s + JρsG+H
s = 0 (9)

∇X ·P f + JρfG+H
f = 0 (10)

where ρα = φαρα is the intrinsic or apparent
density of the α phase. G is the vector of gravity
acceleration. As pointed out in [22], Hs and H

f

are the interactive body force per unit reference
volume exerted on their corresponding phases due
to drag, lift, virtual mass effect, history effects
and the relative spinning (Magnus effect) which
balances out internally, i.e., Hs +H

f = 0. As a
result, combining (9) and (10) yields,

∇X ·P + J(ρs + ρf )G = 0 (11)

or equivalently,

∇x·σ + (ρs + ρf )G = 0 (12)

where (11) and (12) are related by the Piola trans-
formation ∇X ·P = J ∇x·σ.

2.3 Balance of Mass

Here we derive a generalized balance of mass equa-
tion in which the compressibility of both the solid
and pore-fluid constituents are considered. While
this generalized derivation for compressible con-
stituents has been recently considered in [14], our
new contribution here is that the infinitesimal ver-
sion of this formulation is fully consistent with the
classical small strain balance law in [4; 31; 41], and
can also be consistently reduced to the finite strain
formulation in [1] when solid constituent becomes
incompressible and the finite strain formulation in
[7; 32] when the porous media is fully saturated
and composed of incompressible constituents.

Recall that we define the material time deriva-
tive based on the motion of the solid skeleton.
In the absence of mass exchange among all con-
stituents, the balance of mass for the pore-fluid
onstituent reads,

Dρf

Dt
= −∇X ·W (13)

where W and w are the Lagrangian and Eulerian
relative mass flow vectors defined as [11], i.e.

w = φfρf (v
f − v) ; W = JF−1 ·w (14)

Assuming isothermal conditions, the material time
derivative of the pore-fluid density can be parti-
tioned through following identity,

Dρf

Dt
= φf Dρf

Dt
+ ρf

Dφf

Dt
(15)

Notice that the material time derivatives can be
further simplified as,

Dρf

Dt
= ρf

D

Dt
log

� ρf
ρf0

�
+ ρf

Dφf

Dt
(16)

where log(ρf/ρf0) is the infinitesimal change of
the pore-fluid density. By assuming that the pore-
fluid is barotropic, the first term of (16) reads,

φf

�
ρf

D

Dt
log

� ρf
ρf0

��
=

φfρf
Kf

Dpf

Dt
(17)

which is obtained by applying the barotropic as-
sumption, as pointed out in [1],

Kf = ρf
dpf

dρf
= constant ⇒ ρf

ρf0
= exp

�
pf

Kf

�

(18)

On the other hand, the second term takes into
account the volumetric change of pore space for
a fixed pore-fluid density, which comes from the
skeleton volumetric change and the volume changes
caused by the compression or extension of the solid
grains. Assuming that change of porosity at an
infinitesimal time is small, the change of porosity
can be written as (cf. [24]),

Dφf

Dt
=

D

Dt

�
B log J +

B − φf

Ks
pf

�
(19)

where log J = log(detF ) = tr � and � is the Eu-
lerian logarithm strain tensor. B is the Biot’s
coefficient defined as [31],

B = 1− K

Ks
(20)
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Fig. 2 Multiplicative decomposition of the thermohydromechanics deformation.

of thermal effect is generally neglected, perhaps due to the lack of detailed thermal properties in field and
experimental settings. As a result, F θ can be characterized by the thermal expansion coefficient αsk(θ),
i.e.,

F θ = exp[

� θ

θ̂
αsk(θ̂)dθ̂]I .. (2.16)

If the thermal expansion coefficient is constant, then, we have

F θ = exp[αsk(θ − θo)]I ; Jθ = exp[3αsk(θ − θo)], (2.17)

where θo is the reference temperature at which there is no thermal deformation. Notice that linearizing the
thermal expansion defined in (2.17) leads to the classical thermal strain �v = log Jθ = 3αsk(θ−θo). Recall
that the configuration ϕθ(B) is stress free, and the thermal-induced deformation gradient is isotropic,
thus F = F θFM = FMF θ. As a result, Equation (2.13) can be rewritten as,

P (FM , z, pf ) = P �(FM , z)− JBpfF−T , (2.18)

in which the thermal expansion alone does not induce any change in the effective stress of the solid
skeleton.

2.3 Balance of Fluid Content

The balance of fluid content in the non-isothermal condition has been derived by McTigue in [34] by
extending the isothermal balance principle in [47]. In this study, our new contribution is to provide the
derivations for the balance of fluid mass suitable for total Lagrangian formulation. First of all, let us
define the Lagrangian fluid content M f : B × [0, T ] → R+ as the fluid mass per unit reference volume.
The fluid content is therefore a function of the porosity and the fluid density, i.e.,

M f = Jρf = Jφfρf = Φfρf, (2.19)

where Φf(X, t) = J(X, t)φf(ϕ(X, t), t) is the Lagrangian porosity, the ratio between current void volume
to the initial total volume (cf. [18], p.5). In the current configuration, the balance of fluid mass content
reads, i.e.,

D
Dt

�

ϕ(B)
φfρfdv = −

�

∂ϕ(B)
w · n da. (2.20)

where 

where 
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Applying Reynold’s transport theorem and Guass theorem, we obtain the corresponding local fluid con-

tent continuity equation in the current configuration,

DJφfρf
Dt

+ J ∇x·w = 0, (2.21)

where Dφfρf/Dt is the material time derivative of the current fluid density that reads,

DJφfρf
Dt

=
∂Jφfρf

∂t
+ φfρfJ̇ , (2.22)

where ˙(·) = D(·)/Dt. In (2.20) and (2.21), w is the relative pore-fluid mass flux in the deforming solid

skeleton body. Assuming that the pore-fluid flow is Darian, then the relative pore-fluid mass flux is related

to both the gradient of the pore pressure and the temperature under non-isothermal condition, i.e.,

w = ρfk ·
�
−∇x pf + ρf(G− af

)

�
− ρfsT ∇x θ, (2.23)

where k is the permeability tensor divided by the viscosity; af
is the acceleration of the pore-fluid

constituent and ST is the Soret coefficient. In particular, the latter term sT ∇x θ represents a phenomenon

analogous to the Ludwig-Soret effect (the flux induced by the gradient of temperature) [7, 34, 42].

The balance of mass content in the Lagrangian configuration can be obtained from (2.21) via Piola

transformation, i.e.,

DM f

Dt
= −∇X ·W . (2.24)

The Lagrangian relative mass flux W can be obtained via the Piola identity, i.e.

W = JF−1 ·w. (2.25)

Furthermore, let us assume that the inertial force is negligible, af
= 0. After a pull-back operation, the

Lagrangian mass flux reads,

W = ρfQf = ρfK · (−∇X pf + ρfF
T ·G)− ρfST ∇X θ, (2.26)

where both the permeability tensor and Soret coefficient tensor are both positive semi-definite, i.e.,

K = JF−1 · k · F -T
; ST = JsTC

−1, (2.27)

where C = FT · F is the right Cauchy-Green tensor. Next, we consider the local rate of change of the

fluid content M f
in the left hand side of (2.24). The material time derivative of the fluid mass content

can be partitioned by applying the chain rule on (2.19),

˙M f = Φfρ̇f + ρf ˙Φf. (2.28)

To complete the formulation, we need to re-express (2.28) in terms of the two fields ϕ and pf. As a result,

we assume that the pore fluid density only depends on temperature θ and pore pressure pf. Hence, we

have

ρ̇f(θ, p
f
) =

∂ρf
∂pf

���
θ

˙pf +
∂ρf
∂θ

���
pf

θ̇. (2.29)

In the above expression, ∂ρf/∂pf|θ represents the change of the density due to pore pressure rise/drop at

a fixed temperature, while ∂ρf/∂θ|fp represents the represents the change of density due to a temperature

rise/drop at a fixed pore pressure. Assuming that the bulk modulus Kf and thermal expansion αf of the

pore fluid remains constant, we have

ρf(θ, p
f
) = ρfo exp

�
pf − pfo
Kf

− 3αf(θ − θo)

�
. (2.30)
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2.4.2 Structural Heating and the Gough-Joule Coupling Effect

Giving the fact that the actual expressions of both structural heating and dissipation vary significantly
for different material models, we consider Equation (2.45) the general statement for the balance of energy.
However, we may introduce additional assumptions to express the balance of energy in a more explicit
form. For instance, we may assume that the structural heating contains no latent plastic terms and this
is identical with the thermoelastic heating [51]. To further particularize the problem, assume that the
non-dissipative (latent) structural heating or cooling Hθ are the sum of the power contributed by the
solid skeleton and the pore fluid, i.e.,

Hθ = H
s
θ +H

f
θ, (2.52)

where power contributed by the volumetric deformation of the solid skeleton reads [51],

H
s
θ = −θ

∂

∂θ
P � : Ḟ = −θ

∂
2

∂J∂θ
3αskK log J(θ − θo)J̇ = −3Kαskθ

J̇

J
. (2.53)

Following the derivation in Coussy [18], the pore-fluid contribution reads,

H
f
θ = −θ

∂

∂θ
3αm(θ − θo)ṗf = −3αm

θṗf. (2.54)

Substituting (2.54) and (2.54) into (2.45) and neglect the mechanical dissipation, we obtain the energy
balance equation that takes account of the Gough-Joule coupling effect,

cF θ̇ − 3Kαskθ
J̇

J
− 3αm

θṗf −∇X ·Kθ ∇X
θ +

Φ
f
cF f

ρf
W · F−T ·∇X

θ −Rθ = 0. (2.55)

3 Stabilized Variational Formulation

In this section, we consider the stabilized variational form required for the equal-order displacement-
pressure-temperature finite element model with assumed deformation gradient. We first define the stan-
dard weak form of the poromechanics problem based on the balance law derived in Section 2. By applying
a multiplicative split, we introduce the assumed deformation gradient suitable for the thermohydrome-
chanics problem. To prevent spurious modes due to the usage of equal-order interpolations, we introduce
a stabilization mechanism into the weighted-residual statement of the mass and energy balance equations.
A simple scheme for choosing the stabilization parameters is also presented.

3.1 Galerkin Form

Our objective is to derive a weighted-residual statement suitable for a total Lagrangian scheme. We
first specify the appropriate boundary and initial conditions. Following the standard line, we consider a
domain B whose boundary ∂B is the direct sum of the Dirichlet and Von Neumann boundaries, i.e.,

∂B = ∂Bu ∪ ∂Bt = ∂Bpf ∪ ∂BQf
= ∂Bθ ∪ ∂BQθ

, (3.1)

∅ = ∂Bu ∩ ∂Bt = ∂Bpf ∩ ∂BQf
= ∂Bθ ∩ ∂BQθ

, (3.2)

where ∂Bu is the solid displacement boundary; ∂Bt is the solid traction boundary; ∂Bp is the pore
pressure boundary; ∂BQf

is the pore-fluid flux; ∂Bθ is the temperature boundary; ∂BQf
is the heat flux;

boundary, as illustrated in Figure 3.
In summary, Dirichlet boundary conditions for the thermo-hydro-mechanics problem reads,

u = u on ∂Bu,

p
f = p on ∂Bp, (3.3)

θ = θ on ∂Bθ.
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those applications, it is common to neglect the contribution from the structural heating and dissipation

as shown in [30, 31, 32, 34, 38, 48, 50, 53].

Here we assume that the structural heating is thermoelastic. This leads to the classical Gough-Joule

coupling effect in which local temperature changes may occur when a porous medium undergoes adiabatic

deformation. Rθ is the heat source term. −J ∇x·(qθ/J) is the heat conduction term. Pulling back (2.43)

into the reference configuration via the Piola transformation yields,

cF θ̇ = [Dmech −Hθ] + [−∇X ·Qθ − Φ
f
cF f

ρf
W · F−T ∇X

θ +Rθ], (2.45)

where Qθ is the Piola-Kirchhoff heat flux. Assume that both the solid and fluid constituent obey Fourier’s

law, the Cauchy heat flux is often written as the dot product of the volume averaged heat conductivity

tensor and the gradient of temperature [44], i.e.,

qθ = φ
fkf

θ ∇x
θ + (1− φ

f
)ks

θ ∇x
θ = kθ ∇x

θ, (2.46)

where kθ = φ
fkf

θ + (1 − φ
f
)ks

θ is the volume averaged heat conductivity tensor. However, this volume

averaged approach is only valid if the solid and fluid constituents are connected in parallel. Presumably,

calculating the correct homogenized effective heat conductivity requires knowledges of the pore geometry

and and connectivity obtained from three dimensional tomographic images [56, 57] or directly from

experiments. However, since micro-structural attributes of pore space is not always available, we adopt

an alternative homogenization approach where equivalent inclusion method is used to determine effective

heat conductivity tensor of the two-phase materials [24]. Assuming that the pore fluid as the bulk material

and the solid grains as spherical inclusions, the effective thermal conductivity may be estimated via

Eshelby equivalent inclusion method reads,

kθ =

�
k
f
θ +

φ
f
(k

s
θ − k

f
θ)k

f
θ

(k
s
θ − k

f
θ)φ

f + k
f
θ

�
I =

�
k
f
θ +

Φ
s
(k

s
θ − k

f
θ)k

f
θ

(k
s
θ − k

f
θ)(J − Φs) + Jk

f
θ

�
I, (2.47)

where k
s
θ and k

f
θ are the isotropic thermal conductivity coefficient of the solid and the fluid consitituents.

Applying the Piola transformation and using the relations Φ
s
+ Φ

f
= J and φ

s
+ φ

f
= 1, (2.46) can be

rewritten in reference configuration, i.e.,

J
−1FQθ = −kθF

−T ∇X
θ . (2.48)

Hence, the Piola-Kirchhoff heat flux Qθ corresponding to (2.46) reads,

Qθ = −Kθ ∇X
θ (2.49)

where Kθ is the pull-back thermal conductivity tensor, i.e.,

Kθ = JF−1 · kθ · F−T
. (2.50)

2.4.1 Simplified Heat Transfer Equation in Geometrically Nonlinear Regime

If both the mechanical dissipation and the Gough-Joule coupling effect are neglected, then we recover

the finite deformation version of the heat transfer equation in [30, 31, 38, 49, 50], which reads,

cF θ̇ −∇X ·Kθ ∇X
θ +

Φ
f
cF f

ρf
W · F−T ·∇X

θ −Rθ = 0, (2.51)

Notice that the thermal diffusion process is fully coupled with the skeleton deformation in the geometrical

non-linear regime, even if the mechanical dissipation and Gough-Joule coupling effect are both neglected.

This coupling effect is captured by the porosity changes and volumetric deformation that lead to changes

in the effective specific heat CF , the pull-back conductivity tensor and the convection term. If the both

structural heat and dissipation mechanisms exhibit little influence on the thermal diffusion process of the

porous medium, then (2.51) is sufficient. However, for more general cases, particularly biological tissues

or other rubber-like materials, both the structural heat and dissipation mechanism must be taken into

account properly.
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Combining (2.26) and (2.38), we obtain the strong form of the balance of fluid content equation,

�
B

J
− 3αs(θ − θo)

�
J̇ +

1

M
ṗf − 3α

m
θ̇ +

1

ρf
∇X ·W = 0. (2.40)

Notice that if both constituents are incompressible, then B = 1, 1/M = 0 and ∇x
ρf = 0. Applying the

Piola transform and assuming isothermal condition, (2.40) reduces to the form identical to that seen in

[11],

∇x· v +∇x· q = 0, (2.41)

where q = (1/ρf )w. In summary, the balance law expressed in (2.40) captures the influence of the skeleton

deformation and heat transfer on fluid transport in the following ways.

1. Compression or expansion of fluid induced by solid skeleton deformation

2. Shrinkage or expansion of the pore space that leads to the change of the change of specific storage

3. Expansion or shrinkage of solid and fluid constituents due to temperature changes

4. The Soret effect, i.e., the thermo-induced diffusion of pore fluid

5. The geometrical nonlinear effect due to the deformation of solid skeleton

Remark 1 One important observation of the derivation shown in (2.32)-(2.40) is that the balance of fluid

content equation at finite strains can be significantly different if a different porosity evolution law (such

as those in [37]) is chosen.

2.4 Balance of Energy

In the vast body of literature on thermo-hydro-mechanics, the balance of energy for thermohydromechan-

ics problems differs significantly due to the variety of underlying assumptions. For instance, Selvadurai

and co-workers assume that both the skeleton deformation and pore-flow diffusion processes impose neg-

ligible influences on the heat transfer process and thus leads to a decoupled heat transfer equation in the

infinitesimal regime [38, 49, 50], i.e.,

∇x· kθ ∇x
θ = ρCpθ̇, (2.42)

where kθ and Cp are the volume averaged thermal conductivity and heat capacity of the fluid-solid mix-

ture. Similar assumptions are made in several other small strain thermohydromechanics codes reported

in international co-operative research project DECOVALEX [28] and in the open source simulation code

OpenGeoSys [30].

Our objective here is to provide a more complete picture of energy balance equation by considering

the mechanical work by the solid skeleton and pore-fluid, the density variation and size changes of pore

space due to thermal-hydro-mechanical coupling and the geometrical nonlinear effect. To simplify the

derivation, we consider that all phase of the saturated porous media are locally in thermal equilibrium and

hence the temperature of both solid and fluid constituents are the same locally, i.e. θs = θf = θ. Except

the additional advection term, the local balance of energy is in analogous to that of the single-phase

thermo-plasticity materials [51],

cF θ̇ = [Dmech −Hθ] + [−J ∇x· qθ − φ
f
cF f

ρf
Jw ·∇x

θ +Rθ], (2.43)

where cF is the specific heat capacity per unit volume of the porous media at constant deformation
[25]. For the fully saturated, two-phase porous media, the specific heat capacity of the solid-fluid mixture

can be obtained by volume averaging the specific heat capacities of the solid and fluid constituents, i.e.,

cF = (J − Φ
s
)cF s + Φ

f
cF f, (2.44)

Dmech denotes the contribution to the dissipation due to pure mechanical load. On the other hand, Hθ

is the non-dissipative (latent) structural heating or cooling [25]. At the adiabatic limit without heat

source, the last three terms in (2.43) can be neglected. By contrary, for many petroleum and geotechnical

engineering applications, the life-cycle of the thermo-hydro-mechanical system is in the order of years. For
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2.4.2 Structural Heating and the Gough-Joule Coupling Effect

Giving the fact that the actual expressions of both structural heating and dissipation vary significantly
for different material models, we consider Equation (2.45) the general statement for the balance of energy.
However, we may introduce additional assumptions to express the balance of energy in a more explicit
form. For instance, we may assume that the structural heating contains no latent plastic terms and this
is identical with the thermoelastic heating [51]. To further particularize the problem, assume that the
non-dissipative (latent) structural heating or cooling Hθ are the sum of the power contributed by the
solid skeleton and the pore fluid, i.e.,

Hθ = H
s
θ +H

f
θ, (2.52)

where power contributed by the volumetric deformation of the solid skeleton reads [51],

H
s
θ = −θ

∂

∂θ
P � : Ḟ = −θ

∂
2

∂J∂θ
3αskK log J(θ − θo)J̇ = −3Kαskθ

J̇

J
. (2.53)

Following the derivation in Coussy [18], the pore-fluid contribution reads,

H
f
θ = −θ

∂

∂θ
3αm(θ − θo)ṗf = −3αm

θṗf. (2.54)

Substituting (2.54) and (2.54) into (2.45) and neglect the mechanical dissipation, we obtain the energy
balance equation that takes account of the Gough-Joule coupling effect,

cF θ̇ − 3Kαskθ
J̇

J
− 3αm

θṗf −∇X ·Kθ ∇X
θ +

Φ
f
cF f

ρf
W · F−T ·∇X

θ −Rθ = 0. (2.55)

3 Stabilized Variational Formulation

In this section, we consider the stabilized variational form required for the equal-order displacement-
pressure-temperature finite element model with assumed deformation gradient. We first define the stan-
dard weak form of the poromechanics problem based on the balance law derived in Section 2. By applying
a multiplicative split, we introduce the assumed deformation gradient suitable for the thermohydrome-
chanics problem. To prevent spurious modes due to the usage of equal-order interpolations, we introduce
a stabilization mechanism into the weighted-residual statement of the mass and energy balance equations.
A simple scheme for choosing the stabilization parameters is also presented.

3.1 Galerkin Form

Our objective is to derive a weighted-residual statement suitable for a total Lagrangian scheme. We
first specify the appropriate boundary and initial conditions. Following the standard line, we consider a
domain B whose boundary ∂B is the direct sum of the Dirichlet and Von Neumann boundaries, i.e.,

∂B = ∂Bu ∪ ∂Bt = ∂Bpf ∪ ∂BQf
= ∂Bθ ∪ ∂BQθ

, (3.1)

∅ = ∂Bu ∩ ∂Bt = ∂Bpf ∩ ∂BQf
= ∂Bθ ∩ ∂BQθ

, (3.2)

where ∂Bu is the solid displacement boundary; ∂Bt is the solid traction boundary; ∂Bp is the pore
pressure boundary; ∂BQf

is the pore-fluid flux; ∂Bθ is the temperature boundary; ∂BQf
is the heat flux;

boundary, as illustrated in Figure 3.
In summary, Dirichlet boundary conditions for the thermo-hydro-mechanics problem reads,

u = u on ∂Bu,

p
f = p on ∂Bp, (3.3)

θ = θ on ∂Bθ.
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those applications, it is common to neglect the contribution from the structural heating and dissipation

as shown in [30, 31, 32, 34, 38, 48, 50, 53].

Here we assume that the structural heating is thermoelastic. This leads to the classical Gough-Joule

coupling effect in which local temperature changes may occur when a porous medium undergoes adiabatic

deformation. Rθ is the heat source term. −J ∇x·(qθ/J) is the heat conduction term. Pulling back (2.43)

into the reference configuration via the Piola transformation yields,

cF θ̇ = [Dmech −Hθ] + [−∇X ·Qθ − Φ
f
cF f

ρf
W · F−T ∇X

θ +Rθ], (2.45)

where Qθ is the Piola-Kirchhoff heat flux. Assume that both the solid and fluid constituent obey Fourier’s

law, the Cauchy heat flux is often written as the dot product of the volume averaged heat conductivity

tensor and the gradient of temperature [44], i.e.,

qθ = φ
fkf

θ ∇x
θ + (1− φ

f
)ks

θ ∇x
θ = kθ ∇x

θ, (2.46)

where kθ = φ
fkf

θ + (1 − φ
f
)ks

θ is the volume averaged heat conductivity tensor. However, this volume

averaged approach is only valid if the solid and fluid constituents are connected in parallel. Presumably,

calculating the correct homogenized effective heat conductivity requires knowledges of the pore geometry

and and connectivity obtained from three dimensional tomographic images [56, 57] or directly from

experiments. However, since micro-structural attributes of pore space is not always available, we adopt

an alternative homogenization approach where equivalent inclusion method is used to determine effective

heat conductivity tensor of the two-phase materials [24]. Assuming that the pore fluid as the bulk material

and the solid grains as spherical inclusions, the effective thermal conductivity may be estimated via

Eshelby equivalent inclusion method reads,

kθ =

�
k
f
θ +

φ
f
(k

s
θ − k

f
θ)k

f
θ

(k
s
θ − k

f
θ)φ

f + k
f
θ

�
I =

�
k
f
θ +

Φ
s
(k

s
θ − k

f
θ)k

f
θ

(k
s
θ − k

f
θ)(J − Φs) + Jk

f
θ

�
I, (2.47)

where k
s
θ and k

f
θ are the isotropic thermal conductivity coefficient of the solid and the fluid consitituents.

Applying the Piola transformation and using the relations Φ
s
+ Φ

f
= J and φ

s
+ φ

f
= 1, (2.46) can be

rewritten in reference configuration, i.e.,

J
−1FQθ = −kθF

−T ∇X
θ . (2.48)

Hence, the Piola-Kirchhoff heat flux Qθ corresponding to (2.46) reads,

Qθ = −Kθ ∇X
θ (2.49)

where Kθ is the pull-back thermal conductivity tensor, i.e.,

Kθ = JF−1 · kθ · F−T
. (2.50)

2.4.1 Simplified Heat Transfer Equation in Geometrically Nonlinear Regime

If both the mechanical dissipation and the Gough-Joule coupling effect are neglected, then we recover

the finite deformation version of the heat transfer equation in [30, 31, 38, 49, 50], which reads,

cF θ̇ −∇X ·Kθ ∇X
θ +

Φ
f
cF f

ρf
W · F−T ·∇X

θ −Rθ = 0, (2.51)

Notice that the thermal diffusion process is fully coupled with the skeleton deformation in the geometrical

non-linear regime, even if the mechanical dissipation and Gough-Joule coupling effect are both neglected.

This coupling effect is captured by the porosity changes and volumetric deformation that lead to changes

in the effective specific heat CF , the pull-back conductivity tensor and the convection term. If the both

structural heat and dissipation mechanisms exhibit little influence on the thermal diffusion process of the

porous medium, then (2.51) is sufficient. However, for more general cases, particularly biological tissues

or other rubber-like materials, both the structural heat and dissipation mechanism must be taken into

account properly.

10 WaiChing Sun

those applications, it is common to neglect the contribution from the structural heating and dissipation

as shown in [30, 31, 32, 34, 38, 48, 50, 53].

Here we assume that the structural heating is thermoelastic. This leads to the classical Gough-Joule

coupling effect in which local temperature changes may occur when a porous medium undergoes adiabatic

deformation. Rθ is the heat source term. −J ∇x·(qθ/J) is the heat conduction term. Pulling back (2.43)

into the reference configuration via the Piola transformation yields,

cF θ̇ = [Dmech −Hθ] + [−∇X ·Qθ − Φ
f
cF f

ρf
W · F−T ∇X

θ +Rθ], (2.45)

where Qθ is the Piola-Kirchhoff heat flux. Assume that both the solid and fluid constituent obey Fourier’s

law, the Cauchy heat flux is often written as the dot product of the volume averaged heat conductivity

tensor and the gradient of temperature [44], i.e.,

qθ = φ
fkf

θ ∇x
θ + (1− φ

f
)ks

θ ∇x
θ = kθ ∇x

θ, (2.46)

where kθ = φ
fkf

θ + (1 − φ
f
)ks

θ is the volume averaged heat conductivity tensor. However, this volume

averaged approach is only valid if the solid and fluid constituents are connected in parallel. Presumably,

calculating the correct homogenized effective heat conductivity requires knowledges of the pore geometry

and and connectivity obtained from three dimensional tomographic images [56, 57] or directly from

experiments. However, since micro-structural attributes of pore space is not always available, we adopt

an alternative homogenization approach where equivalent inclusion method is used to determine effective

heat conductivity tensor of the two-phase materials [24]. Assuming that the pore fluid as the bulk material

and the solid grains as spherical inclusions, the effective thermal conductivity may be estimated via

Eshelby equivalent inclusion method reads,

kθ =

�
k
f
θ +

φ
f
(k

s
θ − k

f
θ)k

f
θ

(k
s
θ − k

f
θ)φ

f + k
f
θ

�
I =

�
k
f
θ +

Φ
s
(k

s
θ − k

f
θ)k

f
θ

(k
s
θ − k

f
θ)(J − Φs) + Jk

f
θ

�
I, (2.47)

where k
s
θ and k

f
θ are the isotropic thermal conductivity coefficient of the solid and the fluid consitituents.

Applying the Piola transformation and using the relations Φ
s
+ Φ

f
= J and φ

s
+ φ

f
= 1, (2.46) can be

rewritten in reference configuration, i.e.,

J
−1FQθ = −kθF

−T ∇X
θ . (2.48)

Hence, the Piola-Kirchhoff heat flux Qθ corresponding to (2.46) reads,

Qθ = −Kθ ∇X
θ (2.49)

where Kθ is the pull-back thermal conductivity tensor, i.e.,

Kθ = JF−1 · kθ · F−T
. (2.50)

2.4.1 Simplified Heat Transfer Equation in Geometrically Nonlinear Regime

If both the mechanical dissipation and the Gough-Joule coupling effect are neglected, then we recover

the finite deformation version of the heat transfer equation in [30, 31, 38, 49, 50], which reads,

cF θ̇ −∇X ·Kθ ∇X
θ +

Φ
f
cF f

ρf
W · F−T ·∇X

θ −Rθ = 0, (2.51)

Notice that the thermal diffusion process is fully coupled with the skeleton deformation in the geometrical

non-linear regime, even if the mechanical dissipation and Gough-Joule coupling effect are both neglected.

This coupling effect is captured by the porosity changes and volumetric deformation that lead to changes

in the effective specific heat CF , the pull-back conductivity tensor and the convection term. If the both

structural heat and dissipation mechanisms exhibit little influence on the thermal diffusion process of the

porous medium, then (2.51) is sufficient. However, for more general cases, particularly biological tissues

or other rubber-like materials, both the structural heat and dissipation mechanism must be taken into

account properly.

q  Volume averaging effective conductivity  

q  Homogenized effective conductivity via 
Eshelby equivalent inclusion method (for 
spherical inclusions)   

(cf. Zhou & Meschke, IJNAMG 2013) 

(cf. Preisig & Prevost, IJGGC 2011) 

Important Note:  In general, the temperature of 
the pore-fluid and solid skeleton are not the 
same in the same REV, unless sufficient 
diffusion takes place. This difference is 
neglected in current formulation. Solution of transient heat equation of two-

phase materials  
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kbulk >> kboundary kbulk << kboundary (8.14)

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt =
�

k

� tj+1
k

tjk

Tk − Vkdt (8.15)

Sk = αT k + (1− α) �Tk − αV k − (1− α)�Vk + Ck (8.16)

DϕS = 0 (8.17)
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(3.28) Ru, Rpf and Rθ are the residual of the balance of linear momentum, mass and energy equations.
Note that (3.28) can be rewritten as,

�
A BT

B F

� �
∆û

∆x̂

�
=

�
Ru

R̂

�
, (3.31)

where

F =

�
E D

T

D F

�
; B =

�
B

C

�
; ∆x̂ =

�
∆p

f

∆θ

�
; R̂ =

�
Rpf

Rθ

�
. (3.32)

Obviously, stable pore pressure and temperature solution requires that the matrix BABT has full rank.
For BABT to have full rank, A must be positive definite (and hence remains elliptic in the kernel of B)
and the compound matrix B must fulfill the inf-sup condition proven in [26], i.e., there exists a constant
Co > 0 such that

sup
wh∈Vu

h

�
B

�
pfhB + 3θKαsk

�
∇x·wh dV

||wh||
V

h
u

≥ Co

�
||pfh||V h

p
+ ||θh||V h

θ

�
, (pfh, θh) ∈ V h

p × V h
θ . (3.33)

where || · ||
V

h
u
, || · ||V h

p
and || · ||V h

θ
are the norms corresponding to the finite dimensional space V

h
u, V

h
p

and V h
θ . Here we equip the spaces of the solutions and their corresponding testing functions with the

same associated norms, i.e.,

||u||V h
u
= ||u||1 =

��

B

∇x u ·∇x u dV ,

||p||V h
pf

=

��

B

Bp2 dV ,

||θ||V h
θ
=

��

B

3
�
αskK

�
θ2 dV .

(3.34)

Note that || · ||V h
pf
, || · ||V h

θ
and || · ||0 are equivalent norms. Unfortunately, if displacement, pore pressure

and temperatures are all spanned by the same basis function, then the condition listed in (3.33) does not
hold [13].

Our new contribution here is twofold. First, we prove that a weaker inf-sup bound also exists for the
compound matrix B. Then, for the first time, we propose a proper stabilization term that may eliminate
the spurious oscillations of pore pressure and temperature for the thermo-hydro-mechanics problem.

3.4.1 Weak Inf-Sup Conditions of Coupling Terms

To derive stabilized finite element formulation, we may first quantify the inf-sup ”deficiency” of the
unstable, equal-order discretization, then propose additional terms to eliminate the spurious modes due
to the inf-sup ”deficiency”. Previously, this strategy is used in Bochev et al [9] where a weaker inf-sup
bound is first identified for the Stokes equations, then a stabilization term is derived to restore stability
for two interpolated velocity-pressure pairs.

To determine the weak inf-sup bound of individual coupling terms, let us first recall that the divergence
is an isomorphism of the orthogonal complement of divergence-free functions in H

1
0(B) onto L2

0(B) space.
Given that the pressure pfh ∈ V h

p ⊂ L2
0(B), then the isomorphism of the divergence operator guarantees

the existence of a w ∈ H
1
0(B) such that,

∇x·w = pfh and ||w||1 ≤ ||pfh||V h
pf

. (3.35)

With (3.35) in mind, we then have,

sup
v∈H1

o(B)

|
�
B
pfhB∇X · v dV |

||v||1
≥

�
B
| pfhB∇X ·w dV |

||w||1
≥

�
B
| pfhBpfh dV |
||pfh||V h

pf

≥ C̃p||pfh||V h
pf

, (3.36)
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On the other hand, (3.43) implies the existence of wh ∈ V wh with ||wh||1 = 1 such that
�

B

3Kαskθ
h ∇x·wh dV ≥ β1||θh||V h

θ
− β2h||∇x θh||V h

θ
, θh ∈ V h

θ , (3.45)

Now let u = vh +wh, then,
�

B

pfhB∇x·u dV =

�

B

pfhB∇x· vh dV+

�

B

pfhB∇x·wh dV

=

�

B

pfhB∇x· vh dV+

�

B

Bpfh

3Kαsk
(3Kαsk)∇x·wh dV ,

�

B

3Kαskθ
h ∇x·u dV =

�

B

3Kαskθ
h ∇x· vh dV+

�

B

3Kαskθ
h ∇x· vw dV

=

�

B

3Kαskθ
h

B
B∇x· vh dV

�

B

3Kαskθ
h ∇x·wh dV .

(3.46)

Recall that V h
pf and V h

θ are spanned by the same set of basis functions. Thus, �ph = (3Kαsk/B)θh and
�θh =

�
B/(3Kαsk)

�
pfh, we have,

�

B

�
pfhB + 3Kαskθ

h�∇x·u dV =

�

B

(pfh + �ph)B∇x· vh dV+

�

B

3Kαsk(θ
h + �θh)∇x·wh dV

≥ γ1
�
||pfh||V h

pf
+ ||θh||V h

θ

�
− γ2h

�
||∇x pfh||V h

pf
+ ||∇x θh||V h

θ

�
,

(3.47)

where γ1 = min(α1,β1) and γ2 = max(α2,β2). Thus, according to the definition of supremum, we may
express the combined weaker inf-sup bound as,

sup
vh∈V h

u ,v �=0

�
B

�
pfhB + 3Kαskθ

h
�
∇x· vh dV

||vh||1
≥ C1

�
||pfh||V h

pf
+ ||θh||V h

θ

�
− C2h

�
||∇x pfh||V h

pf
+ ||∇x θh||V h

θ

�
,

(3.48)

where C1 and C2 are positive constant.

3.4.3 Projection-based Stabilization

By comparing (3.33) and (3.48), we notice that the difference between the inf-sup bound and the weak
inf-sup bound is the gradient term in (3.48), i.e.,

−C2h
�
||∇x pfh||V h

pf
+ ||∇x θh||V h

θ

�
, (3.49)

This term can be used as a template for the design of stabilization terms. For instance, a simple remedy to
restore numerical stability by directly adding perturbation gradient terms in (3.48) such that the inf-sup
deficiency is counterbalanced. Here we consider an alternative characterization of the inf-sup deficiency
formulated in terms of projection operators. The upshot of a projection-based stabilization method is
that it does not depend on the mesh size h or the type of element shapes, hence easier to be implemented.
As discussed in Sun et al [58], the rationale of the projection-based stabilization is based on the inverse
inequality, which guarantees the existence of a positive constant CI such that ,

CIh
�
||∇x pfh||V h

pf
+ ||∇x θh||V h

θ

�
≤ ||pfh −Πpfh||V h

pf
+ ||θh −Πθh||V h

θ
, (3.50)

where Π(·) is a projection operator leads to a piecewise constant field. Here we define Π(·) as simply the
element average operator that reads,

Π(·) = 1
V e

�

K
(·) dV ;K ∈ B. (3.51)
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On the other hand, (3.43) implies the existence of wh ∈ V wh with ||wh||1 = 1 such that
�

B

3Kαskθ
h ∇x·wh dV ≥ β1||θh||V h

θ
− β2h||∇x θh||V h

θ
, θh ∈ V h

θ , (3.45)
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B
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�

B
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�

B
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�

B
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�

B
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3Kαsk
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�

B

3Kαskθ
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�

B

3Kαskθ
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�

B

3Kαskθ
h ∇x· vw dV
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�

B

3Kαskθ
h

B
B∇x· vh dV

�

B

3Kαskθ
h ∇x·wh dV .

(3.46)

Recall that V h
pf and V h

θ are spanned by the same set of basis functions. Thus, �ph = (3Kαsk/B)θh and
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�
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�
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�

B
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�
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restore numerical stability by directly adding perturbation gradient terms in (3.48) such that the inf-sup
deficiency is counterbalanced. Here we consider an alternative characterization of the inf-sup deficiency
formulated in terms of projection operators. The upshot of a projection-based stabilization method is
that it does not depend on the mesh size h or the type of element shapes, hence easier to be implemented.
As discussed in Sun et al [58], the rationale of the projection-based stabilization is based on the inverse
inequality, which guarantees the existence of a positive constant CI such that ,
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Furthermore, since it is not clear whether the two-way couplings between pore-fluid diffusion and heat
transfer may destabilize the system if either the pore-fluid or the thermal conductivity is too low, we
introduce a third term as a safety measure. The resultant perturbation functional reads,

W
per(θh, pfh) = C

�1
2
||pfh −Πp

fh||2V h
pf
+

1
2
||θh −Πθ

h||2V h
θ
+

�

K∈Ω

|
�

K
3αm(pfh −Πp

fh)(θh −Πθ
h)dV |

�
,

(3.52)
where C is a positive constant. The stabilization term added to the discrete balance of mass equation
(3.17) is simply the first variation of (3.52) with respect to pore pressure, i.e.,

Ĥ
stab(ψ, pfhn+1, θ

h
n+1) =

�

K∈B

�

K
C(ψ −Πψ)B

�
p
fh
n+1 − p

fh
n −Π(pfhn+1 − p

fh
n )

�
dV

+
�

K∈B

�

K
C(ψ −Πψ)(3αm)

�
θ
h
n+1 − θ

h
n −Π(θhn+1 − θ

h
n)
�
dV .

(3.53)

On the other hand, the hand, the stabilization term added to the balance of energy (3.17) is obtained by
taking the first variation of (3.52) with respect to temperature and multiply the result by the temperature,
i.e.,

L̂
stab(ω, pfhn+1, θ

h
n+1) =

�

K∈B

�

K
C(ω −Πω)(3αm)θn+1

�
p
fh
n+1 − p

fh
n −Π(pfhn+1 − p

fh
n )

�
dV

+
�

K∈B

�

K
C(ω −Πω)(3Kαskθ

h
n+1)

�
θ
h
n+1 − θ

h
n −Π(θhn+1 − θ

h
n)
�
dV .

(3.54)

Finally, applying the stabilized formulation in the discrete variational equation (3.15) yields,

Ĝ(uh
n+1, p

fh
n+1, θ

h
n+1,η) = 0

Ĥ(uh
n+1, p

fh
n+1, θ

h
n+1,ψ)− Ĥ

stab(uh
n+1, p

fh
n+1, θ

h
n+1,ψ) = 0

L̂(uh
n+1, p

fh
n+1, θ

h
n+1,ω)− L̂

stab(uh
n+1, p

fh
n+1, θ

h
n+1,ω) = 0 .

(3.55)

In summary, we use the simplified analysis in this section to establish the combined weak inf-sup condition
of the THME problems. This weak condtion is used as a template for us to design perturbation terms
that stabilizes the equal-order finite element models. The estimation of the stabilization parameters for
specific methods is discussed in the next section.

3.4.4 Stabilization Parameter Estimation

4 Implementation

5 Numerical Examples

6 Conclusion

The new contribution of this work is twofold. First, we establish a large deformation thermo-hydro-
mechanics theory that fully incorporates the influences of the geometrical nonlinearity. Using the automatic-
differentiation technique to simplify the implementation process, the nonlinear relations between porosity,
permeability and thermal conductivity is fully captured. Secondly, we introduce a stabilized equal-order
mixed finite element model that can provide stable numerical solutions without over-diffusion. To the
best of the author’s knowledge, this is the first time a stabilization technique being introduced in the
thermo-hydro-mechanics problem. Our numerical results indicate that such a stabilization procedure is
useful for solving problems near the undrained and adiabatic regimes.



Combined	
  F-­‐bar	
  Formula3on	
  

8 WaiChing Sun et al.

Ĥ (un+1, p
f
n+1,η)

=

�

B

ψ
Bn+1 −Bn

∆t
(log Jn+1 +

p
f
n+1

Ks
) dV

+

�

B

ψBn+1
log Jn+1 − log Jn

∆t
dV

+

�

B

ψ
1

Mn+1

p
f
n+1 − p

f
n

∆t
dV

−
�

B

∇X
ψ ·Qn+1 dV

−
�

∂BQ

ψQn+1 dΓ (48)

3.3 Enhanced Deformation Gradient for

Volumetric Locking

In this section, we derive an assumed deformation

gradient definition for the case when the solid

skeleton matrix becomes incompressible. A simple

stabilization mechanism is provided.

The assumed deformation gradient method is

often used to avoid over-constraining associated

with equal-order interpolations of the volumetric

and isochoric parts of the deformation gradient

[14; 28; 47; 52]. The key to avoid this problem is to

replace the interpolated volumetric deformation

field J = detF with a reduced order volumetric

field J such that fewer volumetric constraints oc-

cur when incompressibility limit is approached.

The resultant assumed deformation gradient is

therefore composed of the modified volumetric

deformation field and the original interpolated

isochoric deformation gradient.

Recall that the kinematic split of the deforma-

tion gradient F is formulated as,

F = F vol · F iso (49)

where

F vol = J
1/3I ; F iso = J

−1/3F (50)

An assumed strain formulation replaces the in-

terpolated volumetric split F vol = J
1/3I with an

modified definition F vol = J̄
1/3I such that

F = J̄
1/3F iso = J̄

1/3
J
−1/3F (51)

However, the usage of assumed deformation gra-

dient may lead to numerical instabilities when

the stiffness from the assumed deformation gra-

dient is too low. As a result, Moran et al. (1990)

[28] suggested replacing the assumed deformation

gradient F of a linear interpolation between the

original and the assumed deformation gradient,

i.e.,

�F = αF − (1− α)F . (52)

where α is a stabilization parameter in which α =
0 leads to the pure F-bar formulation and α = 1
leads to the standard formulation. The idea is

to stiffen the element by increasing α whenever

numerical instability is encountered. Recent work

by Mota et al. (2012), however, has demonstrated

that linear interpolation may lead to significant

error, since the addition operation is not valid for

the multiplicative group of which the deformation

gradient belongs.

In order to provide the essential volumetric

relaxation while maintaining stability, we intro-

duce a simple combined/standard F-bar element

by recourse to exponential/logarithmic mapping,

�F = �J1/3
J
−1/3F (53)

where

�J(X) = exp
�1− α

VBe

�

Be

log J(X) dV+α log J(X)
�

(54)

where α ∈ [0, 1]. The combined formulation may

reduce to fully standard or F-bar formulation by

adjusting α as in [28]. Furthermore, it can be

easily shown that (53) is identical to the mid-point

assumed deformation gradient formulation in [14]

if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid

of the element.

Notice that this formulation does not require

modification other than consistently replacing the

conventional interpolated deformation gradient

with the modified counterpart in (53).

Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may

lead to spurious mode for certain single-phase solid

mechanics problem as demonstrated in [9], non-

zero α is not required in the solutions presented

in the example section.

q  Isochoric-volumetric split (Hughes 1975, Simo 1975)  

8 WaiChing Sun et al.
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The resultant assumed deformation gradient is
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where
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1/3I such that
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However, the usage of assumed deformation gra-
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[28] suggested replacing the assumed deformation
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that linear interpolation may lead to significant
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reduce to fully standard or F-bar formulation by
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easily shown that (53) is identical to the mid-point

assumed deformation gradient formulation in [14]

if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid

of the element.

Notice that this formulation does not require

modification other than consistently replacing the

conventional interpolated deformation gradient

with the modified counterpart in (53).

Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may

lead to spurious mode for certain single-phase solid

mechanics problem as demonstrated in [9], non-
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q  Replacing volumetric split with assumed term 

q  Combined F-bar approach 
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where
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[28] suggested replacing the assumed deformation

gradient F of a linear interpolation between the

original and the assumed deformation gradient,

i.e.,
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where α is a stabilization parameter in which α =
0 leads to the pure F-bar formulation and α = 1
leads to the standard formulation. The idea is

to stiffen the element by increasing α whenever

numerical instability is encountered. Recent work
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that linear interpolation may lead to significant

error, since the addition operation is not valid for

the multiplicative group of which the deformation
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where α ∈ [0, 1]. The combined formulation may

reduce to fully standard or F-bar formulation by

adjusting α as in [28]. Furthermore, it can be

easily shown that (53) is identical to the mid-point

assumed deformation gradient formulation in [14]

if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid

of the element.

Notice that this formulation does not require

modification other than consistently replacing the

conventional interpolated deformation gradient

with the modified counterpart in (53).

Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may

lead to spurious mode for certain single-phase solid

mechanics problem as demonstrated in [9], non-

zero α is not required in the solutions presented

in the example section.

q  Current Approach via Lie algebra  
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Figure 6. Instability of an elastic plane strain block: the first two buckling modes, NICE-H8 and NICE-T4
meshes with 40 elements horizontally.

The first two instability modes are found by linear buckling analysis (see Figure 5 for results
obtained with the NICE-H27 element). Figure 6 shows results for the same analysis with the
NICE-H8 element. This time the reader may wonder whether the instability modes are entirely
physical—observe the alternating vertical compression and dilation especially in the mode shown
on the right. Indeed they are not, as the present formulation contains low-energy deformation
modes. This has been pointed out in some of the original work on average-pressure (average-strain)
elements [21, 22]. Clearly, whether or not the (unphysical) low-energy modes will appear among
the physical instability modes depends upon which element is used in the analysis: the instability
modes for NICE-H27 are apparently physical, whereas un-physical modes begin to show up for
NICE-H8. The demonstration of such occurrence for NICE-T4 in Figure 6 is quite dramatic.
Evidently, in this case the low-energy modes are associated with lower critical load than the first
physical modes (compare the critical load multipliers !cr).

4.4. Possible stabilization mechanism

A possible stabilization technique could put penalty on the difference between the nodal defor-
mation gradients and the deformation gradient computed at the node from the adjoining elements.
Thus, we add a penalty stabilization force term to Equation (19) of the form

∫

V0
" tr[(∇0g−∇0g)T(F̄−F)] (45)

where " has the physical units of elastic moduli. The reasoning is that if our derivations were
based on energy, such term would result from a quadratic positive semi-definite form of penalty
energy. It is of interest to note that the linearization of the stabilization force in (45) is a constant
symmetric tangent operator to be added to the material and geometric operators derived earlier.
A similar approach to stabilization has been discussed in the context of meshless and nodal-
averaging methods [21, 22].

How to choose the magnitude of the parameter " is an open problem at present. Here we give
an illustration of the relevant aspects. In Figure 7 we show that choosing "=0.01E (that is 1% of
Young’s modulus) suppresses the unphysical part of the first buckling mode, but it also replaces

Copyright 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 78:1113–1134
DOI: 10.1002/nme

Why this is wrong? 

Relaxing too much, we get instability  
Relaxing too little, we get the volumetric locking  
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[36, 52, 55, 58, 63]. The key to avoid overconstraint is to replace the interpolated volumetric deformation

field J = detF with a reduced order volumetric field J such that fewer volumetric constraints occur when

incompressibility limit is approached. The resultant assumed deformation gradient is therefore composed

of the modified volumetric deformation field and the original interpolated isochoric deformation gradi-

ent. In other words, the interpolated volumetric split F vol = J
1/3I is replaced by an modified definition

F vol = J̄
1/3I such that

F = J̄
1/3F iso = J̄

1/3
J
−1/3F . (3.22)

While the relaxation provided by the modification of deformation gradient definition is able to cure

the locking issue, the usage of non-standard deformation gradient may lead to numerical instability

as exhibited in Broccardo et al [15], Castellazzi and Krysl [17]. Moran et al [36] suggested replacing

the assumed deformation gradient F with a linear interpolation between the original and the assumed

deformation gradient, i.e., �F = αF +(1−α)F . where α is a stabilization parameter in which α = 0 leads

to the pure F-bar formulation and α = 1 leads to the standard formulation. The idea is to introduce

stiffness to spurious zero-energy mode by increasing the magnitude of α whenever the numerical instability

is encountered.

However, as deformation gradient belongs to multiplicative group, linear interpolation may lead to

significant error. For instance, linearly interpolating rigid body rotations may lead to tensor not belonging

to SO(3) group. To cure locking without comprising stability, we introduce a simple combined/standard

F-bar element by recourse to exponential/logarithmic mapping for the thermo-hydro-mechanics problem

in which the modified deformation gradient reads ,

�F = �J1/3F iso = �J1/3
J
−1/3F , (3.23)

where �J is the modified volumetric split of the deformation gradient, i.e.,

�J = exp

�
1− β

VBe

�

Be

log J dV + β log J

�
. (3.24)

Augmented with the (2.17) and assumed that the thermal expansion coefficient α
m

is constant, the

logarithmic volumetric strain log J reads,

log J = log J
e
+ log J

p
+ 3αsk(θ − θo), (3.25)

where β ∈ [0, 1] is a weighing parameter that partitions the standard and assumed deformation gradient.

The mechanical contribution of the assumed deformation gradient therefore reads,

�FM = �J1/3
M F iso , (3.26)

where

�JM = exp

�
log �J − 3

�1− β

VBe

�

Be

αsk

�
θ − θo

�
dV + βαsk(θ − θo

��
. (3.27)

The combined formulation may reduce to the standard or F-bar formulation by adjusting α. Furthermore,

it can be easily shown that (3.23) is identical to the mid-point assumed deformation gradient formulation

in [55] if α = 0 and the volume averaging of log J(X) is computed via one-point quadrature at the

centroid of the element. In all the simulations presented in this paper, we found that setting α = 0.05

appeared to eliminate the zero energy modes.

Remark 2 At present, the optimal value of β is not known. While the assumed deformation gradient may

lead to spurious modes for certain single-phase solid mechanics problems, non-zero β is not required in

the solutions presented in the example section.
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[36, 52, 55, 58, 63]. The key to avoid overconstraint is to replace the interpolated volumetric deformation

field J = detF with a reduced order volumetric field J such that fewer volumetric constraints occur when

incompressibility limit is approached. The resultant assumed deformation gradient is therefore composed

of the modified volumetric deformation field and the original interpolated isochoric deformation gradi-

ent. In other words, the interpolated volumetric split F vol = J
1/3I is replaced by an modified definition

F vol = J̄
1/3I such that

F = J̄
1/3F iso = J̄

1/3
J
−1/3F . (3.22)

While the relaxation provided by the modification of deformation gradient definition is able to cure

the locking issue, the usage of non-standard deformation gradient may lead to numerical instability

as exhibited in Broccardo et al [15], Castellazzi and Krysl [17]. Moran et al [36] suggested replacing

the assumed deformation gradient F with a linear interpolation between the original and the assumed

deformation gradient, i.e., �F = αF +(1−α)F . where α is a stabilization parameter in which α = 0 leads

to the pure F-bar formulation and α = 1 leads to the standard formulation. The idea is to introduce

stiffness to spurious zero-energy mode by increasing the magnitude of α whenever the numerical instability

is encountered.

However, as deformation gradient belongs to multiplicative group, linear interpolation may lead to

significant error. For instance, linearly interpolating rigid body rotations may lead to tensor not belonging

to SO(3) group. To cure locking without comprising stability, we introduce a simple combined/standard

F-bar element by recourse to exponential/logarithmic mapping for the thermo-hydro-mechanics problem

in which the modified deformation gradient reads ,

�F = �J1/3F iso = �J1/3
J
−1/3F , (3.23)

where �J is the modified volumetric split of the deformation gradient, i.e.,

�J = exp

�
1− β

VBe

�

Be

log J dV + β log J

�
. (3.24)

Augmented with the (2.17) and assumed that the thermal expansion coefficient α
m

is constant, the

logarithmic volumetric strain log J reads,

log J = log J
e
+ log J

p
+ 3αsk(θ − θo), (3.25)

where β ∈ [0, 1] is a weighing parameter that partitions the standard and assumed deformation gradient.

The mechanical contribution of the assumed deformation gradient therefore reads,

�FM = �J1/3
M F iso , (3.26)

where

�JM = exp

�
log �J − 3

�1− β

VBe

�

Be

αsk

�
θ − θo

�
dV + βαsk(θ − θo

��
. (3.27)

The combined formulation may reduce to the standard or F-bar formulation by adjusting α. Furthermore,

it can be easily shown that (3.23) is identical to the mid-point assumed deformation gradient formulation

in [55] if α = 0 and the volume averaging of log J(X) is computed via one-point quadrature at the

centroid of the element. In all the simulations presented in this paper, we found that setting α = 0.05

appeared to eliminate the zero energy modes.

Remark 2 At present, the optimal value of β is not known. While the assumed deformation gradient may

lead to spurious modes for certain single-phase solid mechanics problems, non-zero β is not required in

the solutions presented in the example section.
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Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(65)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. For brevity,
the derivation of (64) will not be repeated here.
Interested readers please refer to [23; 24; 27] for
details.

Equations taking the form of (64) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [15], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(66)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (66) has an exact solution
that reads,

p̂(x) = exp(±x/

√
ϑc∆t) (67)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (68)

where
√
ϑc∆t)h is the approximate growth/decay

rate of the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lation if

√
ϑc∆t)h is complex valued, as pointed

out in [15]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t)h being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (69)

Next, we add the stabilization terms defined in
(56) and (59) into (66). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (70)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
pore pressure gradient stabilized three node pencil
reads,

(1 + βkh) (−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (71)

where β is the stabilization parameter for the
gradient stabilization term. By comparing (70)
and (71), one may show that the L

2 projection
stabilization and gradient stabilization can become
identical to each other in the one-dimensional case
by setting

β = γ
hk

12ϑc∆t
(72)

Hence, once the bound of stability parameter γ is
defined, the bound of β is also known via (72). To
compute the stability bound for the L

2 projection
stabilization, we first apply (68) into (70), which
leads to

cosh
h

(
√
ϑc∆t)h

=
1 + h

2
/ϑc∆t)(4 + γ)/6

1− h2/ϑc∆t)(2− γ)/12
(73)

The approximate growth/decay rate does not con-
tain an imaginary part if the hyperbolic cosine
function is positive valued. Provided that γ and β

are both positive, the stabilization parameter that
eliminate spurious oscillation can be determined
from the denominator in the R.H.S of (73) ,

γ > 2− 12
ϑc∆t

h2
> 0 (74)

which is equivalent to the following relation for
the 1D case,

β >
hk

6ϑc∆t
− 1

h
k > 0 (75)

In our implementation, we employ the L
2 projec-

tion scheme and define γ as

γ = (2− 6
ϑc∆t

h2
)
�1
2
+

1

2
tanh(2− 12

ϑc∆t

h2
)
�

(76)

Notice that the term 1/2 + tanh(2 − 12ϑc∆t
h2 )/2

approaches zero if diffusivity is high and equal to 1
if diffusivity is low. This treatment is to limit over-
diffusion caused by usage of stabilization term as
mentioned in [39].

Stabilized F-bar Mixed FEM 

Standard Galerkin Method 

1D poromechanics governing equation 
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may assign a very large value to stabilize the so-
lution, doing so may over-diffuse the solution and
lead to nonphysical results [55].

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-
rameter for multi-dimensional large deformation
poromechanics problems, we estimate the sta-
bilization parameter based on a simplified one-
dimension diffusion problem. As [20] points out,
this represents a uniform d-dimensional mesh aligned
with the direction of the growth and decay of the
solution.

Our starting point of this analysis is the lin-
earized perturbation equation from Rice [42], where
an infinitesimal perturbation of pore pressure p̂

satisfies the linearization of the one dimensional
poromechanics governing equation, written as

c
∂
2
p̂

∂x2
=

∂p̂

∂t
, (65)

where c is the diffusivity. If the elastic response
of the solid skeleton and the permeability are
both isotropic and the plastic response is of the
Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(66)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. Notice that
M

� also appears in (60) and (61).
For brevity, the derivation of (65) is not re-

peated here. Interested readers please refer to
[42; 43; 46] for details.

Equations taking the form of (65) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [20], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(67)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (67) has an exact solution
that reads [20],

p̂(x) = exp(±x/

√
ϑc∆t) (68)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (69)

where
√
ϑc∆t

h
is the approximate growth/decay

term in the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lations if

√
ϑc∆t

h
is complex valued, as pointed

out in [20]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t

h
being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (70)

Next, we add the stabilization terms defined in
(57) and (60) into (67). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (71)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
three node stencil stabilized by the fluid pressure
Laplacian method reads,

(1 + β
hk

ϑ∆tµ
)(−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (72)

where β is the stabilization parameter for the gra-
dient stabilization term. By comparing (71) and
(72), one may show that the L

2 projection stabi-
lization and fluid pressure Laplacian stabilization
are identical to each other in the one-dimensional
case if the following holds,

γ =
�
12

ck

µh

�
β (73)

Hence, once the bound for the stability parameter
γ is defined, the bound of β is also known via
(73). To compute the stability bound for the L

2
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may assign a very large value to stabilize the so-
lution, doing so may over-diffuse the solution and
lead to nonphysical results [55].

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-
rameter for multi-dimensional large deformation
poromechanics problems, we estimate the sta-
bilization parameter based on a simplified one-
dimension diffusion problem. As [20] points out,
this represents a uniform d-dimensional mesh aligned
with the direction of the growth and decay of the
solution.

Our starting point of this analysis is the lin-
earized perturbation equation from Rice [42], where
an infinitesimal perturbation of pore pressure p̂

satisfies the linearization of the one dimensional
poromechanics governing equation, written as

c
∂
2
p̂

∂x2
=

∂p̂

∂t
, (65)

where c is the diffusivity. If the elastic response
of the solid skeleton and the permeability are
both isotropic and the plastic response is of the
Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(66)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. Notice that
M

� also appears in (60) and (61).
For brevity, the derivation of (65) is not re-

peated here. Interested readers please refer to
[42; 43; 46] for details.

Equations taking the form of (65) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [20], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(67)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (67) has an exact solution
that reads [20],

p̂(x) = exp(±x/

√
ϑc∆t) (68)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (69)

where
√
ϑc∆t

h
is the approximate growth/decay

term in the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lations if

√
ϑc∆t

h
is complex valued, as pointed

out in [20]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t

h
being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (70)

Next, we add the stabilization terms defined in
(57) and (60) into (67). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (71)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
three node stencil stabilized by the fluid pressure
Laplacian method reads,

(1 + β
hk

ϑ∆tµ
)(−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (72)

where β is the stabilization parameter for the gra-
dient stabilization term. By comparing (71) and
(72), one may show that the L

2 projection stabi-
lization and fluid pressure Laplacian stabilization
are identical to each other in the one-dimensional
case if the following holds,

γ =
�
12

ck

µh

�
β (73)

Hence, once the bound for the stability parameter
γ is defined, the bound of β is also known via
(73). To compute the stability bound for the L

2
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may assign a very large value to stabilize the so-
lution, doing so may over-diffuse the solution and
lead to nonphysical results [55].

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-
rameter for multi-dimensional large deformation
poromechanics problems, we estimate the sta-
bilization parameter based on a simplified one-
dimension diffusion problem. As [20] points out,
this represents a uniform d-dimensional mesh aligned
with the direction of the growth and decay of the
solution.

Our starting point of this analysis is the lin-
earized perturbation equation from Rice [42], where
an infinitesimal perturbation of pore pressure p̂

satisfies the linearization of the one dimensional
poromechanics governing equation, written as

c
∂
2
p̂

∂x2
=

∂p̂

∂t
, (65)

where c is the diffusivity. If the elastic response
of the solid skeleton and the permeability are
both isotropic and the plastic response is of the
Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(66)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. Notice that
M

� also appears in (60) and (61).
For brevity, the derivation of (65) is not re-

peated here. Interested readers please refer to
[42; 43; 46] for details.

Equations taking the form of (65) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [20], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(67)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (67) has an exact solution
that reads [20],

p̂(x) = exp(±x/

√
ϑc∆t) (68)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (69)

where
√
ϑc∆t

h
is the approximate growth/decay

term in the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lations if

√
ϑc∆t

h
is complex valued, as pointed

out in [20]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t

h
being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (70)

Next, we add the stabilization terms defined in
(57) and (60) into (67). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (71)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
three node stencil stabilized by the fluid pressure
Laplacian method reads,

(1 + β
hk

ϑ∆tµ
)(−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (72)

where β is the stabilization parameter for the gra-
dient stabilization term. By comparing (71) and
(72), one may show that the L

2 projection stabi-
lization and fluid pressure Laplacian stabilization
are identical to each other in the one-dimensional
case if the following holds,

γ =
�
12

ck

µh

�
β (73)

Hence, once the bound for the stability parameter
γ is defined, the bound of β is also known via
(73). To compute the stability bound for the L

2

Three node stencil (Stabilized Galerkin method)  
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may assign a very large value to stabilize the so-
lution, doing so may over-diffuse the solution and
lead to nonphysical results [55].

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-
rameter for multi-dimensional large deformation
poromechanics problems, we estimate the sta-
bilization parameter based on a simplified one-
dimension diffusion problem. As [20] points out,
this represents a uniform d-dimensional mesh aligned
with the direction of the growth and decay of the
solution.

Our starting point of this analysis is the lin-
earized perturbation equation from Rice [42], where
an infinitesimal perturbation of pore pressure p̂

satisfies the linearization of the one dimensional
poromechanics governing equation, written as

c
∂
2
p̂

∂x2
=

∂p̂

∂t
, (65)

where c is the diffusivity. If the elastic response
of the solid skeleton and the permeability are
both isotropic and the plastic response is of the
Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(66)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. Notice that
M

� also appears in (60) and (61).
For brevity, the derivation of (65) is not re-

peated here. Interested readers please refer to
[42; 43; 46] for details.

Equations taking the form of (65) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [20], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(67)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (67) has an exact solution
that reads [20],

p̂(x) = exp(±x/

√
ϑc∆t) (68)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (69)

where
√
ϑc∆t

h
is the approximate growth/decay

term in the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lations if

√
ϑc∆t

h
is complex valued, as pointed

out in [20]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t

h
being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (70)

Next, we add the stabilization terms defined in
(57) and (60) into (67). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (71)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
three node stencil stabilized by the fluid pressure
Laplacian method reads,

(1 + β
hk

ϑ∆tµ
)(−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (72)

where β is the stabilization parameter for the gra-
dient stabilization term. By comparing (71) and
(72), one may show that the L

2 projection stabi-
lization and fluid pressure Laplacian stabilization
are identical to each other in the one-dimensional
case if the following holds,

γ =
�
12

ck

µh

�
β (73)

Hence, once the bound for the stability parameter
γ is defined, the bound of β is also known via
(73). To compute the stability bound for the L

2
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projection stabilization, we first apply (69) into
(71), which leads to

cosh
h

(
√
ϑc∆t)h

=
(1 + h

2
/ϑc∆t)(4 + γ)/6

(1− h2/ϑc∆t)(2− γ)/12
(74)

The approximate growth/decay rate does not con-
tain an imaginary part if the hyperbolic cosine
term is positive. Provided that γ and β are both
positive, the stabilization parameter that elimi-
nates spurious oscillation can be determined from
the denominator in the right hand side of (74),

γ > 2− 12
ϑc∆t

h2
> 0 (75)

which is equivalent to the following relation for
the 1D case,

β >
µ

k
(
ch

6
− ϑk∆t

µh
) > 0 (76)

In our implementation, we employ the L
2 projec-

tion scheme and define γ as

γ = (2− 6
ϑc∆t

h2
)
�1
2
+

1

2
tanh(2− 12

ϑc∆t

h2
)
�

(77)

Notice that the term 1/2 + tanh(2 − 12ϑc∆t
h2 )/2

approaches zero if diffusivity is high and equal to
1 if diffusivity is low. This treatment is to limit
over-diffusion caused by usage of the stabilization
term as mentioned in [55].

Remark 3 It is evident that the estimation of the
stabilization parameter is based on a 1D problem,
and thus as useful as it is, cannot be relied upon
as a definitive analytical solution for the optimal
value of the stabilization parameter. Nevertheless,
in engineering practice, it may serve as an useful
guideline for typical problems. In the numerical
examples shown in Section 5, the estimated sta-
bilization parameter is able to eliminate spurious
oscillations and converges to analytical solutions
without introducing significant over-diffusion.

Remark 4 Notice that the above formulation can
be reduced to the classical 1D lumped mass case if
γ = 2 and β = h/(6ϑc∆t). The latter relation has
been pointed out in [33]. The stabilization param-
eter suggested in [55] is equivalent to γ = 2M �

/G

in our formulation. This is a more conservative
choice than the γ defined in (77) if 1/2G is larger
than 2/M �.

Remark 5 Rice’s analysis in [42] has shown that
dilatant hardening is unstable when H is negative.
This unstable response prevails in both analytical
and numerical responses, since the growth/decay
rates of the numerical and analytical solutions are
both complex valued.

Remark 6 For multi-dimensional problems, one
may use the definition in [53] to define the element
length, i.e.,

h(X) = 2(
�

a

| ∇X
p
f (X)

||∇X pf (X)|| ·∇
X

Na(X)|)−1

(78)

where h(x) is not a constant within an element,
but rather a continuous field which measures the
element length in the direction of the pore pressure
gradient. This definition, however, is not suitable
for problems where pore pressure varies within
the boundary layer but remains zero elsewhere.
For those cases, we define the element length as,

h(X) = 2(
�

a

|N ·∇X
Na(X)|)−1 (79)

where N = (1/
√
3)(e1 + e2 + e3) is a unit vector.

4 Implementation

Implementation of the poromechanics formulation
presented above is carried out within a highly
abstracted C++ framework employing template
based generic programming practices. The mo-
tivation and advantages of such an environment
are presented in this section and include access
to transformational tools, graph based assembly,
simplified analytic linearization, and a natural
treatment of strongly coupled systems. The sec-
tion summarizes the framework described in [36]
and [37].

Demands on multi-physics analyses, includ-
ing poromechanics, such as uncertainty quantifica-
tion, optimization, and sensitivity analysis, require
additional embedded computational capabilities.
These embedded tools have been implemented
using templates and operator overloading in a
series of packages within the Trilinos framework
[22]. These packages have been employed in an
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Pore pressure equivalent plastic strain 

1.  Hot liquid is injected into a elasto-plastic porous medium 
2.  Pore-fluid diffusion and heat diffusion occur at different rate 
3.  Porous medium expands even though no mechanical load is applied.  
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Conclusion	
  and	
  Future	
  Perspec3ve	
  
§  For	
  the	
  1st	
  3me,	
  A	
  fully	
  coupled,	
  finite	
  deforma3on,	
  stabilized	
  

thermo-­‐hydro-­‐mechanics	
  finite	
  element	
  model	
  is	
  implemented.	
  
§  This	
  model	
  preserves	
  Mandel-­‐Cryer	
  effect,	
  and	
  is	
  able	
  to	
  eliminate	
  

spurious	
  oscilla3on	
  due	
  to	
  the	
  lack	
  of	
  inf-­‐sup	
  condi3on.	
  	
  	
  
§  Localiza3on	
  element	
  is	
  introduced	
  as	
  localiza3on	
  limiter	
  to	
  cure	
  

mesh	
  dependence.	
  	
  
§  Unsaturated	
  flow	
  will	
  be	
  further	
  tested	
  against	
  analy3cal	
  solu3ons	
  

and	
  classical	
  problems	
  in	
  the	
  literatures.	
  	
  
§  Further	
  valida3on	
  and	
  verifica3on	
  tests	
  must	
  be	
  performed	
  to	
  

ensure	
  correctness	
  of	
  the	
  proposed	
  model	
  .	
  	
  
§  In	
  some	
  cases	
  the	
  tangen3al	
  matrix	
  might	
  be	
  ill-­‐condi3oned 	
  (high	
  

condi3on	
  number).	
  As	
  a	
  result,	
  pre-­‐condi3oner	
  is	
  needed.	
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also occur in over-consolidated soils deforming in shear (e.g. References [26–29]). In these
cases, the deformation across the band may include a certain degree of dilatancy in addition
to shear. Finally, spallation in metals may be regarded as the result of a process of damage
localization leading to the formation of void sheets [30–36].

The computational modelling of strain localization has been the subject of extensive work.
Ortiz et al. [28, 29, 37], and subsequently others, devised specialized elements by embedding
discontinuous deformation modes into finite elements, with the geometry and orientation of the
deformation discontinuities determined from a local bifurcation analysis. While this approach
ameliorates the dependence of shear band paths on the mesh orientation, the mesh sizes sets
the maximum spatial resolution of the calculation. Another approach consists of resolving the
shear band thickness, either with a fixed mesh [20], or by recourse to mesh adaption [38].
However, the simultaneous resolution of fine shear bands and coarse geometrical features, such
as grains and shear-band arrays, may result in exceedingly large meshes, specially in three
dimensions. Yet another approach consists of the use of mesh-free Galerkin methods [39–41].
This approach is well-suited to the computation of arbitrary shear-band paths, but the maximum
spatial resolution afforded by the method is still limited by the density of nodes.

In the present work, we regard strain localization strictly as a sub-grid phenomenon and,
consequently, the bands of strain localization are modelled as displacement discontinuities.
These displacement discontinuities are confined to volume–element interfaces and are enabled
by the insertion of specialized strain-localization elements. These elements consist of two
surfaces, attached to the abutting volume elements, which can separate and slip relative to
each other. The kinematics of the strain-localization elements is identical to the kinematics
of cohesive elements proposed by Ortiz and Pandolfi [42] for the simulation of fracture. In
contrast to cohesive elements, the behaviour of strain-localization elements is governed directly
by the same constitutive relation which governs the deformation of the volume elements. As is
evident from dimensional considerations alone, the transformation of displacement jumps into a
deformation gradient requires the introduction of a length parameter, namely, the band thickness.
In the present work, the band thickness is optimized on the basis of an incremental variational
principle [43, 44]. We show that this optimization takes the form of a configurational-force
equilibrium and results in a well-defined band thickness. The predictive ability of the approach
is demonstrated by means of simulations of Guduru et al. [45] dynamic shear-band tests in
pre-notched C300 steel specimens.

2. GENERAL FRAMEWORK

We consider a solid of reference configuration B undergoing a motion defined by a deformation
mapping ! : B × [0, T ] → R3, where [0, T ] denotes a time interval. The motions of the body
obey all the thermodynamic laws, i.e. the conservation of mass, linear momentum, angular
momentum and the first and second laws of thermodynamics. The deformation of the solid
includes a thin band of strain localization defined by its mid-surface S ⊂ B and its local
thickness h, Figure 1. In addition, let !!" be the displacement jump across S and let N be the
unit normal to S. Motivated by the multiplicative decomposition of the deformation gradient
for the formulation of single-crystal plasticity [46], we represent the deformation gradient F
within the band in the form

F = F‖F⊥ (1)

Copyright ! 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:1013–1037

Futhermore, the power is simplified

PD =
�

±

�

B±
0

P · Ḟ dV +

�

S0

P · Ḟh dS

=
�

±

�

B±
0

P · Ḟ dV +

�

S0

P ·
�
Ḟ

�
h+ [[ϕ̇]]⊗N

�
dS

=
�

±

�

B±
0

P · Ḟ dV +

�

S0

�
hP · Ḟ �

+ T · [[ϕ̇]]
�
dS

(9)

such that there is no longer coupling between membrane and jump components. The

work-conjugate to [[ϕ̇]] is now the traction in the reference configuration T = PN . Fi-

nally, we should also not that the particular order of the decomposition is arbitrary. One

can obtain a result identical to Equation 7 through an alternate decompostion F⊥F �

provided one is consistent with regard to the reference B0, intermediate BI , and cur-

rent configuration B of the body. The alternate decomposition is noted in Figure 3.

The intermediate configuration is now rotated through F �
and the we must express

F⊥
with respect to N̄ . Note that N̄ is parallel to N̂ but is not a unit vector. The ef-

fective normal is N̄ = N̂dÂ/(ĴdA) where Ĵ = det[F �] and it is constructed to yield

(F �)−TN . Because the mid-plane in the current configuration is only a translation

of the mid-plane in the intermediate configuration and that each configuration shares a

common basis, we can still employ the original definition of F �
. Both multiplicative

decompositions yield the same additive decomposition.

figures/Localization_configurations_alternate.pdf

Figure 3: The reference B0, intermediate BI , and current configuration B of the body. One can switch the

order of the multiplicative decomposition and obtain the same additive decomposition provided F �
and F⊥

are consistent with respect to the intermediate configuration.

We stress that although we do specify an intermediate configuration for each for-

mulation, we can obtain all the needed information to completely define both F⊥
and

F �
from the reference and current configuration. This is enabled by construction. The

in-plane basis vectors are only rotated through F �
. The jump [[ϕ]] only acts to translate

the constructed mid-plane.

2.1. Finite element implementation
Borrowing heavily from the methodology, implementation, and notation discussed

in [? ], we review the kinematics and the force calcualtion. Through standard shape

functions λa(s1, s2) where a ranges from 1 to the number of nodes n and s1 and s2
are the natural coordinates of the surface element, we can define the mid-plane to have

undeformed coordinates

X (s) =
n�

a=1

λa (s) X̄a (10)
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•  In geometrical nonlinear regime, pore-fluid flow is significantly influenced by geometrical changes. 
•  Capturing localized hydraulic features triggered by deformation is important to analyze overall 

reservoir properties. 


