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Hydraulic fracture (fracking)

Soil liquefaction
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Multi-scale nature of porous media ) .
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Thermo-hydro-mechanics Finite Element e,
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Key Features of THM Models
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v Modeling large isochoric deformation at undrained
limit or critical state without locking

(a) Q4P4  White & Borja, 2009

v" Eliminating spurious pressure mode due

to lack of inf-sup condition
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Kinematics of THM Problem at Finite Strain i) e

Thermal-induced Laboratories
configuration

X y—o € PP (pg(B)

Un-deformed
configuration Stress-free

©° configuration

Current
configuration

Trajectories of the solid and fluid constituent. Multiplicative decomposition of the thermo-
hydro-mechanics problem

Multiplicative

decomposition F — Op(X,t) —Fy-Fy: Fg= (X, ) Fyy = O (X, 1)

of skeleton 0X 0X 0X g
deformation
gradient o, ¢ 7 o, F T
Concspt of o=o0 —Bpl, P(F,z,p',0)= P (F,z,0) — JBp' F
Effective Stress B=1_ £ P(FM > pf) _ P’(FM z) . JBpfF_T.
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Strong Form of THM Problem at Finite Strain i

1 Balance of Linear Momentum

Total Stress Effective Stress

O Balance of Mass

(E —3as(9—90))j—|— %p'f—?)améjt iV"‘-W:O.

T Py where
W =JF ! w. and ’wzpfk- —prf—l—pf(G—af) —IOfSvae,
A A
. Darcian flow Soret effect
U Thermal energy transport equation (neglected here)
: Pt _
cr0 = [Dmech — Ho| + [— vx. Qy — ;FfW FTvXo+ Ry, where
f
S f S 0 / . J . .
Hy = Hy + Hy, and Hy = _Q%P - F = —SKQSij Solid Structural Heating
A
Total ) : :
Struoctaural Hé = —9—3am (9 — Qo)pf = —30ém9pf. Fluid contribution
Heating 00
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Remarks on Estimating Effective Thermal Conductivity () =,
from Microstructures

Temperature

O Volume averaging effective conductivity '

ko = o'k + (1 — )k I

(cf. Preisig & Prevost, IJGGC 2011) fo,zs

0

L Homogenized effective conductivity via
Eshelby equivalent inclusion method (for

spherical inclusions)

o' (k§ — kp)ky

ko= | k) +
9 S f f f Temperature
(ke o k9)¢ + k@ :
(cf. Zhou & Meschke, IJNAMG 2013) Eos
E;O.QS
Important Note: In general, the temperature of 0

the pore-fluid and solid skeleton are not the
same in the same REV, unless sufficient
diffusion takes place. This difference is
neglected in current formulation.

Solution of transient heat equation of two-
phase materials 9
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Stabilization for Equal-order THM Finite Element

O Combined Inf-sup Condition (not satisfied) No stabilization
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O Combined Weak Inf-sup Condition (still satisfied)
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Combined F-bar Formulation

O Isochoric-volumetric split (Hughes 1975, simo 1975)
F =F,, - Fiy
O Replacing volumetric split with assumed term
F — j1/3Fiso _ j1/3J—1/3F
¢ ¢

Modified det(F) Original det(F)

Relaxing too much, we get instability
Relaxing too little, we get the volumetric locking

0 Combined F-bar approach

F=aF+4(1-a)F. <—— Why this is wrong?

O Current Approach via Lie algebra

j:exp<1_ﬁ longV—l—BlogJ).

V‘Be Be
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tip displacement
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- \Exact solution

Finite element solution
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nu

Standard F leads to
Volumetric Locking

?\.cr= 90.3557, o =0xE

=
-

Pure F-bar leads to instability

sk (0 — 00) AV + Bosi (0 — 6, )> (Brocardo, Micheloni, Krysl,

IJNMEZ2009)

See Sun, Ostien, Salinger, International Journal for Numerical and Analytical Methods in Geomechanics, 2013



Optimal Stabilization Parameter Estimation ) i

1D poromechanics governing equation
?p  Op k. MH YL M(K +4G/3)

‘o2 ~ o’ uH+uBM T T K +4G/3+ B2M

Pore Pressure Pa
9e+5

~8e+5

Three node stencil (standard Galerkin method)
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Three node stencil (Stabilized Galerkin method) |
—PA-1 1+2Dpa — DA Stabilized F-bar Mixed FEM

2 A
+15ear [(2—7)Pa )
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Growth/decay rate

Pore Pressure Pa
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Thermo-hydro-mechanical Responses of Porous ) i
Sphere in Thermal Reservoir

Laboratories

X Under-diffusion with spurious patterns v' Diffusion with optimal stabilization
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Thermo-hydro-mechanical Responses of Porous i
Sphere in Thermal Reservoir

X Under-diffusion with spurious patterns v' Diffusion with optimal stabilization
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Generalized Mandel-Cryer Effect for THM problems () i
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v Solution with optimal stabilization X Over-diffusion solution (Stabilization
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Heat pump problem

1.
2.

3.
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Hot liquid is injected into a elasto-plastic porous medium
Pore-fluid diffusion and heat diffusion occur at different rate
Porous medium expands even though no mechanical load is applied.
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Conclusion and Future Perspective @&=.

= For the 1t time, A fully coupled, finite deformation, stabilized
thermo-hydro-mechanics finite element model is implemented.

= This model preserves Mandel-Cryer effect, and is able to eliminate
spurious oscillation due to the lack of inf-sup condition.

= | ocalization element is introduced as localization limiter to cure
mesh dependence.

= Unsaturated flow will be further tested against analytical solutions
and classical problems in the literatures.

= Further validation and verification tests must be performed to
ensure correctness of the proposed model .

" |n some cases the tangential matrix might be ill-conditioned (high
condition number). As a result, pre-conditioner is needed.
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Formulation of the localization element Wi

[#] = (FI)'[¢]

GAl|Ga — F=F”+M®N
h From Yang, Mota Ortiz, 2006;
Foulk et al 2013

Deformation power of the solid skeleton

PP =N"| P.-Fav+ | P Fhds F =F'F!
BE S
+ 0 0 /
- P-Fdv + P-[F”h+[[¢]]®N} ds
T JBF So deformation of ~ homogenized
. y mid-surface displacement
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Globally undrained Simple Shear Test of Fully saturated media @ Sanda
. . . Laboratories
with flow barrier in the surface element (Pore Pressure)

Without sealed rock joint With sealed rock joint
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In geometrical nonlinear regime, pore-fluid flow is significantly influenced by geometrical changes.
Capturing localized hydraulic features triggered by deformation is important to analyze overall

reservoir properties.




