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Outline of Presentation:

Outline of Presentation:

1. Overview of photon-phonon coupling at micro- and nanoscales.
2. Examine origins of optical forces within nanoscale materials and geometries.

3. Explore scaling of stimulated photon-phonon coupling via new framework.

Material induced optical forces
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(e)

(f)

Nanoscale photon-
phonon coupling
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Result: Giant Enhancement of Stimulated Brillouin Scattering at Nanoscales
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How Does Stimulated Brillouin Scattering Work?

Physics of stimulated phonon generation:

4 Input Photon Output Phonon T
ho, /1) Stimulated Brillouin Scattering (SBS
AN\ \ \ } > * Yields coherent phonon generation.
“I'rrr - Mediated by optical forces.
AN Y oF
o “(0, o)
s Q=|o, -,
\_ S

Interference yields intensity “Beat Note”.

4 2
17 ‘E(t)‘z =2E E -cosQ-1)+C

Optical Force: Proportional to Intensity.

> F()~a-|P,-F, -cos@Q-1)

\§ J Time Varying Forces Transduce Phonon. )3
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Guided-Wave Stimulated Brillouin Scattering:

Microscale Guided-Wave Stimulated Brillouin Scattering :
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How microscale stimulated Brillouin scattering works:

p
F,
‘F”vump Stokes
ave o k Wave
p p
Y
Q= (a)p _a)s) Nonlinear conversion:
* Wave interference & forces induce guided elastic wave. dR/dZ = GB ];)PS
* Photon-phonon coupling mediated by electrostriction. 1‘
SBS gain
.
Nanoscales: light-matter interactions change in a fundamental way....

3

\

Lineage:
Nonlinear optics

Spectroscopy

SBS: Mediated by
electrostriction.

Electrostriction:

From dynamic
material response.

March 14, 2011

Sandia National Laboratories Peter Rakich, Org 1727



Enhanced Radiation Pressure at Micro and Nanoscales

4 N

Symmetric  Asymmetric

4 N
Optical microdisk

Microdisk ua
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* Most of studies have focused on forces between discrete bodies.
* We will see that optical forces within bodies become very important to consider as well...
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Nano Optomechanics: Stimulated Scattering

Cavity Optomechanics . . L
y =P / Optomechanical Parametric Oscillation \
Walther 1983
kg S— . Hz
i . Gravity wave
. " (LIGO, Virgo, GEO,.)
’ ‘{5\; Harmonically Radiation Pressure Eichenfield, et. al. Nature, 459, 550 (2009)
o £ o= 3 [ o N P N
b ) ‘P\ gram-scale mirrors
Mirror coated l
AFM-cantilevers = .
2 Radiation pressure o € Optical photons
~ 5 . @ s
2 o 2 mediates photon- | —> p  Z
© > Mi i 5 | eeehececpes .
= ‘4('_") icromirrors E phonon coupling. ¢ Q <€—Acoustic Phonon
ﬂ SiN, membranes k /
—
Optical microcavities
; Y * Formally equivalent to Brillouin process.
B CPW-resonators | Mz + A key distinction: mediated by radiation pressure.
Pg _ coupled to nano-

10 pm resonators

Kippenberg, Vahala, Science 2008
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Traveling-wave SBS at nanoscales:

\
Cavity Optomechanics ™

Walther 1983

JPainter,CIT [
0p9

F3
frequency (MHZ)

Painter (2009)

Nanoscales: 4
Radiation pressure \ o
Mediated Stimulated — | = -t
Brillouin processes © 00
Microscales:
Electrostrictively <
Mediated Stimulated
Brillouin processes _ L

Result: Giant Enhancement of Stimulated Brillouin Scattering at Nanoscales

Electrostriction + Radiation Pressure

. 7
L IBm L | -
(e)

10-40 GHz Phonons

Radically enhanced SBS. j

Electrostriction
& Radiation
Pressure
mediate SBS
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How to Formulate SBS Gain in Nanoscale Systems?

For a time-harmonic force, £ (¢) = F,, -cos(Q2-¢), produced by modal beating:

Brillouin Process Optlcal Force

Acoustic
power \‘

CZC

chanlcal Impedanc

Optical Force

Displacement

“Mechanical Transduciton in Periodic Media,”
R. Camacho, (Paper 0130), Next.

AnaIyS|s of Forces in Nanophotonic
Waveguides,” C. Reinke. (Paper 0170),

2:40-3:00 PM

dP|dz=G,-P,P

S

1

SBS gain Exact solution:

0
6,~( &

2

1 F?

~opt

PP Z

a

Geometric
scale-factor

Strong photon-phonon coupling requires: (1) large optical force, (2) small mechanical impedance.
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Optical Forces at Nano-scales

Silicon Waveguide. Radiation Pressure.
(a) B R L T LT A
y "i’ Light within a waveguide: ___y;------------r

- E,

300nm x 300nm

Radiation Pressure

Entirely depends on geometry.

frp - ~
| ﬂ_, Electrostrictive Forces
( N

(a) (b)

Electrostrictive Forces
j;CeS

LR
(e)

(f) Depends primarily on material properties.

Both: Radically enhanced at nanoscales. How to understand origin and enhancement? 9
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Why is Radiation Pressure Enhanced at Nano-scales?

T , . Equation of State for an Ideal Photon Gas:
L C = speed of light /\/‘.-)p B 1
R Pressure — pV —-N-hw Photon Energy
‘ [ 31
."J | # of photons
Volume

Pressure Per Photon:

Small Box
Large P‘ressure ﬁ — l . h_a) — l h_a)
3V 3 D

For L/L’=1000, p’/p=1,000,000,000.

Each photon packs more punch at nanoscales!
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Optical Forces Within Dielectric Media

- _T _______________ Lol
Strain T Electrostrictive
Piezo Coeff. Coeff.

Electrostriction = Material induced optical forces.
« All dielectrics exhibit electrostriction (not piezo electricity).
 Sign and magnitude are tailorable by choice of material

m Germanium
m Silicon

GaAs

) What’s going on?

Box: Real Space I S
0 R
g, n |
L] &,n n-L ’ R
v .fv
«~ [ -

From Photon’s Perspective:

*Space is now quite different.

V= V-n

Box seems much bigger.
Oddities don’t end here...

11
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Electrostriction: Material Induced Forces

Since 0n/dV # 0, distortion of the box is perceived quite differently by a photon:

~ N ™)
Box: Photon’s Perspective Box: Photon’s Perspective
Box: Real Space | A} I
R rreeenny :' """""" :
¥ i i
Te,,n, T2 | T €21 o
| 1 ,
A 1 I Y
.......... ) S— {
AV ] ‘,J
J J
Photon gas within a dielectric:
__1 N-no[,  3:0n
p - — _;-_
/ /
Correction due to dynamic response Electrostriction 12
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Alternative: Electrostrictive Stress & Force.

Dependence on material properties: Example: Silicon waveguide.
e - A
] ] Radiation Pressure: Si wavequide
Exl (Dielectric Tensor) =
. € 02| f7 s 2 =
Pjimn  (Elasto-optic Tensor) 2 ) l @ e ; E:j O 2
: : g
& 02| a) (b) @ @ 22

' 1. Force localized to boundary. |

Electrostrictive Stress in Cubic Crystal (Si):

v i 2. Directed outward.
5 1 4 —————————————————————————————————————————————
O'LS = —35&p'N * Pi 'k/*E;‘E]'
K 2 J ; Electrostriction: Si wavequide
. —_ es fes 5 ;
Force Density: | .%; — —0;0; g 02 f; — z
)= oo e T mfhe
= - S
g -0.2(e) (f) () (h) 5 =
T TTTTTTTTeme e S ! 02 0 02 02 0 02
. Important Properties of Stress/Force position (um) position (um)

: 4
1. Increases as n 1. Force distributed within volume. |

2 Proportional to p;, ' 2. Directed outward or inward. !
3 Sign & magnitude depends on Pijk T |

[1] P. T. Rakich, P. Davids, and Z. Wang, “Tailoring Optical Forces in Waveguides Through Radiation Pressure and
Electrostriction,"” Opt. Express 18, 14439-14453 (2010)
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Key to Radiation Pressure: Dispersion.

Geometry E,-field
0.5
E
o ) |5
a o
| 5
05 0 0.5
Position (um)
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@ | % (b)
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Force Density
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Position (um)
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Radiation Pressure:

=P _

P

opt
cod TS

P
P . (2An
y (2An)

Comparison of Maxwell Stress & Scaling Law

Rad. Pressure (N/m?/W)

Rad. Pressure (N/m?/W)

x 10
20 ' ' - ' ' '
I (@) —— P, + D, (Scaling Law) |
© p,+p, (Maxwell Stress)
10 Perfect
...-:::.'::::.':::::;:;:”;
0 1 1 1 L L L
200 300 400 500
) Waveguide width -b- (nm)
x10
10 . ; '
8l (b) —— P, (Scaling Law) |
© P, (Maxwell Stress)
6 o -
‘ Perfect
i ¥, Agreement!

150 200 250
Waveguide Radius -r- (nm)

Relation Holds for Any Dielectric Waveguide and Any Guided Mode!

[1] P. T. Rakich, Z. Wang, and P. Davids “Scaling of Optical Forces in Dielectric Waveguides: Rigorous
Connection Between Dispersion and Radiation Pressure," Optics Letters.
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Nanoscales: The Neglected Optical Force Dominates!

Radiation Pressure p
— t _ opt rp
Rad. Pressure: p? =—2>-(n,—n )= a
| _ P P
(a) (b) Electrostriction: p“ =—%~-nn’(p,, +2p,)/2=—2--a"
c-A4 c-A4
Electrostrictive forces
Material | Symmetry P11 P12 P11+ 2pie n a'P o
fe Si cubic 0.09  +0.017  -0.056 3.5 5 F LT
|' .I (_”_ Ge cubic 0.27  0.235 0.74 4.2 6.4} +4J§
. GaAs cubic 0.165  -0.14 -0.445 34 48 -12
(e) (f) Silica | amorphous 0121 0.27 0.661 145 -0.89 +1.0
AssS, amorphous  0.25 0.24 0.73 24 28 +6.5
AsySeq amorphous - - - 2.8 -3.6 -

How Large are Forces?

Pressure Pressure A
5-50 People m Stresses

~5 x10* N/m?2 manhole Si ~5 x108 N/m?2 >' Material Y|e|d

Ge ~106 N/m?2 cover Ge ~1010 N/m? Strength
~ . 15
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Guided mode within

Radiation Pressure

4 ¥

(a) (b)

Electrostrictive forces

es
X

By |2
(e)

suspended dielectric
waveguide. (300x300nm)

Origin: Boundary Scattering

Origin: Dynamic Material Response

AKkin to piezoelectricity

Strain Electrostrictive Coeff.
Piezo Coeff.

Examine photon-phonon coupling.

Generalized theory of
photon-phonon coupling:

,Lf

Reveals powerful new
photon-phonon coupling
processes at nanoscales.

16
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How to Formulate SBS Gain in Nanoscale Systems?

\ Microscale SBS Theory:

()

— -iii»

* Neglgcts radiation pressu

\

implified elastic-wave mode)

/ Not valid at nanoscales.

Unified Treatment of SBS: Valid at any Length-Scale

Canonical relation for SBS gain:

dP./dz = Gg- P,P,.
A

1
SBS gain

1 ws

GB(92)

"5z Q PP,

! / (fa(r,t)-u(r,t))-dV,
5V A A

Radiation Pressure:

(a) (b)

+
Electrostriction:

f ey
X
e |se-

|@1

(e) () J

Time harmonic force

Velocity distribution

Sandia National Laboratories
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SBS Radically Enanced at Nanoscales:

Nanoscale Stimulated
Brillouin Scattering (SBS)

r k p K

[ —. 1
————-

/

k

S

= Electrostriction
=== Radiation Pressure
=== Electrostriction & Radiation Pressure

3

>(104 S1

SBS Gain (1/m/W)

0
13.7 13.75

13.8 13.85

Frequency (GHz)

Sandia National Laboratories

SBS gain (1/m/W)

4 Conventional SBS Theory (Long. BAW)
107 F —— Peak MS-SBS Gain (Transverse Modes) 1
—0— Peak MS-SBS Gain (All Modes)
10 2 Longitudinal Bulk Acoustic Wave (BAW)
0
1 O B - 1
Divergence Due to T
bI. Nanoscale Interactions.
1 O_2 - (7, Transverse Elastic Wave
0.3 1.0 10

Photon-phonon coupling vs dimension.

Conventional

Dimension -a- (microns)

[ [ R — .( ....................... .

Treatment of SBS.
g, = 2717’77P122
P C;Lpzp"aA 7

Conventional theory:

1. Silicon material
properties used.

2. Perfect agreement
from 2-10 microns.

Nanoscale SBS:

1. For dimensions < 800nm, conventional SBS theory breaks down.
2. Rigorous model reveals 100x enhanced SBS at small dimensions.

Coherent combination of electrostriction and radiation pressure

produce further enhancement.

18
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Nanoscale Backward-SBS: Tunable Phonon Emission.

Phononic Dispersion SBS Gain Excitation: 21.6 GHz Phonons
25
S5
. S4
N
T
G 15 —
>
)
C
210
o
o 5 Excitation: 13.8 GHz Phonons
0
0 05 1.0 0 1.0
Wave-vector (Norm) Gain (a.u.) |

Nano-optomechanical backward-SBS: K
1. Gain is 10° x Larger than in Fibers. J. r K —
2. 20% frequency tunable phonon emission. \ ' _ /'
k 19
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How Strong is SBS:

Guided mode within
suspended dielectric
waveguide. (300x300nm)

~ | =sBs nonlinearity
of 10-100 meters of fiber

Suspended waveguide: L = 100 microns

Fiber optic: L = 10-100 meters
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Forward-SBS: Fixed Frequency Resonances.

SBS Gain  Phononic Dispersion Excitation: 18.6 GHz Phonons
25 _
\\' S5
20 N
. S5
N
T
O 15
>
c 2
210 S
@
— '
L 5 \,»
FSBS
0
0 1.0 0 05 1.0
Gain (a.u.) Wave-vector (Norm)
Nano-optomechanical Forward-SBS:
1. Generally forbidden in guided wave-systems. K K
2. Ultra-low threshold parametric oscillation possible. .f : |
| —— T — |
| |
k 21

Peter Rakich, Org 1727 March 14, 2011

Sandia National Laboratories



Conclusions:

Developed unified treatment of SBS at nanoscales:
1. Valid at any lengthscale (micro- to nano-scales).
2. Radically enhanced SBS processes found
=» Resulting from electrostriction & radiation pressure.

3. Forward SBS: Excitation of ultra-high frequency modes.
4. Backward SBS 1EG6 x stronger than in fiber.
5. Important step towards highly tailorable chip-scale SBS.

“‘Giant Enhancement of Stimulated Brillouin Scattering at Nanoscales,” P. Rakich, C. Reinke,
R. Camacho, P. Davids, Z. Wang, (submission to PRL).

Material induced optical forces

10-40 GHz Phonons

-
T 13 LRET
(e)

(f)

«Q\Q‘p

22
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What is a Brillouin Process?

Brillouin Scattering Energy Level Diagram:

e YN
Phonon
Pump
Photon [N\ e — .
i } i ‘ Brillouin Scattering:
cedechededeccop
AN\ @ >_ 3rd order Parametric process
AN by which photons couple to
ho / 7 acoustic phonons.
p a)s
Q= ( , _ws) Stokes
Photon y
. J
Bulk Media Micro-Scales Nano-Scales =——>

( . . 1( 1( Nano-scale SBS and BLS

BLS in Bulk Media SBS bulk media and optical fibers

éwoo W

W

0 ol = L = {8897 1559.8 ;éiiign;‘ié&r:)ssﬁ 1560.2
Frequency Shift (GHz)

March 14, 2011
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Contributions of Different Forces at Nanoscales:

SBS Gain  Phononic Dispersion  SBS Gain
2 (a) (b) (c) '
a - -
20 Nl Ye
PS5 sS4 S
N
£ _/
G 15} 53 k
? F-f = / S1
210 .
5 \\\.' {'Ti
£ W :
FSBS a=300nm <«—> BSBS
0 b=280nm
0 1.00 05 1.0 0 1.0
Gain (a.u.) Wave-vector (Norm) Gain (a.u.)
Forward SBS (FSBS):
g 3 4 — Electrostriction
& x10 S2 = Radiation Pressure
E 2 = Electrostriction & Radiation Pressure
< FSBS
0 1 E—
§ — S5 (d)
083 1305 131V 1875 188 1885 189

Sandia National Laboratories

Peter Rakich, Org 1727

SBS Gain (1/m/W)

position (um)
o

0
13.7 13.75

Radiation Pressure:

x 10*

0 | 2 f.‘xrp @ fyes- - 2
| 0

0.2/ (a) (b) (c) (d) -2

Electrostriction:
E 02 1 5 °
;N -e0 MY
g 02/(e) 4 ® | |m 5
02 0 02 02 0 02
position (um) position (um)

Backward SBS (BSBS):

= Electrostriction

4
x10 S1 — Radiation Pressure

2 — Electrostriction & Radiation Pressure

BSBS
— | 4 (@)

a—— e 4

A\

13.85 215 2155 216 21

Frequency (GHz)

13.8

pN/um®/

pN/um*mw

.65

26
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SBS in Silicon Photonics?

Transduced Waves: Canonical Treatment of SBS is Radiation Pressure
not valid for Si waveguides! 1

What'’s Different? ' @

: (a) (b)
= : « Elastic Wave Leakage: :
i >Makes SBS extremely weak. |
: « Must treat combination of: vy
: 1. Radiation Pressure d I. .I “* e
: (e)

: 2. Electrostriction : (f)
\ ) L Y P P PPN T PPN \ )

Simplest Way to Control Photons and Phonons for Enhanced SBS:

Electrostrictive forces

£ mSE e N AAEEEENASRREENARREENNRRREEEERRRARREERARARREENARRRRRERRRRRRRRERRES : Suspended Waveguide

. Nano-wire Supports: _ " /\/\/\

.+ Guided Optical Wave
. + Guided Elastic Wave

Optical + Phononic Waveguide

Sandia National Laboratories Peter Rakich, Org 1727
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Nanoscales: The Neglected Optical Force Dominates!

...... » -1
Radiation

Pressure

-
-
o

Electrostrictive
Forces

How Large are Forces?

Pressure
(Pwr =100mW)

~5 x10* N/m?2

Ge ~106 N/m?

Sandia National Laboratories

Rad. Pressure: p"” :ﬂ-(ng —n,)= Foy -a'f
c-A
HPH . —=es opt 2 Izun es
Electrostriction: p* = nn (p,+2p,)/2= -a
c-A c-A
Material | Symmetry P11 P12 P11+ 2pie n a'P s
Si cubic 0.09 10017 -0.056 35 i .5 P17
Geo cubic 0.27  0.235 0.74 42 i-64F i+40
GaAs cubic  -0.165 -0.14  -0445 34 48 -i2°
Silica amorphous  0.121 0.27 0.661 1.45 -0.89 +1.0
AssS, amorphous  0.25 0.24 0.73 24 28 +6.5
AsySeq amorphous - - - 2.8 -3.6 -
5-50 People m Pressure Stresses
standing on (Pwr = 1kW) Approach
man-hole Si ~5 x108 N/m? ~ Material Yield
cover

Ge

Peter Rakich, Org 1727

~107% N/m?

Strength
28
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Significance of LDRD: Big Picture & Impact.

Physical Optics & Optomechanics:

1. Origins of nanoscale optical forces. Heat Transport & Ultrafast Science:
a. Effect of geometry and material. 1. Stimulated Mach-wave emission enables:
b. Effective medium properties. a. Phononic pump probe experiments
2. Radically new stimulated phonon b. Phonon transport & lifetimes.
emission mechanisms at nanoscales. c. Phonon dispersion & bandgaps meas.
d. Mechanical properties of media.

( LDRD: Goals ) ‘ Theorv & Modeling:

1. Advance science of nanoscale 1. Multi-scale models of photon-phonon
optical forces & transduction. ‘ coupling (micro- and nano-scales).
2. Explore technological impact & Powerful new formalisms for optical forces.

SEN

potential benefits to DOE mission. Novel scaling laws for optical forces with

\_ J \ nanoscale geometry and material

Fabrication & Metrology:
1. Unique and general experimental platform for study
of optical forces & photon-phonon coupling.
2. First-in-class methods for ultrafast pump probe
studies of phononic effective media.
3. First-in-class Brillouin scattering measurements.

Novel Devices & Applications:
Ultra-broadband chip-scale delays.
Pulsed phonon lasers & frequency combs.
Tunable ultrahigh frequency oscillators.
Sensors and microphones.
Phonon amplifiers and modulators.
Ultra-broadband acousto-optics... etc. 29
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How are Phonons (acoustic waves) Generated by Light?

Physics of stimulated phonon generation:

4 Input Photon Output Phonon T
ho, hQd Stimulated Brillouin Scattering (SBS
AN\ Describes all optomechanical photon-
H } > >- phonon coupling processes
AN (including cavity optomechanics).
ho ~0,-0)
s Q=|o, -,
\ S

Interference yields intensity “Beat Note”.

4 2
17 ‘E(t)‘z =2E E -cosQ-1)+C

Optical Force: Proportional to Intensity.

> F()~a-|P,-F, -cos@Q-1)

\§ J Time Varying Forces Transduce Phonon. )30

\_
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Optical Forces at Nano-scales

Radiation Pressure Generally VERY Small: Not Any More.

4 A
Photon momentum Radiation Pressure

A Rl VAVAVAN

1 b e e e e e e e e e e e == 1
‘ ‘ Nanoscale < Large Pressure
0
Radiation > -1 Pressure increases to 104 N/m? in nanoscale waveguides.
Pressure ’ | J
= Electrostrictive forces = Material induced forces
" 0 s N
______ > 1 AKkin to piezoelectricity
Electrostrictive | ¢ 99999 o l ..l 48  ro-memmmmmmeemmm - .
Forces '

Forces produced by two Effects: Strain Electrostrictive

Piezo Coeff. Coeff.

1. Radiation Pressure

___________________________________________________________

Electrostriction = Material induced optical forces.

* All dielectrics exhibit electrostriction (not piezo electricity).

« Sign and magnitude are tailorable by choice of material.

* We are the first to treat electrostriction in nano-scale systems.

2. Electrostriction

Both Scale to large values with
nanometer-scale optical
confinement (e.g. 10 N/m?)
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Nanoscales: The Neglected Optical Force Dominates!

...... » -1
Radiation

Pressure

-
-
o

Electrostrictive
Forces

How Large are Forces?

Pressure
(Pwr =100mW)

~5 x10* N/m?2

Ge ~106 N/m?

Sandia National Laboratories

Rad. Pressure: p"” :ﬂ-(ng —n,)= Foy -a'f
c-A
HPH . —=es opt 2 Izun es
Electrostriction: p* = nn (p,+2p,)/2= -a
c-A c-A
Material | Symmetry P11 P12 P11+ 2pie n a'P s
Si cubic 0.09 10017 -0.056 35 i .5 P17
Geo cubic 0.27  0.235 0.74 42 i-64F i+40
GaAs cubic  -0.165 -0.14  -0445 34 48 -i2°
Silica amorphous  0.121 0.27 0.661 1.45 -0.89 +1.0
AssS, amorphous  0.25 0.24 0.73 24 28 +6.5
AsySeq amorphous - - - 2.8 -3.6 -
5-50 People m Pressure Stresses
standing on (Pwr = 1kW) Approach
man-hole Si ~5 x108 N/m? ~ Material Yield
cover

Ge

Peter Rakich, Org 1727

~107% N/m?
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Historical Introduction to Optical Forces:

The concept of light induced motion has a very rich history:

 Timeline for Radiation Pressure:

(1619) Kepler: Speculated solar repulsion.

(1873) Maxwell: Theoretical basis for pressure.

(1901) Lebedew, Nichols: Experimental evidence.

- Optical Forces: Very difficult to observe. E‘ -
(60 Watt lamp - Force = 400nN) | Ll .
- First observation: Thermal lamp & torsion balance : Lebedev, P. (1901).
Photon momentum: A~ Imparted momentum:
p| =Tk ~nn Ap|=2n-k

L. Nichols, E. F. & Hull, G. F. Phys. Rev. 13, 307-320 (1901).

Radiation Pressure: Produced by photon recoil. | 2 Mawel, J.. 4 Treatiso on Electicty and Magnetism (1673),

Sandia National Laboratories Peter Rakich, Org 1727 March 14, 2011



More Recent Work Involving Optical Forces:

*  (1970s) Optical tweezers: Trapping small of
: particles (Power = 50 mW, Force = 50 pN)

* (1970s) Coherent phonon generation in fiber.

i+ (1980s) Free-space Interferometers: Optical
: Bistability (Power = 100 mW, Force = 650 pN)

* (1990s) Laser Trapping and Cooling: Atoms

* (2000s) Nano-scale actuation with light and
optically driven parametric oscillation.

Optical Tweezers:

Symmetric

Cavity Optomechanics Stimulated Brillouin Scattering 10

[II\ANVUM}“W ] = -

o ®-Q

Walther 1983

(&

Intensity (dB)
L AL b
o

E Pump Power Pump

88 mwW
S—T ]

-70
1559.7

Ippen (1978)

1559.8 1559.9 1560 1560.1 1560.2
Wavelength (nm)

<—High fidelity
“tuning-fork”

Broadband —>»
phonon emitter

Optical Mod

Optical Force

Sandia (2011)

B4
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Radiation Pressure at Nano-scales

4 t ) Atomic Gas: Photon Gas:
,’/ \\ Volume Energy Photon Energy
’ \\\ — v —A— . 1 —A—
L C = speed of light //‘.—)ﬁ ?V:]'?\[kBT pV=§]¥hw
l :)Jl pressure # of atoms # of photons
Pressure Per Photon:
[ — >
_ 1 o 1 ho
Small Box p:_._:_._3
‘ 3V 3 L

Large Pressure
For L/L’=1000, p’/p=1,000,000,000.

_________________ Pl
Same Idea holds
> | within a waveguide.
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Optical Forces Within Dielectric Media

-4---1- .___l___T_.___i__Z__} m Electrostriciton:
Strain T Electrostrictive possible force

Piezo Coeff. Coeff. > distributions.

Electrostriction = Material induced optical forces.
« All dielectrics exhibit electrostriction (not piezo electricity).

 Sign and magnitude are tailorable by choice of material , .
e ) What'’s going on?

From Photon’s Perspective:

Box: Real Space N *Space is now quite different.
\\
1\ " 3
E.Nn ) .
L| &n peLf  EM V= Von
\1, /7
< L — j/ .JJ Box seems much bigger.
«—npn.-] — Oddities don’t end here...

36
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Electrostriction: Material Induced Forces

Since 0n/dV # 0, distortion of the box is perceived quite differently by a photon:

~ N ™)
Box: Photon’s Perspective Box: Photon’s Perspective
Box: Real Space | A} I
R rreeenny :' """""" :
¥ i i
Te,,n, T2 | T €21 o
| 1 ,
A 1 I Y
.......... ) S— {
AV ] ‘,J
J J
Photon gas within a dielectric:
__1 N-no[,  3:0n
p - — _;-_
/ /
Correction due to dynamic response Electrostriction 37
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