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Why Alkaline Fuel Cells (AFCs)?

• Reaction kinetics at both electrodes are more facile at high pH 
• Higher operating voltages are possible (due to lower overpotentials)
• Alternative fuels (alcohols) are easier to oxidize at high pH
• Non-noble metal catalysts can be used (significant cost reduction)
• Not a new concept - AFCs were used in the Apollo spacecraft and early space
shuttle Orbiter vehicles.

2H2 → 4H+ + 4e- O2 + 4e- + 4H+ → 2H2O           2H2 + 4OH- → 4H20 + 4e- O2 + 2H2O + 4e- → 4OH-



Membrane Issues

There is no commercial standard AEM (such as Nafion® for PEM).

Membranes requirements1:

1. Backbone stability
• Membrane must maintain mechanical integrity for up to 5000h at high pH.
• Must be stable to MEA fabrication (hot and dry)

2. Stable cationic groups
• Quaternary ammonium groups can be attacked by OH

-
.

3. Conductivity
• OH

-
inherently 2-3x less mobile than H+

• Identity of anions (OH-/CO3
2-/HCO3

-
) 

• Conductivity at low RH
4. Water swelling

• Physical stress on cell hardware due to expansion/compression.
• Delamination of electrodes from membrane.

1From DOE Alkaline Membrane Fuel Cell Workshop, May 8-9 2011.



Anion Exchange 
Membranes (AEMs)
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Typical functional groups with fixed positive charges in AEMs:

Commercially-available AEM:
(for electrodialysis, etc.)

• Crosslinked polystyrene with
benzyl trimethylammonium groups

• Typically blended with PVC or a polyolefin
• Cast on fabric support

R = N(CH3)3 X

R

R R



AEMs: The State of the Art

Radiation-grafting of functionalized poly(styrene) onto fluorinated polymers1: 

Bromination of poly(2,6-dimethyl-1,4-phenylene oxide)2:

1Danks, T. N.; Slade, R. T. C.; Varcoe, J. R. J. Mater. Chem., 2003, 13, 712.
2Wu, Y.; Wu, C.; Xu, T.; Lin, X.; Fu, Y. J. Membr. Sci., 2009, 338, 51.
3Kostalik, H. A.; Clark, T. J.; Robertson, N. J.; Mutolo, P. F.; Longo, J. M.; Abruna, H. D.;
Coates, G. W. Macromol., 2010, 43, 7147.

Poly(ethylene)-based AEM from ROMP3:



Alternative Cationic Groups

Poly(sulfone) with benzyltris(2,4,6-
trimethoxyphenyl) phosphonium groups1

Poly(sulfone) with benzylpentamethyl
guanadinium groups2

1Gu, S.; Cai, R.; Luo, T.; Chen, Z.; Sun, M.; Liu, Y.; He, G.; Yan, Y. Angew. Chem. Int. Ed., 2009, 48, 1.
2Wang, J.; Li, S.; Zhang, S. Macromol. 2010, 43, 3890.



AEMs made at Sandia:
Poly(sulfone)-Based Membranes

Mw = 80-100k
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AEMs made at Sandia:
Poly(phenylene)-Based Membranes

Mw = 60-80k

ATMPP

Hibbs, M. R.; Fujimoto, C. H.; Cornelius, C. J. Macromol. 2009, 42, 8316.



ATMPS & ATMPP Properties

• Hydroxide conductivities were measured in liquid water at 
room temperature. 

• ATMPS has larger water uptake than ATMPP at similar IECs.

• At IEC > 2.6, ATMPS swells so much that the conductivity
begins to decrease.

• Fuel cell testing at LANL (H2/O2, 80 oC) has achieved power 
density of 278 mW/cm2 with ATMPP membrane.
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Anode Humid. Temp.: 60oC

H2/O2 Performance of Alkaline
Membrane Fuel Cells

Anode Humid. Temp.: 50°C

Perfluorinated ionomer

N(CH3)3

N(CH3)3

aminated TMPP

Membrane/ionomer

IEC = 1.8 meq./g

= 55 mS/cm

Thickness: 50 m

Catalyst: Pt black (3 mg/cm2), Cell temp. 60°C, Cathode

humidification: 60°C, back pressure: 30 psig, high stoic. Catalyst:

ionomer weight composition (9:1, not optimized); MEAs were

prepared from direct painting.

Fully hydrated conditions (anode humid. temp.: 60°C) 

 Mass transport issue due to flooding

 Possibly poor cation – catalyst structure

Partial hydrated conditions (anode humid. temp.: 50°C) 

 Improved performance with removing mass 
transport 

issue

 Poor membrane hydration/remaining issue with 
cation

Data presented at 2011 DOE Hydrogen and Fuel Cells Program Review

Ionomer (IEC = 0.74 meq./g,  = 20 mS/cm)
Perfluorinated ionomer (anode humid. temp.: 60°C) 

 Improved performance with removing mass transport issue

 No membrane hydration problem

 Maximum power density: 

236 (at 60°C) and 278 mW/cm2 (at 80°C)

80°C

60°C



Mechanical Stability

• Test conditions: 50 oC, 50% RH.
• Poly(arylene ether sulfone) shows significant degradation.
• Poly(phenylene) is weaker in OH- form, but there is no sign

of backbone degradation. 
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Cation Stability

• Test conditions: 4M NaOH (aqueous), no stirring.
• AHA is “base stable” electrodialysis membrane – crosslinked polystyrene.
• A poly(sulfone) AEM (ATMPS) became too brittle to handle after 1-2 days.
• After 9 days at 90 oC, IEC of ATMPP decreased by 10%.
• Model studies indicate decreasing stability as hydration decreases.1

1Chempath, S.; Einsla, B. R.; Pratt, L. R.; Macomber, C. S.; Boncella, J. M.; Rau,

J. A.; Pivovar, B. S. J. Phys. Chem. C Lett. 2008, 112, 3179.

Both membranes have
benzyl trimethylammonium
cations:
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Resonance-stabilized Cations

Pentamethylguanidine
(PMG)1

1Wang, J.; Li, S.; Zhang, S. Macromolecules 2009, 42, 8711.

Poly(sulfone)

Poly(phenylene)

• Delocalization of the positive 
charge should make the cations
less susceptible to nucleophilic
attack.

• Delocalization should also 
increase ion dissociation to get 
higher ionic conductivity.

• Poly(sulfone) and 
poly(phenylene) membranes 
with benzyl PMG groups were 
prepared according to the 
method of Wang et al.1

• Conductivities of both 
membranes were near zero 
after conversion to OH- form.



Decomposition of Benzyl PMG Cations

after NaOH treatment
(1M, room temp., 24 h)

before NaOH treatment

b
a

c

d
e

• The relative areas of b and c peaks 
decrease drastically after NaOH.   
But b:c area ratio does not change.  

• The probable mechanism is 
nucleophilic attack by hydroxide 
ion at the benzylic carbon:



Polymer with Phenyl PMG Cations
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• Parent polymer is poly(arylene ether
sulfone) with phenol-type alcohols.

• 4-bromophenyl tetramethylguanidine
is attached by Ullmann coupling.

• The uncoupled alcohols
become methyl ethers during the
methylation step.

• Electron donating para-phenyl ethers
should further stabilize positive
charge on guanidinium group. 



Phenyl PMG Membrane Properties

• The maximum possible IEC, 1.78, is difficult to achieve.

• With a 10x excess of 4-bromophenyl TMG, about 66% of repeat units undergo
coupling reaction.

• Need a backbone with more alcohols/repeat unit (higher possible IEC) to get higher 
conductivities.

• Conductivities measured in liquid water (degassed) at room temperature.

Batch # Equivalents of 

TMG in coupling 

reaction

IEC  

(meg/g)

Water 

Uptake

(wt. %)

OH-

Conductivity 

(mS/cm)

1 1.5 0.88 4 1

2 4 1.09 36 4

3 10 1.34 76 7



Stability of Phenyl PMG Cations

4 M NaOH, 90 oC, 72 h

1 M NaOH, 25 oC, 265 h

No NaOH treatment

b

a
c

• Phenyl PMG groups are stable at
high pH and elevated temparatures.
(unlike benzyl PMG groups)

• Membranes became brittle after exposure
to NaOH at 90 oC (probably backbone 
degradation).

• Need to attach phenyl PMG to a more 
stable backbone such as poly(phenylene).

a b c



Conclusions

• New membranes and binders are needed to drive the 
development of alkaline fuel cells (AFC).

• Poly(arylene ether sulfone) backbones appear to be unstable at 
high pH conditions.

• Cations more stable than benzyl trimethylammonium groups 
are needed for operation at high temperature and/or low 
humidity.

• Guanidinium groups attached by a benzyl linkage are not stable 
at high pH.

• Our first attempt at making AEMs with phenyl guanidinium
groups indicates a significant increase in stability to hydroxide 
attack.
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