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Need for UQ in Reacting Flow Modeling

Combustion: dominant means of utilization of fossil fuels
Power generation
Transportation
Industrial processing & residential use

Chemical models involve much empiricism
Models: choice of species and reactions
Parameters:

– Chemical rate constants
– Thermodynamic parameters

Flow models rely on empiricism and approximations
mass/energy transport and fluid constitutive laws
turbulence/subgrid models

Focus on uncertainty in chemical model parameters
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Challenges with UQ in reacting flow

Estimation of uncertainty in parameters (and models)
Published data is inadequate
Raw data is not available
Data on correlations among parameters is not available

{forward, backward rate constants, thermo. props}
Ongoing community efforts to address this:

⇒ PRIME, Active tables

Non-linearity
Amplif. of uncertainty. Bifurcation
oscillatory dynamics

Stiffness
Large range of time scales. Low dimensional manifolds

High dimensionality
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Overview of UQ Methods

Estimation of model/parametric uncertainty

Expert opinion, data collection

Regression analysis, fitting, parameter estimation

Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models

Local sensitivity analysis (SA) and error propagation

Fuzzy logic; Evidence theory — interval math
Probabilistic framework — Global SA / stochastic UQ

Random sampling, statistical methods
Polynomial Chaos (PC) methods

– Collocation methods — sampling — non-intrusive
– Galerkin methods — direct — intrusive
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Different Types of Uncertainty?

Epistemic versus Aleatoric uncertainty
Both can be handled equally well with probability theory

Bayesian versus Frequentist
Bayesian viewpoint encompasses both
Probabilistic math structure is self-consistent for both

Any quantity can be estimated
Expert opinion
Maximum Entropy
Bayes formula
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Bayes formula for Parameter Inference

Data Model (fit model + noise): y = f (x) + ǫ

Bayes Formula:

p(x, y) = p(x|y)p(y) = p(y|x)p(x)

p(x|y)
Posterior

=

Likelihood

p(y|x)
Prior

p(x)

p(y)
Evidence

Prior: knowledge of x prior to data

Likelihood: forward model and measurement noise

Posterior: combines information from prior and data

Evidence: normalizing constant for present context
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Exploring the Posterior

Given any sample x, the un-normalized posterior
probability can be easily computed

p(x|y) ∝ p(y|x)p(x)

Explore posterior w/ Markov Chain Monte Carlo (MCMC)
– Metropolis-Hastings algorithm:

Random walk with proposal PDF & rejection rules

– Computationally intensive, O(105) samples
– Each sample: evaluation of the forward model

Surrogate models

Evaluate moments/marginals from the MCMC statistics
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Surrogate Models for Bayesian Inference

Need an inexpensive response surface for
Observables of interest y
as functions of parameters of interest x

Gaussian Process (GP) surrogate
GP goes through all data points with probability 1.0
Uncertainty between the points

Fit a convenient polynomial to y = f (x)

– over the range of uncertainty in x

Employ a number of samples (xi , yi)
Fit with interpolants, regression, ... global/local
With uncertain x :

– Construct Polynomial Chaos response surface

Marzouk et al. 2007; Marzouk & Najm, 2009
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Parameter Estimation in Chemical Systems

Forward UQ requires the joint PDF on the input space
– Published data is frequently inadequate

Bayesian inference can provide the joint PDF
– Requires raw data ... which is not available

At best: nominal parameter values and error bars

Fitting hypothesized PDFs to each parameter
nominals/bounds independently is not a good answer

– Correlations and joint PDF structure can be
crucial to uncertainty in predictions
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Generate ignition "data" using a detailed model+noise

Ignition using a detailed
chemical model for
methane-air chemistry

Ignition time versus Initial
Temperature

Multiplicative noise error
model

11 data points:
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Fitting with a simple chemical model

Fit a global single-step
irreversible chemical
model

CH4 + 2O2 → CO2 + 2H2O

R = [CH4][O2]kf

kf = Aexp(−E/RoT)

Infer 3-D parameter
vector (ln A, ln E, lnσ)

Good mixing with
adaptive MCMC when
start at MLE
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Bayesian Inference Posterior and Nominal Prediction
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Marginal joint posterior on
(ln A, ln E) exhibits strong
correlation

Nominal fit model is con-
sistent with the true model
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Correlation Slope χ and Chemical Ignition
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4th Order Multiwavelet PC, Multiblock, Adaptive

σT,max ∼ 400 K during ignition transient, χ ∼ 0.03
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Time evolution of Temperature PDFs in preheat stage
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Similar results from MC (20K samples) and MW PC

Increased uncertainty, and long high–T PDF tails, in time
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Evolution of Temp. PDF – Fast Ignition Transient
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Transition from unimodal to bimodal PDFs

Leakage of probability mass from pre-heat PDF high–T tail
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Time evolution of Temperature PDFs f (slope)
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Time evolution of Temperature PDFs f (slope)
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Time evolution of Temperature PDFs f (slope)
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Time evolution of Temperature PDFs f (slope)
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Time evolution of Temperature PDFs f (slope)
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Time evolution of Temperature PDFs f (slope)
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Time evolution of Temperature PDFs f (slope)
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Time evolution of Temperature PDFs f (slope)
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Central Challenge for UQ in Chemical Kinetic Models

Need joint PDF on model parameters for forward UQ

Joint PDF structure is crucial

Joint PDF not available for chemical kinetic parameters
At best, have

Nominal parameter values
Bounds, e.g. marginal 5%, 95% quantiles

PDF can be constructed by repeating experiments
or access to original raw data

– Neither is feasible

Is there a way to construct an approximate PDF without
access to raw data?

– Yes!
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Data Free Inference (DFI) (Berry et al., JCP, in review)

Intuition: In the absence of data, the structure of the fit
model, combined with the nominals and bounds, implicitly
inform the correlation between the parameters

Goal: Make this information explicit in the joint PDF

DFI: discover a consensus joint PDF on the parameters
consistent with given information:

– Nominal parameter values
– Bounds
– The fit model
– The data range
– ... potentially other/different constraints
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Data Free Inference Challenge

Discarding initial data, reconstruct marginal (ln A, ln E) posterior
using the following information

Form of fit model

Range of initial temperature

Nominal fit parameter values of ln A and ln E

Marginal 5% and 95% quantiles on ln A and ln E

Further, for now, presume

Multiplicative Gaussian errors

N = 8 data points
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DFI Algorithm Structure

Basic idea:

Explore the space of hypothetical data sets
– MCMC chain on the data
– Each state defines a data set

For each data set:
– MCMC chain on the parameters
– Evaluate statistics on resulting posterior
– Accept data set if posterior is consistent with

given information

Evaluate pooled posterior from all acceptable posteriors
Logarithmic pooling:

p(λ|y) =

[

K
∏

i=1

p(λ|yi)

]1/K

SNL Najm UQ in Reacting Flow 22 / 30



Intro Bayes DFI Closure

DFI Uses two nested MCMC chains
An outer chain on the data, (2N + 1)–dimensional

– Generally high-dimensional
– N data points (xi , yi) + σ
– Likelihood function captures constraints on

parameter nominals+bounds

An inner chain on the model parameters
– Conventional MCMC for parameter estimation
– Likelihood based on fit-model
– parameter vector (ln A, ln E, lnσ)

Computationally challenging
– Single-site update on outer chain
– Adaptive MCMC on inner chain
– Run multiple outer chains in parallel, and

aggregate resulting acceptable data sets
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Short sample from outer/data chain
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Reference Posterior – based on actual data
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Ref + DFI posterior based on a 1000-long data chain
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Ref + DFI posterior based on a 5000-long data chain
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Marginal Pooled DFI Posteriors on ln A and ln E
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Closure

UQ is increasingly important in computational modeling
Probabilistic UQ framework

PC representation of random variables
Utility in forward UQ

– Intrusive PC methods
– Non-intrusive methods

Utility in inverse problems – surrogates
– Bayesian inference
– Model validation

Need for probabilistic characterization of uncertain inputs
Correlations important for uncertainty in predictions
DFI ⇒ joint PDF consistent with available information
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Outlook

Ongoing research on various fronts
Dimensionality reduction

Sensitivity, PCA, ANOVA/HDMR, low-D manifolds, ...

Discontinuities in high-D spaces
Efficient tiling of high-D spaces

Adaptive anisotropic sparse quadrature

Adaptive sparse tensor representations

Long-time oscillatory dynamics in field variables

Intrusive solvers ... stability, convergence, preconditioning

Methods for characterization of uncertain inputs
Absence of data, dependencies among observations

Model comparison, selection, validation
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