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Need for UQ in Reacting Flow Modeling

@ Combustion: dominant means of utilization of fossil fuels

@ Power generation
@ Transportation
@ Industrial processing & residential use

@ Chemical models involve much empiricism

@ Models: choice of species and reactions
o Parameters:

— Chemical rate constants
— Thermodynamic parameters
@ Flow models rely on empiricism and approximations
@ mass/energy transport and fluid constitutive laws
@ turbulence/subgrid models

@ Focus on uncertainty in chemical model parameters
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Challenges with UQ in reacting flow

@ Estimation of uncertainty in parameters (and models)
@ Published data is inadequate
@ Raw data is not available
o Data on correlations among parameters is not available
{forward, backward rate constants, thermo. props}
Ongoing community efforts to address this:
= PRIME, Active tables
@ Non-linearity
@ Amplif. of uncertainty. Bifurcation
@ oscillatory dynamics
o Stiffness
@ Large range of time scales. Low dimensional manifolds

@ High dimensionality

(4
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Intro

Overview of UQ Methods

Estimation of model/parametric uncertainty
@ Expert opinion, data collection
@ Regression analysis, fitting, parameter estimation
@ Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models
@ Local sensitivity analysis (SA) and error propagation

@ Fuzzy logic; Evidence theory — interval math
@ Probabilistic framework — Global SA / stochastic UQ
@ Random sampling, statistical methods
@ Polynomial Chaos (PC) methods
— Collocation methods — sampling — non-intrusive
— Galerkin methods — direct — intrusive
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Different Types of Uncertainty?

@ Epistemic versus Aleatoric uncertainty
@ Both can be handled equally well with probability theory

@ Bayesian versus Frequentist
@ Bayesian viewpoint encompasses both
@ Probabilistic math structure is self-consistent for both

@ Any quantity can be estimated
@ Expert opinion
@ Maximum Entropy
@ Bayes formula
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Intro
Bayes formula for Parameter Inference

Data Model (fit model + noise): y=1(X) +e
Bayes Formula:
p(x,y) = p(X|y)p(y) = p(yX)p(X)

Likelihood  Prior
p(yx) p(X)

p(xly) _
Posterior

p(y)

Evidence
Prior: knowledge of x prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data

Evidence: normalizing constant for present context
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Exploring the Posterior

@ Given any sample x, the un-normalized posterior
probability can be easily computed

P(Xly) o< p(yIX)p(x)

@ Explore posterior w/ Markov Chain Monte Carlo (MCMC)
— Metropolis-Hastings algorithm:
@ Random walk with proposal PDF & rejection rules

— Computationally intensive, ©(10°) samples
— Each sample: evaluation of the forward model

@ Surrogate models
@ Evaluate moments/marginals from the MCMC statistics
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Intro
Surrogate Models for Bayesian Inference

@ Need an inexpensive response surface for

@ Observables of interest y
@ as functions of parameters of interest x

@ Gaussian Process (GP) surrogate

@ GP goes through all data points with probability 1.0
@ Uncertainty between the points

@ Fit a convenient polynomial to y = f(x)
over the range of uncertainty in x

(4

Employ a number of samples (x;, yi)
Fit with interpolants, regression, ... global/local
With uncertain x :

— Construct Polynomial Chaos response surface

¢ ¢

Marzouk et al. 2007; Marzouk & Najm, 2009
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Parameter Estimation in Chemical Systems

@ Forward UQ requires the joint PDF on the input space
— Published data is frequently inadequate

@ Bayesian inference can provide the joint PDF
— Requires raw data ... which is not available

@ At best: nominal parameter values and error bars

@ Fitting hypothesized PDFs to each parameter
nominals/bounds independently is not a good answer
— Correlations and joint PDF structure can be
crucial to uncertainty in predictions
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EEWES

Generate ignition "data" using a detailed model+noise

@ Ignition using a detailed
chemical model for

methane-air chemistry a3 E
@ Ignition time versus Initial . [ GRI
Temperature 8 I =
L . . 8 GRI+noise
® Multiplicative noise error = | i
model 2
k)

@ 11 data points:

di - tiGgfi?l(l + O‘6i) 0.01f A ! A | s =
1000 1100 1200 1300
e N(O, 1) Initial Temperature (K)

NET UQ in Reacting Flow



Fitting with a simple chemical model

@ Fit a global single-step %
irreversible chemical sl ]
model L32p

CH4 + 205 — COs + 2H,0

R = [CHyJ[O]ks
kk = Aexp(—E/R°T)

@ Infer 3-D parameter

vector (InA,InE,Ino) ;’
@ Good mixing with ; ;g: o
adaptive MCMC when 0 A0 s 0 10w

start at MLE
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EEWES

Bayesian Inference Posterior and Nominal Prediction

— GRI
== GRI+noise
Fit Model

7

| GRI+noise

o
[

Ignition time (sec)

0.01,

. | . | B
® # % ® 3“ * 1000 1100 1200 1300
Initial Temperature (K)

Marginal joint posterior on

(InA,InE) exhibits strong Nominal fit model is con-
correlation sistent with the true model
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EEWES

Correlation Slope y and Chemical Ignition

Means Standard Deviations
‘ 3000 0.06 \ 400
L T L
0.25 1 0.05- 7
o L
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o 02F < = 0.041 <
S 1 e .% L 43
g I co, 5 g 5
(L 0.15F 2 ~|2000% L.géo.oa— 72005
g | g |
= o1t H.0 1 E =002 1 E
b CH, —{1500 —100
0.05 j 0.01~
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@ 4" Order Multiwavelet PC, Multiblock, Adaptive
® o1 max ~ 400 K during ignition transient, x ~ 0.03
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Time evolution of Temperature PDFs in preheat stage

MC MW
0.15F T T T T = 0.15F T T T =
1=0.455 sec t=0.455 sec
2 2
w 01 -4 @ 01- -
153 0.459 sec 5] 0.459 sec
a )
2 2
g g
& 005+ 0.462 sec 1 & 005 0.462 sec 7
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@ Similar results from MC (20K samples) and MW PC
@ Increased uncertainty, and long high—T PDF tails, in time
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EEWES

Evolution of Temp. PDF — Fast Ignition Transient

MC MW
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@ Transition from unimodal to bimodal PDFs
@ Leakage of probability mass from pre-heat PDF high—T tail
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Time evolution of Temperature PDFs f(slope)
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Time evolution of Temperature PDFs f(slope)
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Time evolution of Temperature PDFs f(slope)
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Time evolution of Temperature PDFs f(slope)
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Time evolution of Temperature PDFs f(slope)
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Time evolution of Temperature PDFs f(slope)
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Time evolution of Temperature PDFs f(slope)
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Time evolution of Temperature PDFs f(slope)
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DFI

Central Challenge for UQ in Chemical Kinetic Models

Need joint PDF on model parameters for forward UQ
Joint PDF structure is crucial
Joint PDF not available for chemical kinetic parameters

At best, have

@ Nominal parameter values
@ Bounds, e.g. marginal 5%, 95% quantiles

@ PDF can be constructed by repeating experiments
or access to original raw data
— Neither is feasible
@ Is there a way to construct an approximate PDF without
access to raw data?
— Yes!
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DFI

Data Free Inference (DF|) (Berry et al., JCP, in review)

@ Intuition: In the absence of data, the structure of the fit
model, combined with the hominals and bounds, implicitly
inform the correlation between the parameters

@ Goal: Make this information explicit in the joint PDF

@ DFI: discover a consensus joint PDF on the parameters
consistent with given information:

Nominal parameter values

Bounds

The fit model

The data range

... potentially other/different constraints

NET UQ in Reacting Flow



DFI

Data Free Inference Challenge

Discarding initial data, reconstruct marginal (InA, InE) posterior
using the following information

@ Form of fit model

@ Range of initial temperature

@ Nominal fit parameter values of InA and InE

@ Marginal 5% and 95% quantiles on InA and InE

Further, for now, presume
@ Multiplicative Gaussian errors
@ N = 8 data points
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DFI

DFI Algorithm Structure

Basic idea:
@ Explore the space of hypothetical data sets
— MCMC chain on the data
— Each state defines a data set
@ For each data set:

— MCMC chain on the parameters

— Evaluate statistics on resulting posterior

— Accept data set if posterior is consistent with
given information

@ Evaluate pooled posterior from all acceptable posteriors
Logarithmic pooling:

p(AlY) = [Hp Alyi) r/K
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DFI

DFI Uses two nested MCMC chains

@ An outer chain on the data, (2N + 1)—dimensional
— Generally high-dimensional
— N data points (X,y;) + o
— Likelihood function captures constraints on
parameter nominals+bounds

@ An inner chain on the model parameters
— Conventional MCMC for parameter estimation
— Likelihood based on fit-model
— parameter vector (InA,InE,Ino)
@ Computationally challenging
— Single-site update on outer chain
— Adaptive MCMC on inner chain
— Run multiple outer chains in parallel, and
aggregate resulting acceptable data sets
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DFI

Short sample from outer/data chain
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DFI

Reference Posterior — based on actual data
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DFI

Ref + DFI posterior based on a 1000-long data chain
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DFI

Ref + DFI posterior based on a 5000-long data chain
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DFI

Marginal Pooled DFI Posteriors on InAand InE
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Closure
Closure

@ UQ is increasingly important in computational modeling
@ Probabilistic UQ framework

@ PC representation of random variables
@ Utility in forward UQ

— Intrusive PC methods
— Non-intrusive methods

@ Utility in inverse problems — surrogates

— Bayesian inference
— Model validation

@ Need for probabilistic characterization of uncertain inputs

@ Correlations important for uncertainty in predictions
@ DFI = joint PDF consistent with available information
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Closure
Outlook

Ongoing research on various fronts

Dimensionality reduction
@ Sensitivity, PCA, ANOVA/HDMR, low-D manifolds, ...
Discontinuities in high-D spaces
o Efficient tiling of high-D spaces
Adaptive anisotropic sparse quadrature
Adaptive sparse tensor representations
Long-time oscillatory dynamics in field variables
Intrusive solvers ... stability, convergence, preconditioning

Methods for characterization of uncertain inputs
@ Absence of data, dependencies among observations

Model comparison, selection, validation
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