

SAND2011-5426C

*Uncertainty Quantification  
in  
Reacting Flow*

Habib N. Najm<sup>1</sup>, Robert D. Berry<sup>1</sup>, Bert J. Debusschere<sup>1</sup>,  
and Youssef M. Marzouk<sup>2</sup>

<sup>1</sup>Sandia National Laboratories, Livermore, CA, USA

<sup>2</sup>Massachusetts Institute of Technology, Cambridge, MA, USA

USA/South America Symposium on Stochastic Modeling and  
Uncertainty Quantification  
August 1-5 2011, Rio de Janeiro

# Acknowledgement

K. Sargsyan, C. Safta

— Sandia National Laboratories, CA, USA

R.G. Ghanem — U. South. California, Los Angeles, CA, USA

O.M. Knio — Johns Hopkins Univ., Baltimore, MD, USA

O.P. Le Maître — CNRS, France

This work was supported by:

- The DOE Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences, and Biosciences.
- The US Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR), Applied Mathematics program.
- 2009 American Recovery and Reinvestment Act.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.

# Outline

- 1 Introduction
- 2 Bayesian Parameter Estimation in Chemical Models
- 3 Data Free Inference
- 4 Closure

# Need for UQ in Reacting Flow Modeling

- Combustion: dominant means of utilization of fossil fuels
  - Power generation
  - Transportation
  - Industrial processing & residential use
- Chemical models involve much empiricism
  - Models: choice of species and reactions
  - Parameters:
    - Chemical rate constants
    - Thermodynamic parameters
- Flow models rely on empiricism and approximations
  - mass/energy transport and fluid constitutive laws
  - turbulence/subgrid models
- Focus on uncertainty in chemical model parameters

# Challenges with UQ in reacting flow

- Estimation of uncertainty in parameters (and models)
  - Published data is inadequate
  - Raw data is not available
  - Data on correlations among parameters is not available {forward, backward rate constants, thermo. props}
  - Ongoing community efforts to address this:  
⇒ PRIME, Active tables
- Non-linearity
  - Amplif. of uncertainty. Bifurcation
  - oscillatory dynamics
- Stiffness
  - Large range of time scales. Low dimensional manifolds
- High dimensionality

# Overview of UQ Methods

Estimation of model/parametric uncertainty

- Expert opinion, data collection
- Regression analysis, fitting, parameter estimation
- Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models

- Local sensitivity analysis (SA) and error propagation
- Fuzzy logic; Evidence theory — interval math
- Probabilistic framework — Global SA / stochastic UQ
  - Random sampling, statistical methods
  - Polynomial Chaos (PC) methods
    - Collocation methods — sampling — non-intrusive
    - Galerkin methods — direct — intrusive

# Different Types of Uncertainty?

- Epistemic versus Aleatoric uncertainty
- Both *can* be handled equally well with probability theory
  - Bayesian versus Frequentist
  - Bayesian viewpoint encompasses both
  - Probabilistic math structure is self-consistent for both
- Any quantity can be estimated
  - Expert opinion
  - Maximum Entropy
  - Bayes formula

# Bayes formula for Parameter Inference

- Data Model (fit model + noise):  $y = f(x) + \epsilon$
- Bayes Formula:

$$p(x, y) = p(x|y)p(y) = p(y|x)p(x)$$

$$p(x|y) = \frac{\text{Likelihood} \quad \text{Prior}}{\text{Posterior} \quad \text{Evidence}}$$

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

- Prior: knowledge of  $x$  prior to data
- Likelihood: forward model and measurement noise
- Posterior: combines information from prior and data
- Evidence: normalizing constant for present context

# Exploring the Posterior

- Given any sample  $x$ , the un-normalized posterior probability can be easily computed

$$p(x|y) \propto p(y|x)p(x)$$

- Explore posterior w/ Markov Chain Monte Carlo (MCMC)
  - Metropolis-Hastings algorithm:
    - Random walk with proposal PDF & rejection rules
  - Computationally intensive,  $\mathcal{O}(10^5)$  samples
  - Each sample: evaluation of the forward model
    - Surrogate models
- Evaluate moments/marginals from the MCMC statistics

# Surrogate Models for Bayesian Inference

- Need an inexpensive response surface for
  - Observables of interest  $y$
  - as functions of parameters of interest  $x$
- Gaussian Process (GP) surrogate
  - GP goes through all data points with probability 1.0
  - Uncertainty between the points
- Fit a convenient polynomial to  $y = f(x)$ 
  - over the range of uncertainty in  $x$
  - Employ a number of samples  $(x_i, y_i)$
  - Fit with interpolants, regression, ... global/local
  - With uncertain  $x$  :
    - Construct Polynomial Chaos response surface

Marzouk *et al.* 2007; Marzouk & Najm, 2009

# Parameter Estimation in Chemical Systems

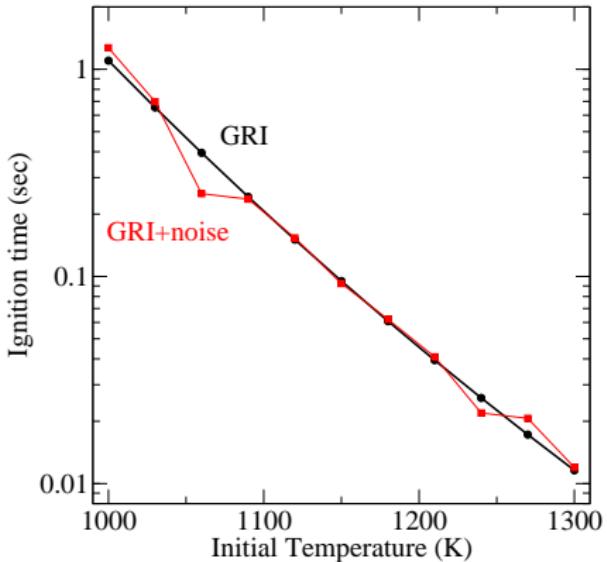
- Forward UQ requires the joint PDF on the input space
  - Published data is frequently inadequate
- Bayesian inference can provide the joint PDF
  - Requires raw data ... which is not available
- At best: nominal parameter values and error bars
- Fitting hypothesized PDFs to each parameter nominals/bounds independently is not a good answer
  - Correlations and joint PDF structure can be crucial to uncertainty in predictions

# Generate ignition "data" using a detailed model+noise

- Ignition using a detailed chemical model for methane-air chemistry
- Ignition time versus Initial Temperature
- Multiplicative noise error model
- 11 data points:

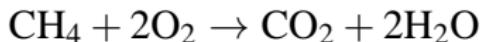
$$d_i = t_{ig,i}^{\text{GRI}} (1 + \sigma \epsilon_i)$$

$$\epsilon \sim N(0, 1)$$



# Fitting with a simple chemical model

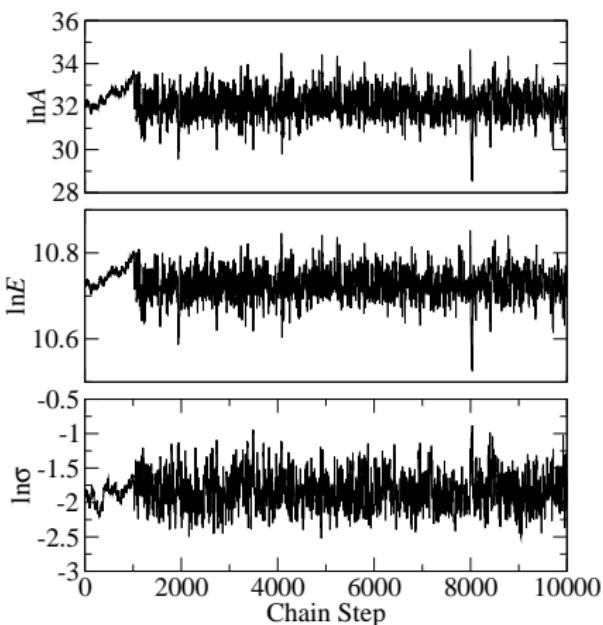
- Fit a global single-step irreversible chemical model



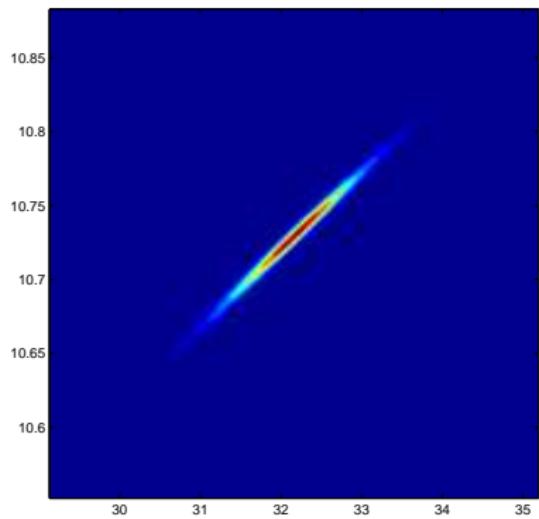
$$\mathfrak{R} = [\text{CH}_4][\text{O}_2]k_f$$

$$k_f = A \exp(-E/R^o T)$$

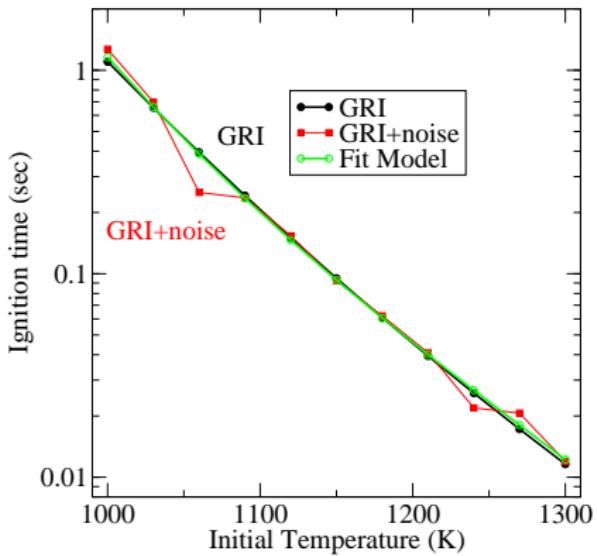
- Infer 3-D parameter vector ( $\ln A$ ,  $\ln E$ ,  $\ln \sigma$ )
- Good mixing with adaptive MCMC when start at MLE



# Bayesian Inference Posterior and Nominal Prediction



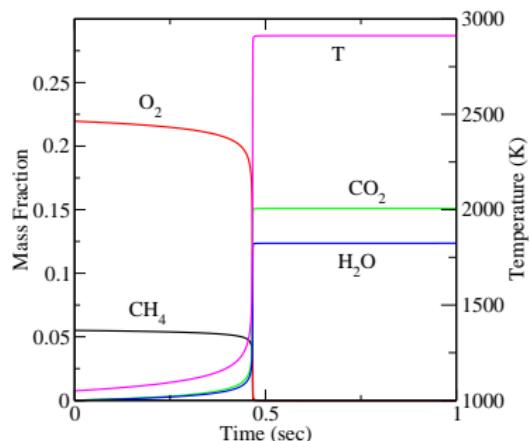
Marginal joint posterior on  $(\ln A, \ln E)$  exhibits strong correlation



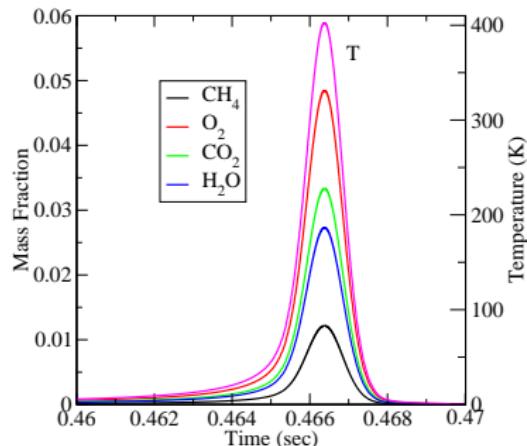
Nominal fit model is consistent with the true model

# Correlation Slope $\chi$ and Chemical Ignition

Means

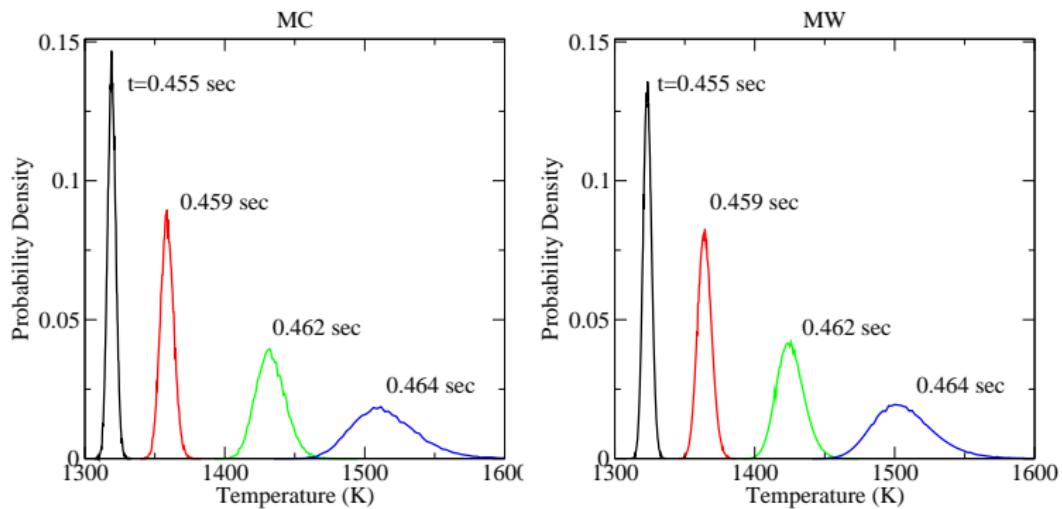


Standard Deviations



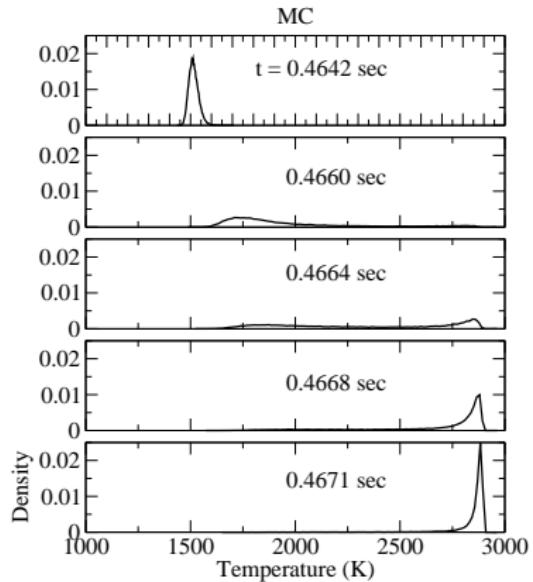
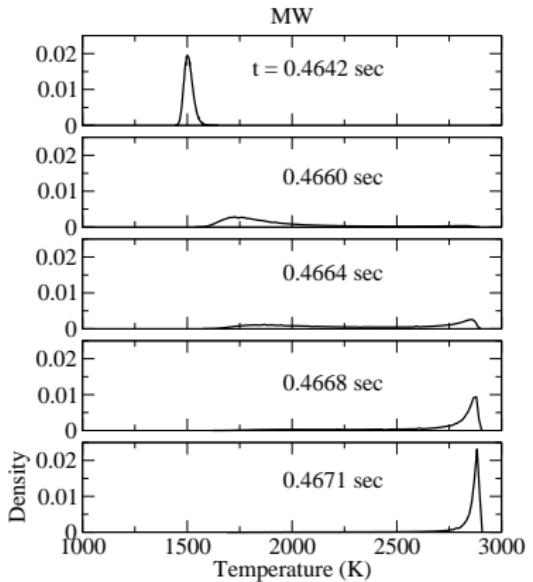
- 4<sup>th</sup> Order Multiwavelet PC, Multiblock, Adaptive
- $\sigma_{T,\max} \sim 400 \text{ K}$  during ignition transient,  $\chi \sim 0.03$

# Time evolution of Temperature PDFs in preheat stage

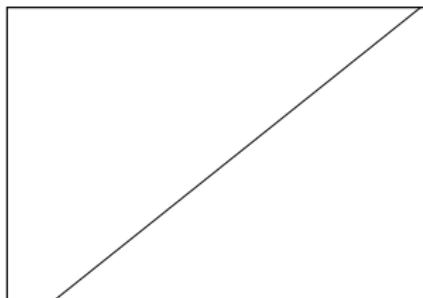
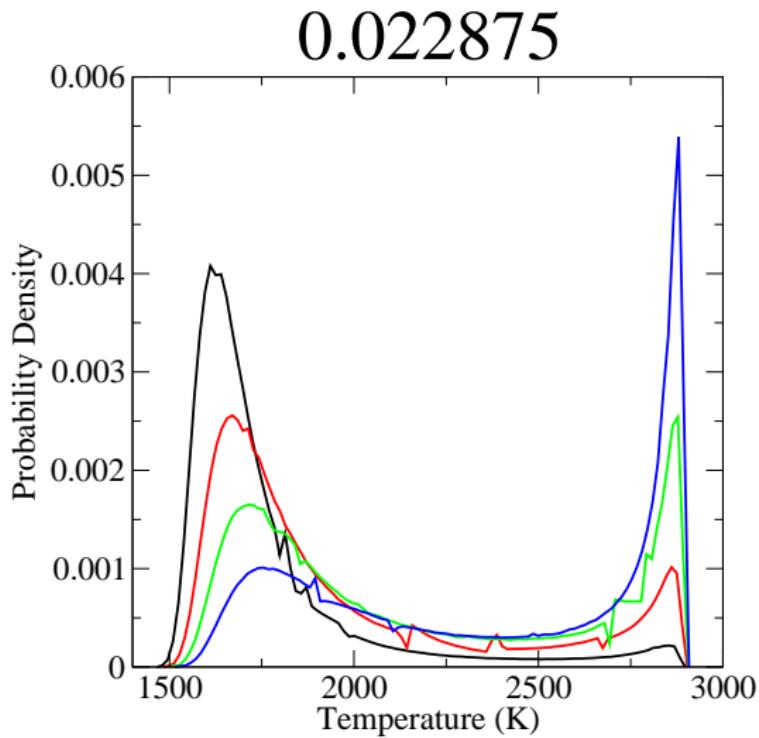


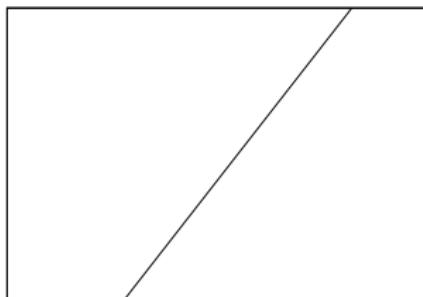
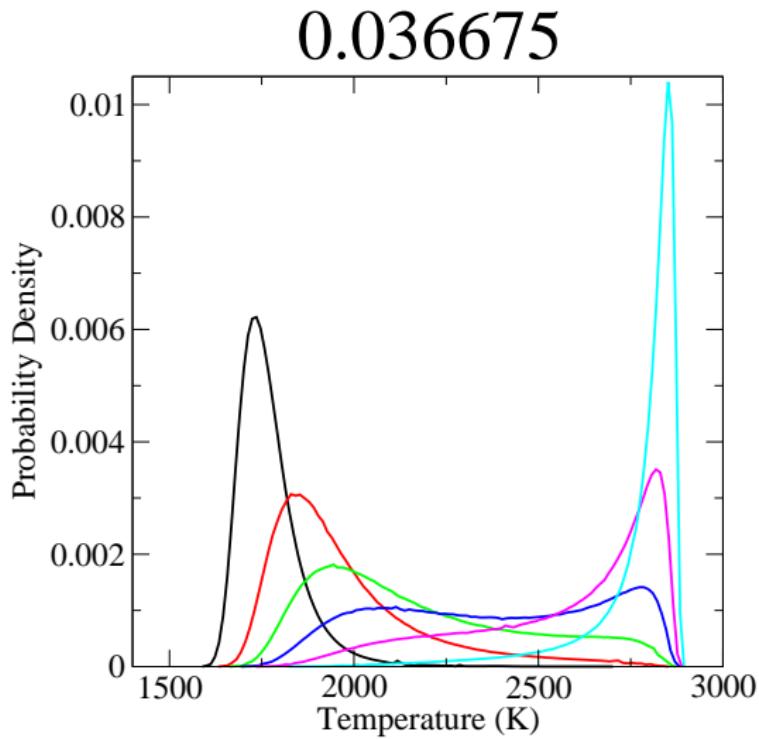
- Similar results from MC (20K samples) and MW PC
- Increased uncertainty, and long high- $T$  PDF tails, in time

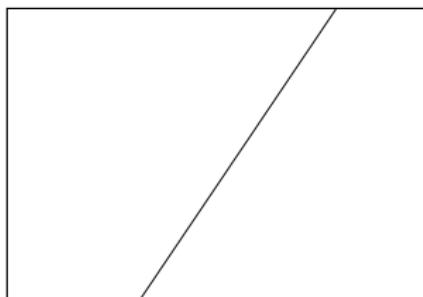
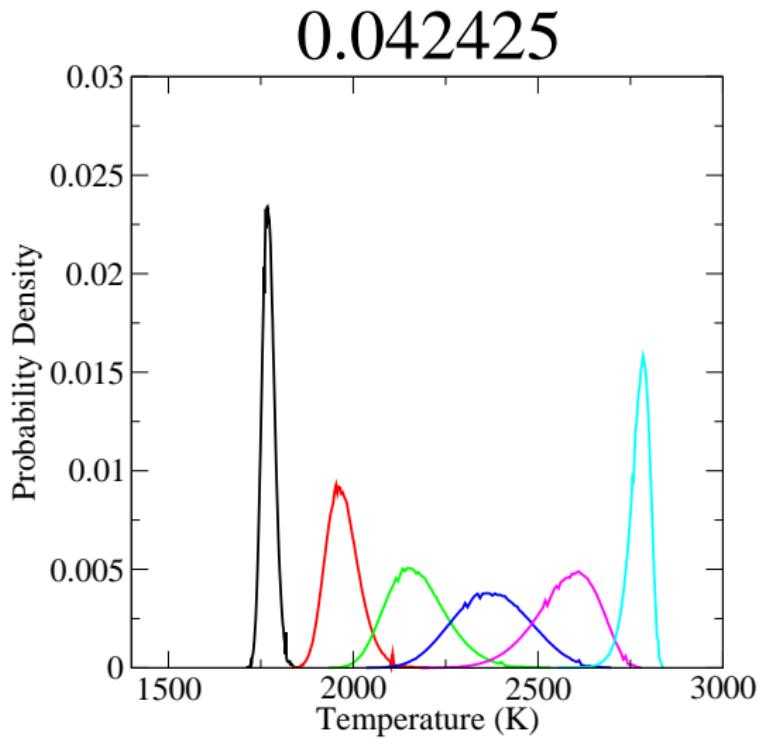
# Evolution of Temp. PDF – Fast Ignition Transient

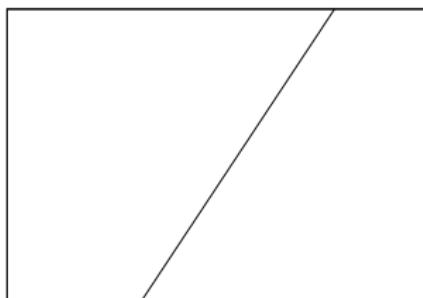
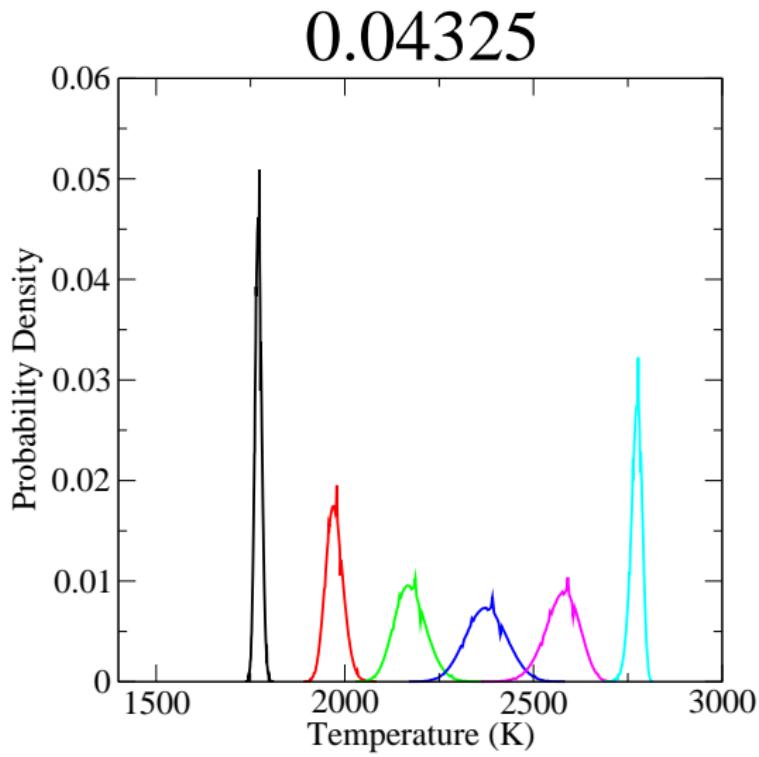


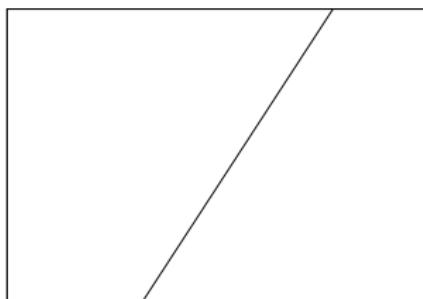
- Transition from unimodal to bimodal PDFs
- Leakage of probability mass from pre-heat PDF high- $T$  tail

Time evolution of Temperature PDFs  $f(\text{slope})$ 

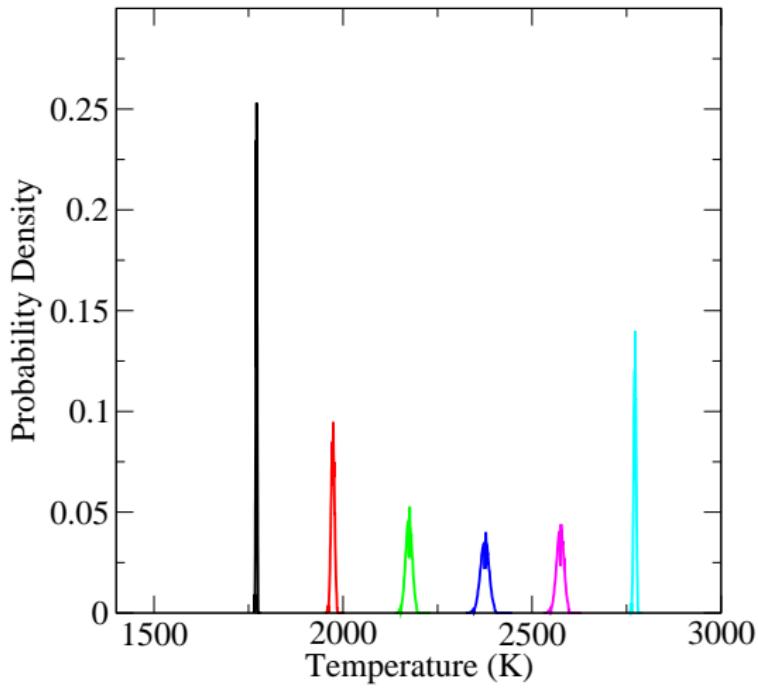
Time evolution of Temperature PDFs  $f(\text{slope})$ 

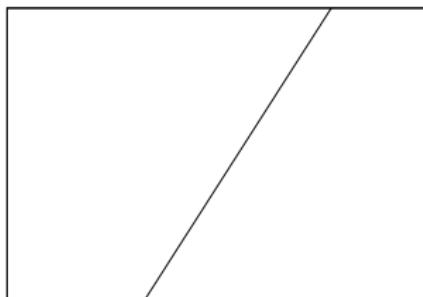
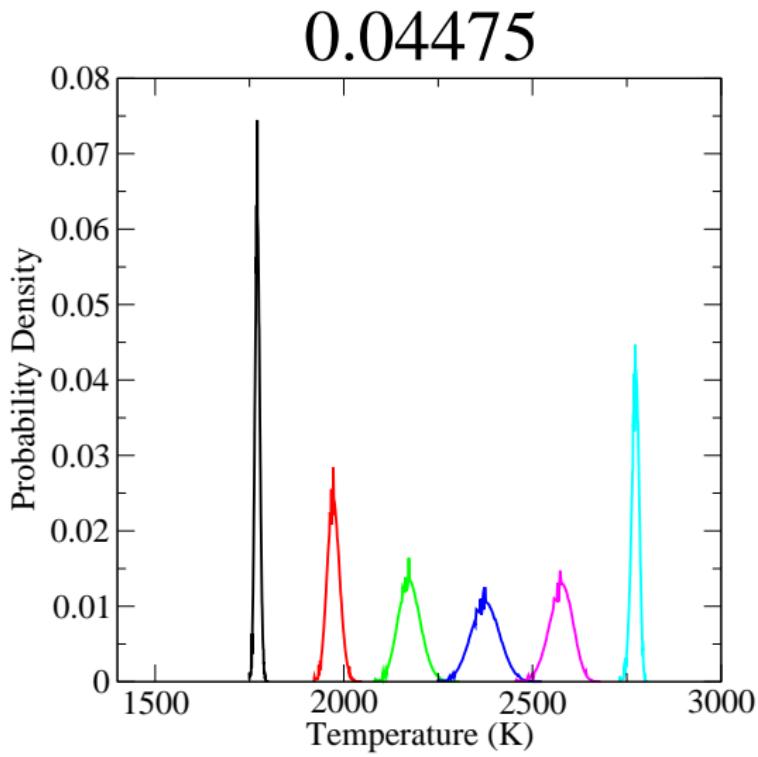
Time evolution of Temperature PDFs  $f(\text{slope})$ 

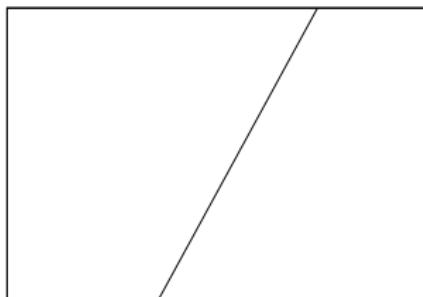
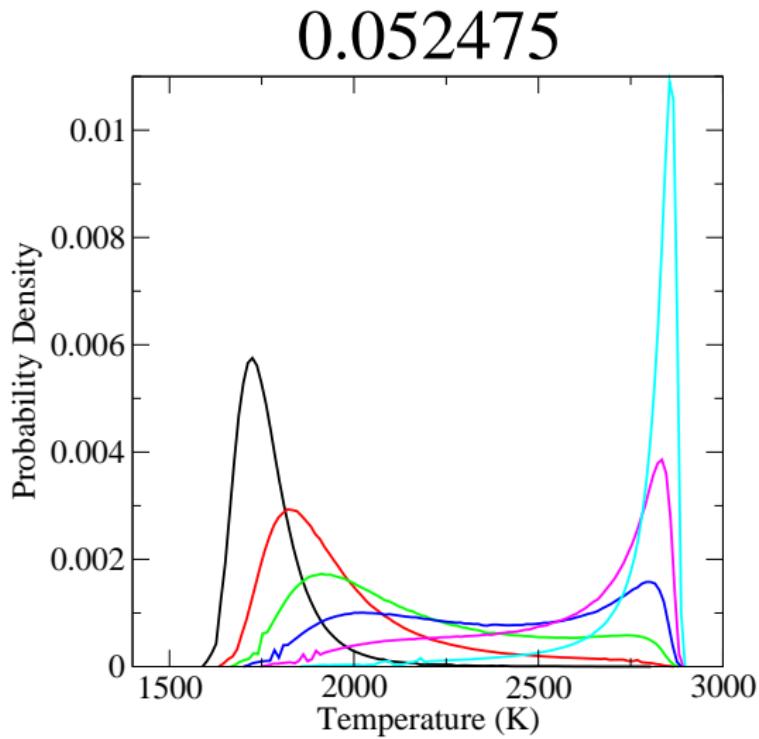
Time evolution of Temperature PDFs  $f(\text{slope})$ 

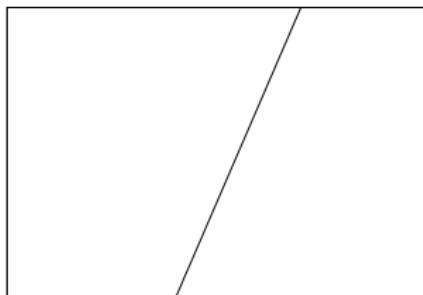
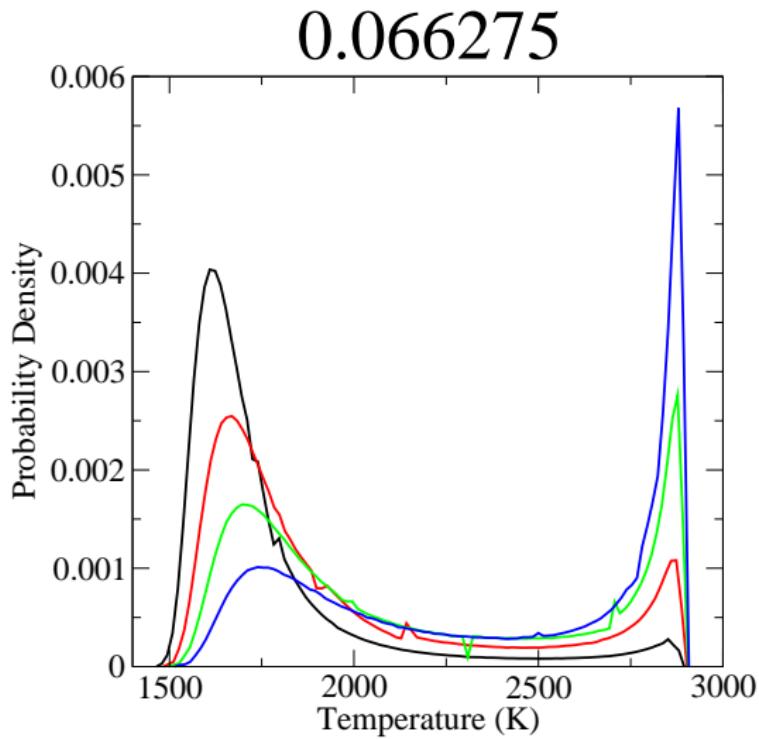
Time evolution of Temperature PDFs  $f(\text{slope})$ 

0.04395



Time evolution of Temperature PDFs  $f(\text{slope})$ 

Time evolution of Temperature PDFs  $f(\text{slope})$ 

Time evolution of Temperature PDFs  $f(\text{slope})$ 

# Central Challenge for UQ in Chemical Kinetic Models

- Need joint PDF on model parameters for forward UQ
- Joint PDF structure is crucial
- Joint PDF not available for chemical kinetic parameters
- At best, have
  - Nominal parameter values
  - Bounds, e.g. marginal 5%, 95% quantiles
- PDF **can** be constructed by repeating experiments or access to original raw data
  - Neither is feasible
- Is there a way to construct an approximate PDF **without** access to raw data?
  - Yes!

# Data Free Inference (DFI)

(Berry *et al.*, JCP, in review)

- Intuition: In the absence of data, the structure of the fit model, combined with the nominals and bounds, implicitly inform the correlation between the parameters
- Goal: Make this information *explicit* in the joint PDF
- DFI: discover a consensus joint PDF on the parameters consistent with given information:
  - Nominal parameter values
  - Bounds
  - The fit model
  - The data range
  - ... potentially other/different constraints

# Data Free Inference Challenge

Discarding initial data, reconstruct marginal ( $\ln A$ ,  $\ln E$ ) posterior using the following information

- Form of fit model
- Range of initial temperature
- Nominal fit parameter values of  $\ln A$  and  $\ln E$
- Marginal 5% and 95% quantiles on  $\ln A$  and  $\ln E$

Further, for now, presume

- Multiplicative Gaussian errors
- $N = 8$  data points

# DFI Algorithm Structure

Basic idea:

- Explore the space of hypothetical data sets
  - MCMC chain on the data
  - Each state defines a data set
- For each data set:
  - MCMC chain on the parameters
  - Evaluate statistics on resulting posterior
  - Accept data set if posterior is consistent with given information
- Evaluate pooled posterior from all acceptable posteriors

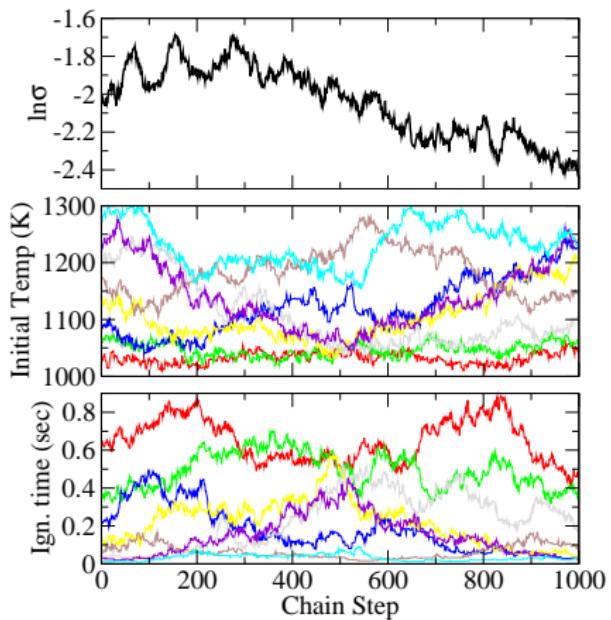
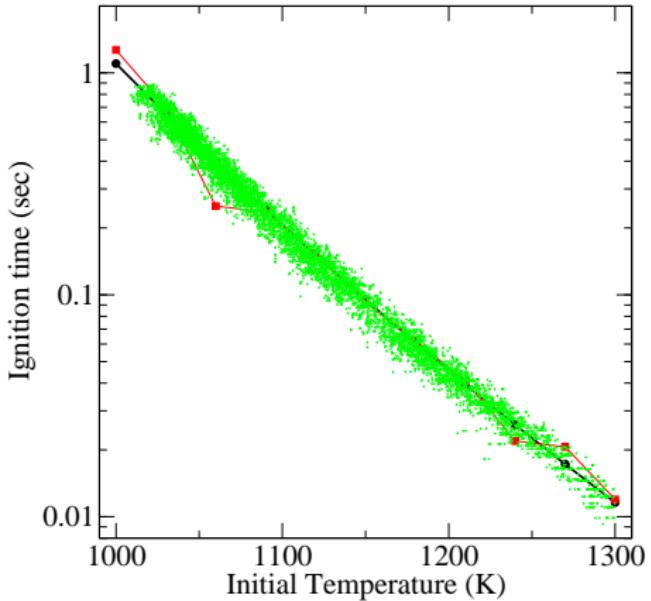
Logarithmic pooling:

$$p(\lambda|y) = \left[ \prod_{i=1}^K p(\lambda|y_i) \right]^{1/K}$$

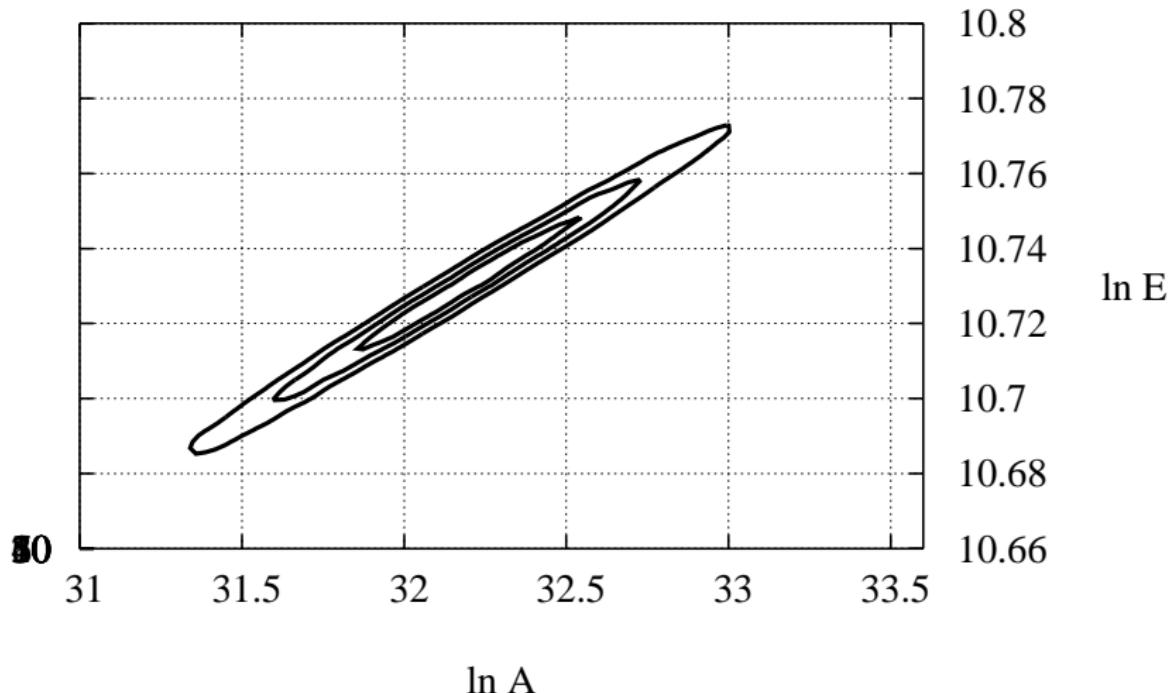
# DFI Uses two nested MCMC chains

- An outer chain on the data,  $(2N + 1)$ -dimensional
  - Generally high-dimensional
  - $N$  data points  $(x_i, y_i) + \sigma$
  - Likelihood function captures constraints on parameter nominals+bounds
- An inner chain on the model parameters
  - Conventional MCMC for parameter estimation
  - Likelihood based on fit-model
  - parameter vector  $(\ln A, \ln E, \ln \sigma)$
- Computationally challenging
  - Single-site update on outer chain
  - Adaptive MCMC on inner chain
  - Run multiple outer chains in parallel, and aggregate resulting acceptable data sets

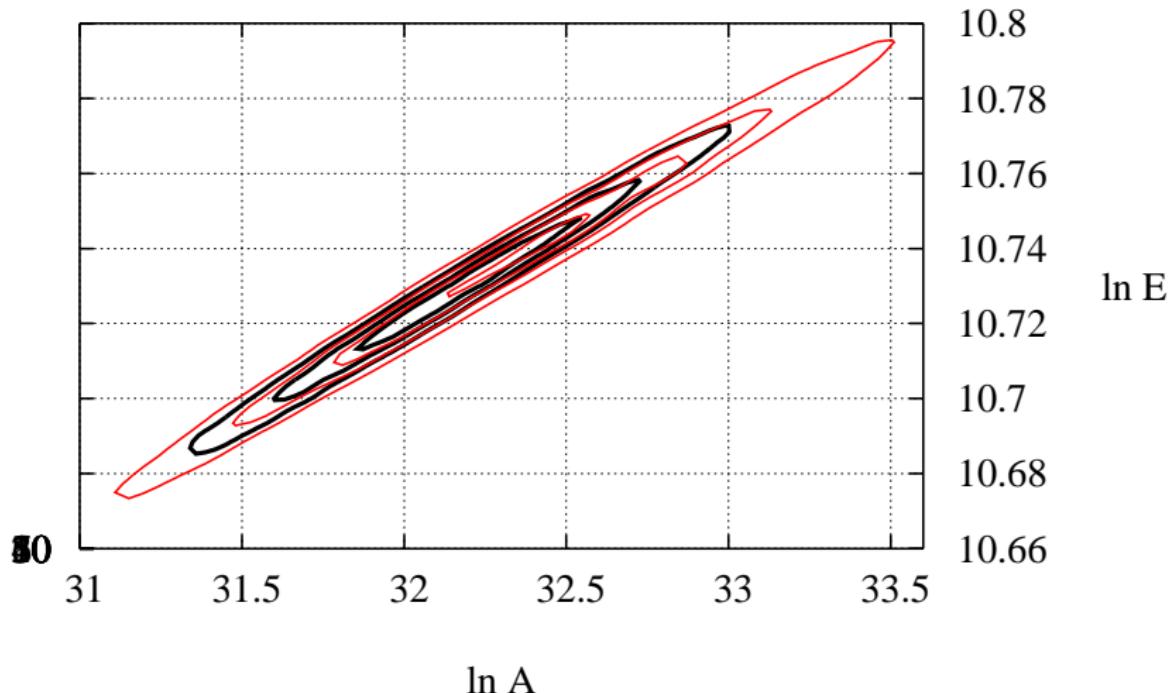
# Short sample from outer/data chain



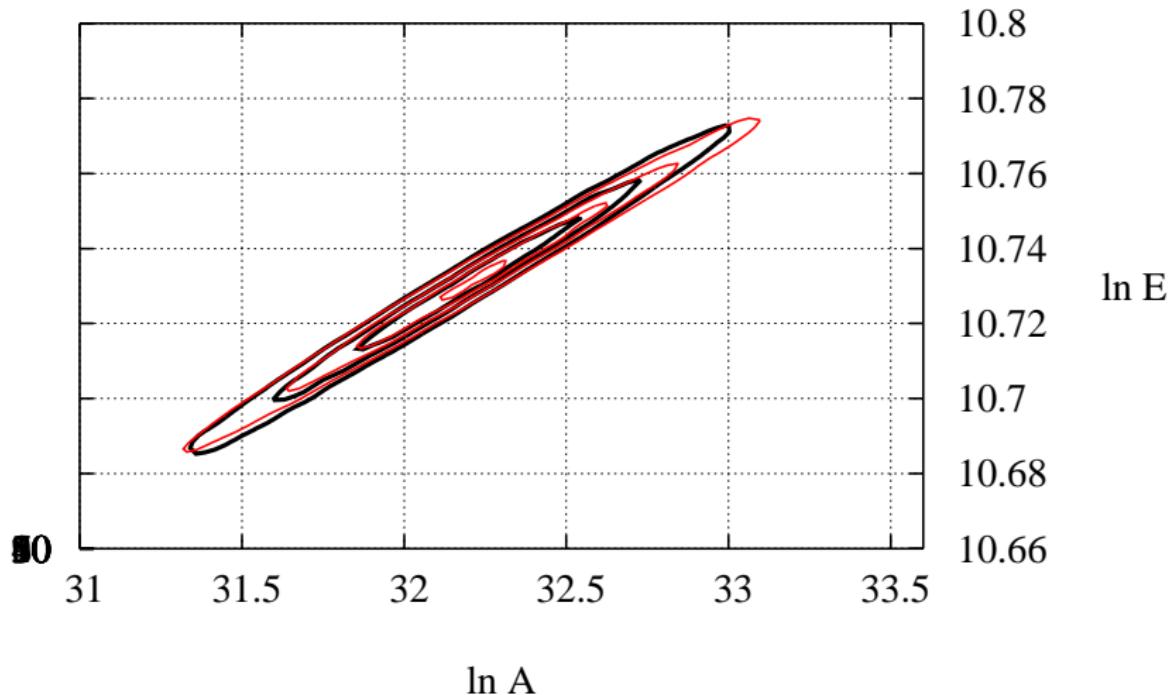
# Reference Posterior – based on actual data

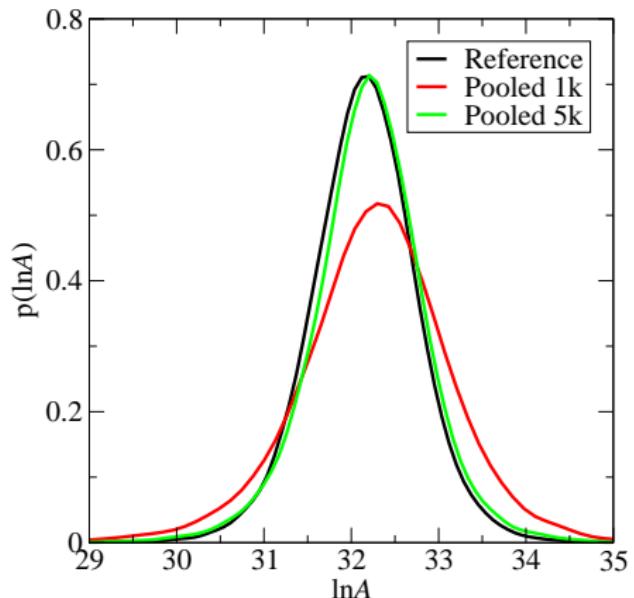
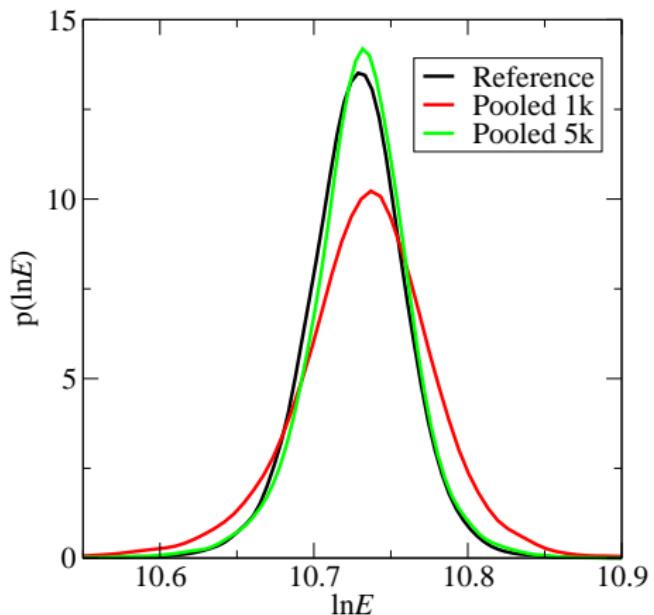


## Ref + DFI posterior based on a 1000-long data chain



## Ref + DFI posterior based on a 5000-long data chain



Marginal Pooled DFI Posteriors on  $\ln A$  and  $\ln E$ 

# Closure

- UQ is increasingly important in computational modeling
- Probabilistic UQ framework
  - PC representation of random variables
  - Utility in forward UQ
    - Intrusive PC methods
    - Non-intrusive methods
  - Utility in inverse problems – surrogates
    - Bayesian inference
    - Model validation
- Need for probabilistic characterization of uncertain inputs
  - Correlations important for uncertainty in predictions
  - DFI  $\Rightarrow$  joint PDF consistent with available information

# Outlook

Ongoing research on various fronts

- Dimensionality reduction
  - Sensitivity, PCA, ANOVA/HDMR, low-D manifolds, ...
- Discontinuities in high-D spaces
  - Efficient tiling of high-D spaces
- Adaptive anisotropic sparse quadrature
- Adaptive sparse tensor representations
- Long-time oscillatory dynamics in field variables
- Intrusive solvers ... stability, convergence, preconditioning
- Methods for characterization of uncertain inputs
  - Absence of data, dependencies among observations
- Model comparison, selection, validation