
Sierra Structural Dynamics 
Multi-threaded evaluations

The SierraSD application is a large FE element application 
running on an MPI communications layer. Domain 
decomposition solvers and matrix assembly form the primary 
computational kernels. We evaluate means of incorporating 
threads into the algorithms both for matrix assembly and for 
linear solver performance.

SAND2011-6826C



Strategies:

Expectations

 Future platforms will have more cores available.

 The memory per core will shrink, but memory per node will 
likely not change much.

Strategy

 Constraints on solvers and memory will dictate the number of 
subdomains. We continue to tie a subdomain to an MPI 
process.

 Additional cores are available “for free”. These cores may be 
used in threaded applications. We examine

1. Threaded assembly of element matrices to subdomain matrices.

2. Threaded direct solvers (used in the domain decomposition 
linear solvers).



Initial Characterization of Application



SierraSD threading project: 
parallelize stiffness matrix assembly

0

4

21

3

6 8

5

7

E1

E3 E4

E2

E1

E2

E3

E4

0
1
4
3

0
1
2
3
4
5
6
7
8

1
2
5
4

3
4
7
6

4
5
8
7

Sparse Matrix

FE Mesh

Element-operator computation
is perfectly parallel.

(Elements are independent.)
Assembly into the sparse matrix has

potential race conditions. (Contributions
from multiple elements to the same row.)

Problem: Compute dense element-stiffness operator for each element,
assemble into sparse matrix.



SierraSD threading project: stiffness matrix assembly

Model: ‘perf_layered_frusta’
6 element-blocks: 20,160 elems

Approach:
1. Make SierraSD’s element-loop thread-parallel

using Intel Thread Building Blocks (TBB)
tbb::parallel_for mechanism

2. Add locking mechanism for sparse matrix rows
(using tbb::atomic mechanism) to protect
against race conditions in assembly.

0
10
20
30
40
50
60
70
80

1 2 4 8

Time
(sec)

Threads

Performance of stiffness computation/assembly



SierraSD threading project: direct solvers

Background:

1. Direct solvers are at the heart of domain decomposition 
solvers such as FETI-DP and GDSW (both local and 
global systems of linear equations need to be solved)

2. Threading of the direct solvers has the potential to 
significantly reduce analysis times

3. For most SierraSD applications, effective threading of the 
forward/backward solution phase is more important than 
the factorization phase

• Transient analysis (one solve for each time step)

• Modal analysis (multiple solves for each eigenmode)



SierraSD threading project: direct solvers

32x32x32 HEX8 cube model: illustration of basic problem



SierraSD threading project: direct solvers

Approach:

1. Develop thread-parallel version of existing SierraSD 
direct solver using Intel Threading Building Blocks (TBB) 
tbb::parallel_for functionality (not part of original plan)

2. Recursively partition problem into smaller parts using 
Nested Dissection ordering and apply thread to each part

thread 1 thread 2

thread 1

thread 2

thread 3

thread 4



SierraSD threading project: direct solvers

Ship model (2x), 1281 solves (400 modes), 21753 elements



SierraSD threading project: direct solvers

Tire model, 301 solves (100 modes), 23940 elements



SierraSD threading project: direct solvers

16x16x128 HEX8 beam model, 100 solves, 32768 elements



Summary

 Element assembly routines can be successfully threaded over 
the elements. We may need to rework subdomain matrices.

 Commercial multithreaded solvers, such as Pardiso/intel, may 
offer some benefit, but may not address our most important 
issues. For example, factor is improved but solve is not.

 Commercial BLAS routines multithreading may conflict with in 
house threaded applications.

 The effectiveness of threaded BLAS routines may vary 
significantly from routine to routine.

 Threaded parallel sparse direct solvers can show improvement 
in both factor and solve phase. Such threaded solvers could 
show significant impact across a broad range of applications.

 Evaluations were with Intel compilers, libraries and packages.

 Most success in using the TBB for threads.


