SAND2011-6826C

Sierra Structural Dynamics
Multi-threaded evaluations

The SierraSD application is a large FE element application
running on an MPl communications layer. Domain
decomposition solvers and matrix assembly form the primary
computational kernels. We evaluate means of incorporating
threads into the algorithms both for matrix assembly and for
linear solver performance.

Sandia National Laboratorias

Strategies:

Expectations
= Future platforms will have more cores available.

= The memory per core will shrink, but memory per node will
likely not change much.

Strategy

m Constraints on solvers and memory will dictate the number of
subdomains. We continue to tie a subdomain to an MPI
process.

= Additional cores are available “for free”. These cores may be
used in threaded applications. We examine

1. Threaded assembly of element matrices to subdomain matrices.

2. Threaded direct solvers (used in the domain decomposition
linear solvers).

Sandia National Laboratorias

Elapsed Time (scoends!)

porf_largeny. odsyw. muzia. fixed 16 nodes. procs’ mode varod

Initial Characterization of Application

100
.

T

10

MPI-onky NONUMA ——
Forfoes) ---=--

4 g 19
Ml Processes PFor Mode

SENDER

COhiDVCD

TOTAL VOLUME BYTES

All Paths
RECEIVER

255

7.45E6

Sandia National Laboratorias

- & ~ SierraSD threading project:
e Wl | parallelize stiffness matrix assembly

Problem: Compute dense element-stiffness operator for each element,
assemble into sparse matrix.

FE Mesh 0
D O 0] 1 0
6f 7 8 / g 4 1

3
E3 | E4 1 §

D O O

3] 4 S TT—— 2 4
E1 | E2 - / 5
O O O 6
0 1 2 7
8

ONRA_W

Element-operator computation
is perfectly parallel.

(Elements are independent.) Assembly into the sparse matrix has

potential race conditions. (Contributions
from multiple elements to the same row.)

" Sandia National aoratories

SierraSD threading project: stiffness matrix assembly

Approach:

1. Make SierraSD’s element-loop thread-parallel
using Intel Thread Building Blocks (TBB)
tbh::parallel_for mechanism

2. Add locking mechanism for sparse matrix rows
(using tbb::atomic mechanism) to protect
against race conditions in assembly.

Performance of stiffness computation/assembly
80
70
_ 60
Time 50
(sec) 40
30

1 2 4 8
Threads

Model: ‘perf_layered_frusta’
6 element-blocks: 20,160 elems

Sandia National Laboratorias

SierraSD threading project: direct solvers

Background:

1. Direct solvers are at the heart of domain decomposition
solvers such as FETI-DP and GDSW (both local and
global systems of linear equations need to be solved)

2. Threading of the direct solvers has the potential to
significantly reduce analysis times

3. For most SierraSD applications, effective threading of the
forward/backward solution phase is more important than
the factorization phase

« Transient analysis (one solve for each time step)
* Modal analysis (multiple solves for each eigenmode)

Sandia National Laboratorias

SierraSD threading project: direct solvers

32x32x32 HEX8 cube model: illustration of basic problem

Intel Pardiso Results {100 solves)
35 T T T T

ok /1
[/D

25 T

—<—factorization
201 — 5 forward/backward solves -

10

number of threads

Sandia National Laboratorias

SierraSD threading project: direct solvers

Approach:

1. Develop thread-parallel version of existing SierraSD
direct solver using Intel Threading Building Blocks (TBB)
tbb::parallel_for functionality (not part of original plan)

2. Recursively partition problem into smaller parts using
Nested Dissection ordering and apply thread to each part

thread 1 thread 3

thread 1 thread 2

thread 2 thread 4

Sandia National Laboratorias

SierraSD threading project: direct solvers

Ship model (2x), 1281 solves (400 modes), 21753 elements

120

i

100

" —5—NDSolve (solve)

g‘ -—<--NDSolve (factor)
L b —=— |ntel Pardiso (solve) _
Q
£ ~ % Intel Pardiso (factor)
40 -
1
20 - n
Oiiii:::: :::::::::‘:::::::::@:::::::::i:::::::::I::::::::::I::::::::j
1 2 3 4 5 6 7 8

number of threads

Sandia National Laboratorias

SierraSD threading project: direct solvers

Tire model, 301 solves (100 modes), 23940 elements

time (sec)

30

25

20

15~

10

—=—NDSolve (solve)
-=-—-NDSolve (factor)
—=— Intel Pardiso (solve)

~“Intel Pardiso (factor)
B-—
L B e -
-
i = S S
B R 7[]
| | | | |
2 4 5 6 7 8

number of threads

Sandia National Laboratorias

SierraSD threading project: direct solvers

16x16x128 HEX8 beam model, 100 solves, 32768 elements

22

20

18

n
16

time (sec)

10

//€

——NDSolve (solve)
-—=--NDSolve (factor)
—=— Intel Pardiso (solve)
-=~|ntel Pardiso (factor)

number of threads

Sandia National Laboratorias

Summary

Element assembly routines can be successfully threaded over
the elements. We may need to rework subdomain matrices.

Commercial multithreaded solvers, such as Pardisol/intel, may
offer some benefit, but may not address our most important
issues. For example, factor is improved but solve is not.

Commercial BLAS routines multithreading may conflict with in
house threaded applications.

The effectiveness of threaded BLAS routines may vary
significantly from routine to routine.

Threaded parallel sparse direct solvers can show improvement
in both factor and solve phase. Such threaded solvers could
show significant impact across a broad range of applications.

Evaluations were with Intel compilers, libraries and packages.
Most success in using the TBB for threads.

Sandia National Laboratorias

