
POSTER: Making the Case for Intrinsic Personal Physical
Unclonable Functions (IP-PUFs)

[Extended Abstract]

Rishab Nithyanand
Stony Brook University
Stony Brook, NY, USA

rnithyanand@cs.stonybrook.edu

Radu Sion
Stony Brook University
Stony Brook, NY, USA

sion@cs.stonybrook.edu

John Solis
Sandia National Laboratories

Livermore, CA, USA
jhsolis@sandia.gov

ABSTRACT

Physical Unclonable Functions (PUFs) are physical systems whose

responses to input stimuli (i.e., challenges) are easy to measure but

difficult to clone. The unclonability property is due to the accepted

hardness of replicating the multitude of uncontrollable manufac-

turing characteristics and makes PUFs useful in solving problems

such as authentication, software protection/licensing, and certified

execution.

In this abstract, we claim that any multi-core computer is usable

as a timing-PUF and can be measured via simple benchmarking

tools (i.e., no specialized hardware required). We investigate sev-

eral characterstics of standard off-the-shelf computers and present

initial experimental results justifying our claim. Additionally, we

argue that PUFs which are intrinsically involved in computations

over sensitive data are preferable to peripheral device PUFs – es-

pecially for intellectual property protection and continuous device

authentication.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:

Security and Protection—Authentication; K.5.1 [Legal Aspects of

Computing]: Hardware and Software Protection—Licensing

General Terms

Experimentation, Security

Keywords

Physical Unclonable Functions, Authentication, Software Protec-

tion, Hardware

1. INTRODUCTION
Physical Unclonable Functions rely on hiding secrets in circuit

characteristics rather than in digitized form. On different input

stimuli (i.e., challenges) a PUF circuit exposes certain measurable

and unpredictable (yet persistent) characteristics (i.e., responses).

One common and central purpose of current PUF technologies is

to enable hardware identification via circuit measurements. Several

Copyright is held by the author/owner(s).
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
ACM 978-1-4503-0948-6/11/10.

varieties of PUFs have been proposed since being introduced by

Pappu in [1] and range from optical PUFs that analyze the speckle

pattern resulting from shining a laser beam on a transparent PUF to

silicon timing PUFs.

Silicon timing PUFS, as the name suggests, analyze timing be-

haviors of a circuit to determine an appropriate response to a given

input. However, the very existence of this class of PUFs raises

many interesting questions: Can a personal computer (which is it-

self a large silicon/crystal circuit) be used as an intrinsic PUF de-

vice? If so, which system characteristics are most promising as

PUF characteristics? And perhaps most importantly: can a per-

sonal computer be used to build truly secure PUF based protocols?

In the real world, the main security issue with using PUFs for

off-line hardware identification and authentication is an attackers

ability to simply virtualize the useful part of the PUF (i.e., a sim-

ple replay attack after observing one successful authentication of

the legitimate PUF). In offline systems where PUFs are treated as

black-box functions, preventing such replay attacks is a non-issue,

since it is essentially impossible. Whereas, in the context of PUFs

that are intrinsically involved in computation, preventing these re-

play attacks is both imperative and possible, as we show (with off-

the-shelf hardware) later in this paper. It is imperative because not

doing so potentially prompts some serious threats.

Contributions: Our main contribution is a preliminary investi-

gation into the questions posed above. We answer the first question

in the affirmative by claiming that it is possible (within reasonable

error bounds) to use regular computers as intrinsic (i.e., non-black-

box) crystal/silicon based timing PUFs (where the challenge is an

instruction, and execution time is the response). We argue that this

behavior is sufficient for preventing the replay / virtualization at-

tack described above and enables implict hardware identification

without requiring peripheral PUF devices.

Furthermore, we investigate several system characteristics and

present initial experimental results answering the following ques-

tions: (1) Intra-Architecture Variations: Are there measurable tim-

ing differences across systems with identical architectures and spec-

ifications and with all components belonging to the same family?

(2) Challenge-Response Variation: Are there measurable timing

differences for different challenges (i.e., instructions) with different

inputs on the same machine? (3) Inter-Architecture Variations: Are

there measurable timing differences across systems with different

architectures and similar specifications, with parts not belonging to

SAND2011-5869C



the same family, etc.?. Finally, we briefly explain how these can

provide better software protection and continuous authentication.

1.1 Related Work
Gassend, et al. [3] were the first to propose the use of silicon

technology as PUFs citing the varying timing behavior of chips.

The concept of using intrinsic PUFs for software protection on

embedded systems was proposed by Guajardo, et al. [4] and by

Simpson et al. [5]. However, these proposals depend on SRAM

PUFs [6], making them vulnerable to read-out and replay attacks.

Atallah, et al. [7] proposed using PUFs for software protection by

intertwining PUF responses with software functionality. However,

this work depends on trusted hardware (for initialization) and is not

extendible to software that does not have non-algebraic functional-

ity.

2. IP-PUFS: SOURCESOFUNPREDICTABIL-

ITY AND UNCLONABILITY
Given a stable environment and operating conditions (i.e., con-

trollable and static temperature, pressure, voltage supply, etc.), the

following are the most interesting and common sources of unpre-

dictability and unclonability in personal computers suitable for use

as timing PUFs:

CPU Crystal Oscillator (CPU Clock): The two most interest-

ing clocks for our purposes are the CPU clock and the timer inter-

rupt clock. Given two crystals labeled with identical frequencies,

it is unlikely that both oscillate at identical rates. This is due to

several factors, such as crystal cut, impurities, and age. When this

occurs with the CPU clock it has several effects – the actual time (in

picoseconds) for the same instruction to be executed on two iden-

tical (in specification) CPUs is likely to be different – even though

the instructions require the same number of clock cycles. This is

confirmed by observing the sometimes varying bogomips values for

processors from the same batch and family.

Timer Interrupt Clock: Differences in the oscillating frequency

of the timer interrupt clock cause different definitions of a time

quantum (i.e., for process schedulers performing round-robin schedul-

ing) across multiple identical systems. A different number of clock

cycles allocated to one time quantum results in a different number

of scheduled instructions per quantum.

Memory: Assuming that our challenges are loaded in the pro-

cessor cache (this is reasonable since the cache can always be flushed

and filled as required), the time taken to load an instruction or data

from the processor cache to register and vice-versa vary in the order

of picoseconds from one system to another (even within the same

family and architecture). This results in different latencies for load

and store instructions across identical hardware.

3. EXPERIMENTS
In order to assess the practicality of our approach in the context

of off-the-shelf computer systems, and also to understand the de-

gree of unpredictability of time taken to execute the same set of

instructions on a set of identical computers in controlled operating

environments, we conducted a series of experiments on five iden-

tical machines with components (processors, PSU’s, and RAM)

that were from the same batch and family. The specifications of

all the systems were: 2.80 GHz Quad-core Intel Core i7 930 pro-

cessors (Bloomfield architecture), 2MB L3 cache/core, 256KB L2

1Bogomips is an inaccurate and low-precision measure of CPU
speed. It is measured using a busy loop while booting and is ac-
cessible from /proc/cpuinfo on Linux systems.

cache/core, and 12GB DDR3 RAM, completely diskless. We now

describe our experimental setup and present our initial findings.

3.1 Experimental Setup
Certain precautions were taken to ensure valid and consistent re-

sults: First, several BIOS/Kernel changes were made to disable dy-

namic voltage and CPU frequency stepping. Next, we had to ensure

that our benchmarking application was free from interrupts and not

dependent on the vagaries of the scheduler. To this end, all process

signals and interrupts were blocked. Our application was swapped

out every 10 ms – as measured by the PIT (Programmable Interval

Timer) and the number of instruction cycles completed in this time

were obtained by reading the TSC (Time Stamp Counter).

Our program performed 10 million simple mathematical opera-

tions using the same inputs and was only allowed to execute on one

core for each experiment – i.e., hard affinity to a specific CPU was

set. We argue that the timing inaccuracies of the TSC register are

not harmful to our measurements since we only use these values

to classify identical systems, and not actually harness these values

for computation. However, we believe, a more accurate measure

of time will be required to build applications that attempt to bind

themselves to the PUFs as described in section 4.

Experiments were repeated 1000 times over multiple sessions

to gather training data. Finally, a test sample was collected and

a classifier (based on information gathered from the training data)

was used to identify systems from the test data.

3.2 Results
Recall that we aimed to answer the following questions: (1)

Intra-Architecture Variations: Are there measurable timing differ-

ences across systems with identical architectures and specifications

and with all components belonging to the same family? (2) Challenge-

Response Variation: Are there measurable timing differences for

different challenges (i.e., instructions) with different inputs on the

same machine? (3) Inter-Architecture Variations: Are there mea-

surable timing differences across systems with different architec-

tures and similar specifications, with parts not belonging to the

same family?

Figure 1: Intra Architecture Classifier Results. True Positives vs.

False Positives (Training, Validation, Test, and Combined Results).

Intra-Architecture Variation: Part of our results are illustrated

in Fig. 1. Due to space restrictions, we present only a very brief



analysis of our results. After training, our classifier had a 100%

true positive rate with a 62% false positive rate.

Challenge-Response Variation: Certain instructions require

more clock cycles or computations from different components of

the computing device (e.g., any floating point operation inherits the

timing characteristics and delays of the floating point unit). We

were able to confirm through our experiments that even the same

arithmetic operations, when using varying inputs, had slightly dif-

ferent execution times on the same system. This allows us to use

any available mathematical or logical operation as a challenge to

the computing device.

Inter-Architecture Variation: As part of a preliminary study,

we experimented with various machines having different architec-

tures (i.e., Bloomfield vs. Westmere) and slightly different speci-

fications. We were able to successfully perform classification with

100% accuracy (i.e., with no false positives or false negatives).

4. APPLICATIONS
PUFs have been envisioned as applicable to many practical prob-

lems such as hardware authentication, certified execution, and most

notably software protection. However, every current approach that

attempts to use PUFs for offline hardware authentication and soft-

ware protection is vulnerable to virtualization attacks. In this sec-

tion, we highlight the reasons and approaches through which the

use of IP-PUFs are more likely to lead us to a more convincing

solution.

Continuous Device Authentication and Software Protection:

Current offline device authentication and software protection schemes

rely on discrete (i.e., static) authentication schemes. These pro-

vide no differentiation between an authentic device and a virtual

device that replicates the useful part of the device (i.e., the part of

the device that is actually challenged). Using IP-PUFs as described

above, however, can reduce such attacks significantly by continu-

ously authenticating the device implicitly and transparently. Fur-

ther, this method of authentication is useful for software protection

by intertwining software and a computing device (e.g., by inserting

race conditions that resolve correctly only on the correct device).

This approach makes it increasingly difficult for an adversary to

pirate software by unhooking its functionality from the PUF – pri-

marily due to the fact that debugging tools do not help the adversary

(owing to the fact that they change the timing characteristics of the

program being analyzed).

5. FUTUREWORK AND CONCLUSIONS
As part of our future work, we plan to conduct further experi-

ments on additional computers (up to 10-20 nodes) with identical

components to test the validity of our hypothesis that off-the-shelf

computing devices can be successfully identified and authenticated

using their timing characteristics.

We presented the preliminary results of our attempt to use of-the-

shelf computers as PUFs. Based on timing characteristics alone, we

achieved a 60% success rate in identifying computers with exactly

identical hardware (from the same families) and architectures. IP-

PUFs are already widespread, easily available, and easy to measure

(via benchmarking suites) without the need for additional hard-

ware. We also make the case that IP-PUFs are more useful for of-

fline continuous device authentication and software protection ow-

ing to their ability to intertwine their behavior with software func-

tionality. Further, IP-PUFs raise the bar for an attacker by negating

the usefulness of virtual machines and debugging tools.

6. ACKNOWLEDGEMENTS
We would like to thank John Floren, Ron Minnich, and Don

Rudish of Sandia National Laboratories for providing us with the

identical hardware used to conduct the preliminary tests and exper-

iments.

Part of this work was funded by the Laboratory Directed Re-

search and Development (LDRD) program at Sandia National Lab-

oratories. Sandia National Laboratories is a multiprogram labora-

tory operated by Sandia Corporation, a wholly owned subsidiary of

Lockheed Martin Corporation, for the United States Department of

Energy’s National Nuclear Security Administration under contract

DE-AC04-94AL85000.

7. REFERENCES
[1] R.S. Pappu, “Physical One Way Functions", Ph.D Thesis,

Massachusetts Institute of Technology, 2001.

[2] P. Tuyls and B. Skoric, “Strong Authentication with Physical

Unclonable Functions", Security, Privacy, and Trust in

Modern Data Management, Vienna, Austria, 2007.

[3] B. Gassend, “Physical Random Functions", M.Sc Thesis,

Massachusetts Institute of Technology, 2003.

[4] J. Guajardo, S.S. Kumar, G.J. Schrijen, and P. Tuyls, “FPGA

Intrinsic PUFs and Their Use for IP Protection", Workshop

on Cryptographic Hardware and Embedded Systems

(CHES), Vienna, Austria, 2007.

[5] E. Simpson and P. Schaumont, “Offline HW/SW

Authentication for Reconfigurable Platforms", Workshop on

Cryptographic Hardware and Embedded Systems (CHES),

Yokohama, Japan, 2006.

[6] C. Bohm and M. Hofer, “Using SRAMs as Physical

Unclonable Functions", Austrochip - Workshop on

Microelectronics, Vienna, Austria, 2009.

[7] M. Atallah, E. Bryant, J.T. Korb, and J.R. Rice, “Binding

Software to a Specific Native Hardware in a VM

Environment: The PUF Challenge", ACM Workshop on

Virtual Machine Security (VMSec), Alexandria, USA, 2008.


