SAND2011- 5869C

POSTER: Making the Case for Intrinsic Personal Physical
Unclonable Functions (IP-PUFs)

[Extended Abstract]

Rishab Nithyanand

Stony Brook University

Stony Brook, NY, USA
rnithyanand@cs.stonybrook.edu

Radu Sion
Stony Brook University
Stony Brook, NY, USA
sion@cs.stonybrook.edu

John Solis
Sandia National Laboratories
_ Livermore, CA, USA
jhsolis@sandia.gov

ABSTRACT

Physical Unclonable Functions (PUFs) are physical systems whose
responses to input stimuli (i.e., challenges) are easy to measure but
difficult to clone. The unclonability property is due to the accepted
hardness of replicating the multitude of uncontrollable manufac-
turing characteristics and makes PUFs useful in solving problems
such as authentication, software protection/licensing, and certified
execution.

In this abstract, we claim that any multi-core computer is usable
as a timing-PUF and can be measured via simple benchmarking
tools (i.e., no specialized hardware required). We investigate sev-
eral characterstics of standard off-the-shelf computers and present
initial experimental results justifying our claim. Additionally, we
argue that PUFs which are intrinsically involved in computations
over sensitive data are preferable to peripheral device PUFs — es-
pecially for intellectual property protection and continuous device
authentication.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:
Security and Protection—Authentication; K.5.1 [Legal Aspects of
Computing]: Hardware and Software Protection—Licensing

General Terms

Experimentation, Security

Keywords

Physical Unclonable Functions, Authentication, Software Protec-
tion, Hardware

1. INTRODUCTION

Physical Unclonable Functions rely on hiding secrets in circuit
characteristics rather than in digitized form. On different input
stimuli (i.e., challenges) a PUF circuit exposes certain measurable
and unpredictable (yet persistent) characteristics (i.e., responses).
One common and central purpose of current PUF technologies is
to enable hardware identification via circuit measurements. Several

Copyright is held by the author/owner(s).
CCS’11, October 17-21, 2011, Chicago, Illinois, USA.
ACM 978-1-4503-0948-6/11/10.

varieties of PUFs have been proposed since being introduced by
Pappu in [1] and range from optical PUFs that analyze the speckle
pattern resulting from shining a laser beam on a transparent PUF to
silicon timing PUFs.

Silicon timing PUFS, as the name suggests, analyze timing be-
haviors of a circuit to determine an appropriate response to a given
input. However, the very existence of this class of PUFs raises
many interesting questions: Can a personal computer (which is it-
self a large silicon/crystal circuit) be used as an intrinsic PUF de-
vice? If so, which system characteristics are most promising as
PUF characteristics? And perhaps most importantly: can a per-
sonal computer be used to build truly secure PUF based protocols?

In the real world, the main security issue with using PUFs for
off-line hardware identification and authentication is an attackers
ability to simply virtualize the useful part of the PUF (i.e., a sim-
ple replay attack after observing one successful authentication of
the legitimate PUF). In offline systems where PUFs are treated as
black-box functions, preventing such replay attacks is a non-issue,
since it is essentially impossible. Whereas, in the context of PUFs
that are intrinsically involved in computation, preventing these re-
play attacks is both imperative and possible, as we show (with off-
the-shelf hardware) later in this paper. It is imperative because not
doing so potentially prompts some serious threats.

Contributions: Our main contribution is a preliminary investi-
gation into the questions posed above. We answer the first question
in the affirmative by claiming that it is possible (within reasonable
error bounds) to use regular computers as intrinsic (i.e., non-black-
box) crystal/silicon based timing PUF's (where the challenge is an
instruction, and execution time is the response). We argue that this
behavior is sufficient for preventing the replay / virtualization at-
tack described above and enables implict hardware identification
without requiring peripheral PUF devices.

Furthermore, we investigate several system characteristics and
present initial experimental results answering the following ques-
tions: (1) Intra-Architecture Variations: Are there measurable tim-
ing differences across systems with identical architectures and spec-
ifications and with all components belonging to the same family?
(2) Challenge-Response Variation: Are there measurable timing
differences for different challenges (i.e., instructions) with different
inputs on the same machine? (3) Inter-Architecture Variations: Are
there measurable timing differences across systems with different
architectures and similar specifications, with parts not belonging to



the same family, etc.?. Finally, we briefly explain how these can
provide better software protection and continuous authentication.

1.1 Related Work

Gassend, et al. [3] were the first to propose the use of silicon
technology as PUFs citing the varying timing behavior of chips.
The concept of using intrinsic PUFs for software protection on
embedded systems was proposed by Guajardo, et al. [4] and by
Simpson et al. [5]. However, these proposals depend on SRAM
PUFs [6], making them vulnerable to read-out and replay attacks.
Atallah, et al. [7] proposed using PUFs for software protection by
intertwining PUF responses with software functionality. However,
this work depends on trusted hardware (for initialization) and is not
extendible to software that does not have non-algebraic functional-

ity.

2. TP-PUFS: SOURCES OF UNPREDICTABIL-

ITY AND UNCLONABILITY

Given a stable environment and operating conditions (i.e., con-
trollable and static temperature, pressure, voltage supply, etc.), the
following are the most interesting and common sources of unpre-
dictability and unclonability in personal computers suitable for use
as timing PUFs:

CPU Crystal Oscillator (CPU Clock): The two most interest-
ing clocks for our purposes are the CPU clock and the timer inter-
rupt clock. Given two crystals labeled with identical frequencies,
it is unlikely that both oscillate at identical rates. This is due to
several factors, such as crystal cut, impurities, and age. When this
occurs with the CPU clock it has several effects — the actual time (in
picoseconds) for the same instruction to be executed on two iden-
tical (in specification) CPUs is likely to be different — even though
the instructions require the same number of clock cycles. This is
confirmed by observing the sometimes varying bogomips values for
processors from the same batch and family.

Timer Interrupt Clock: Differences in the oscillating frequency
of the timer interrupt clock cause different definitions of a time

quantum (i.e., for process schedulers performing round-robin schedul-

ing) across multiple identical systems. A different number of clock
cycles allocated to one time quantum results in a different number
of scheduled instructions per quantum.

Memory: Assuming that our challenges are loaded in the pro-
cessor cache (this is reasonable since the cache can always be flushed
and filled as required), the time taken to load an instruction or data
from the processor cache to register and vice-versa vary in the order
of picoseconds from one system to another (even within the same
family and architecture). This results in different latencies for load
and store instructions across identical hardware.

3. EXPERIMENTS

In order to assess the practicality of our approach in the context
of off-the-shelf computer systems, and also to understand the de-
gree of unpredictability of time taken to execute the same set of
instructions on a set of identical computers in controlled operating
environments, we conducted a series of experiments on five iden-
tical machines with components (processors, PSU’s, and RAM)
that were from the same batch and family. The specifications of
all the systems were: 2.80 GHz Quad-core Intel Core i7 930 pro-
cessors (Bloomfield architecture), 2MB L3 cache/core, 256KB 1.2

'Bogomips is an inaccurate and low-precision measure of CPU
speed. It is measured using a busy loop while booting and is ac-
cessible from /proc/cpuinfo on Linux systems.

cache/core, and 12GB DDR3 RAM, completely diskless. We now
describe our experimental setup and present our initial findings.

3.1 Experimental Setup

Certain precautions were taken to ensure valid and consistent re-
sults: First, several BIOS/Kernel changes were made to disable dy-
namic voltage and CPU frequency stepping. Next, we had to ensure
that our benchmarking application was free from interrupts and not
dependent on the vagaries of the scheduler. To this end, all process
signals and interrupts were blocked. Our application was swapped
out every 10 ms — as measured by the PIT (Programmable Interval
Timer) and the number of instruction cycles completed in this time
were obtained by reading the TSC (Time Stamp Counter).

Our program performed 10 million simple mathematical opera-
tions using the same inputs and was only allowed to execute on one
core for each experiment — i.e., hard affinity to a specific CPU was
set. We argue that the timing inaccuracies of the T'SC register are
not harmful to our measurements since we only use these values
to classify identical systems, and not actually harness these values
for computation. However, we believe, a more accurate measure
of time will be required to build applications that attempt to bind
themselves to the PUFs as described in section 4.

Experiments were repeated 1000 times over multiple sessions
to gather training data. Finally, a test sample was collected and
a classifier (based on information gathered from the training data)
was used to identify systems from the test data.

3.2 Results

Recall that we aimed to answer the following questions: (1)
Intra-Architecture Variations: Are there measurable timing differ-
ences across systems with identical architectures and specifications

and with all components belonging to the same family? (2) Challenge-

Response Variation: Are there measurable timing differences for
different challenges (i.e., instructions) with different inputs on the
same machine? (3) Inter-Architecture Variations: Are there mea-
surable timing differences across systems with different architec-
tures and similar specifications, with parts not belonging to the
same family?

Training ROC Validation ROC

True Positive Rate
True Positive Rate

0 02 04 06 08 1 0 02 04 06 08 1
False Positive Rate False Positive Rate

Test ROC AllROC

True Positive Rate
True Positive Rate

0 02 04 06 08 1 0 02 04 06 08 1
False Positive Rate False Positive Rate

Figure 1: Intra Architecture Classifier Results. True Positives vs.
False Positives (Training, Validation, Test, and Combined Results).

Intra-Architecture Variation: Part of our results are illustrated
in Fig. 1. Due to space restrictions, we present only a very brief



analysis of our results. After training, our classifier had a 100%
true positive rate with a 62% false positive rate.

Challenge-Response Variation: Certain instructions require
more clock cycles or computations from different components of
the computing device (e.g., any floating point operation inherits the
timing characteristics and delays of the floating point unit). We
were able to confirm through our experiments that even the same
arithmetic operations, when using varying inputs, had slightly dif-
ferent execution times on the same system. This allows us to use
any available mathematical or logical operation as a challenge to
the computing device.

Inter-Architecture Variation: As part of a preliminary study,
we experimented with various machines having different architec-
tures (i.e., Bloomfield vs. Westmere) and slightly different speci-
fications. We were able to successfully perform classification with
100% accuracy (i.e., with no false positives or false negatives).

4. APPLICATIONS

PUFs have been envisioned as applicable to many practical prob-
lems such as hardware authentication, certified execution, and most
notably software protection. However, every current approach that
attempts to use PUFs for offline hardware authentication and soft-
ware protection is vulnerable to virtualization attacks. In this sec-
tion, we highlight the reasons and approaches through which the
use of IP-PUFs are more likely to lead us to a more convincing
solution.

Continuous Device Authentication and Software Protection:

Current offline device authentication and software protection schemes

rely on discrete (i.e., static) authentication schemes. These pro-
vide no differentiation between an authentic device and a virtual
device that replicates the useful part of the device (i.e., the part of
the device that is actually challenged). Using IP-PUFs as described
above, however, can reduce such attacks significantly by continu-
ously authenticating the device implicitly and transparently. Fur-
ther, this method of authentication is useful for software protection
by intertwining software and a computing device (e.g., by inserting
race conditions that resolve correctly only on the correct device).
This approach makes it increasingly difficult for an adversary to
pirate software by unhooking its functionality from the PUF — pri-
marily due to the fact that debugging tools do not help the adversary
(owing to the fact that they change the timing characteristics of the
program being analyzed).

5. FUTURE WORK AND CONCLUSIONS

As part of our future work, we plan to conduct further experi-
ments on additional computers (up to 10-20 nodes) with identical
components to test the validity of our hypothesis that off-the-shelf
computing devices can be successfully identified and authenticated
using their timing characteristics.

We presented the preliminary results of our attempt to use of-the-
shelf computers as PUFs. Based on timing characteristics alone, we
achieved a 60% success rate in identifying computers with exactly
identical hardware (from the same families) and architectures. IP-
PUFs are already widespread, easily available, and easy to measure
(via benchmarking suites) without the need for additional hard-
ware. We also make the case that IP-PUFs are more useful for of-
fline continuous device authentication and software protection ow-
ing to their ability to intertwine their behavior with software func-
tionality. Further, IP-PUFs raise the bar for an attacker by negating
the usefulness of virtual machines and debugging tools.

6. ACKNOWLEDGEMENTS

We would like to thank John Floren, Ron Minnich, and Don
Rudish of Sandia National Laboratories for providing us with the
identical hardware used to conduct the preliminary tests and exper-
iments.

Part of this work was funded by the Laboratory Directed Re-
search and Development (LDRD) program at Sandia National Lab-
oratories. Sandia National Laboratories is a multiprogram labora-
tory operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the United States Department of
Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

7. REFERENCES

[1] R.S. Pappu, “Physical One Way Functions", Ph.D Thesis,
Massachusetts Institute of Technology, 2001.

[2] P. Tuyls and B. Skoric, “Strong Authentication with Physical
Unclonable Functions", Security, Privacy, and Trust in
Modern Data Management, Vienna, Austria, 2007.

[3] B. Gassend, “Physical Random Functions", M.Sc Thesis,
Massachusetts Institute of Technology, 2003.

[4] J. Guajardo, S.S. Kumar, G.J. Schrijen, and P. Tuyls, “FPGA
Intrinsic PUFs and Their Use for IP Protection", Workshop
on Cryptographic Hardware and Embedded Systems
(CHES), Vienna, Austria, 2007.

[5] E. Simpson and P. Schaumont, “Offline HW/SW
Authentication for Reconfigurable Platforms", Workshop on
Cryptographic Hardware and Embedded Systems (CHES),
Yokohama, Japan, 2006.

[6] C.Bohm and M. Hofer, “Using SRAMs as Physical

Unclonable Functions", Austrochip - Workshop on

Microelectronics, Vienna, Austria, 2009.

M. Atallah, E. Bryant, J.T. Korb, and J.R. Rice, “Binding

Software to a Specific Native Hardware in a VM

Environment: The PUF Challenge", ACM Workshop on

Virtual Machine Security (VMSec), Alexandria, USA, 2008.

[7

—



