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10 Energy security and climate P
change are intertwined SZM

Leading Petroleum

To “stabilize” global CO, importers in 2003 (mbod)
levels need > 10 TW of pen o 55
clean energy by 2050. Germany 2.5
_ ';?_;T; China 2.0

Leading Exporters

e US consumes 378 million Persian GulF . 18.7
gallons per day gasoline. Russia 5.5
Norway 3.3
— 0.58 TW annual average Venezuela 59

— Petroleum imports >50% *millions of barrels per day

Roger Doyle, Scientific American, Sept. 2004
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Petrol Concentrated solar power S2P
and thermochemical cycles

“no bugs, no wires”... and no membranes

i VWater Oxidation Thermal Reduction

¥ H., Heat
%)
MO, >MO_,+—0,TR
H,O Q, 2
FeQ

MO_ ;+ H,0«=2—>MO_+6H, WS

<1000 =C = 1300 “C

Concentrate solar energy using conventional technology.
— 1000 suns = 100 W/cm?

e Thermochemistry is a promising alternative to bio-fuels,

PV-based electrolysis, photo-catalysis, or artificial
photosynthesis.

— Efficiency, simplicity, scalability

— Dish Stirling engine currently holds world-record for peak
efficiency (31.25% net solar-to-electric)
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8 Key attributes of Sandia CR5 sZp
concept reactor i s i

Concentrated solar flux

Needed to achieve high efficiency. S e 7

— Continuous operation on-sun. ,
— Direct solar absorption. 0, =
— Sensible energy recovery.
— Minimal work input.

— Intrinsic separation of products
e H,/CO from O,

.

H,Q, CO

Ha, CO, H.O, CO-

heat recuperation
key to high efficiency

Design challenge to effectively
balance incident solar flux, redox
kinetics, and heat recuperation to yield
an efficient thermochemical
conversion cycle

Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5)
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Non-volatile metal oxide SZP

Solar energy

e Basic considerations. s e W
. . ' Volatilization Losses Therma“leducl?nn
— Chemical composition 1111 eisied i
— Macroscopic structure I \
e Sunlight penetration P ieci T —,
e Gas transport “““""‘.‘,;
— Microstructure
. Gas splitting
e Reactive surface area Reacton inetcs
— Structural stability and loading g
e Understand complex behavior. &=
— Surface/bulk reaction

— Solid phase transport
e |onic species 2
— Effects of dopants and supports
e Reactivity/compatibility
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{08 Material systems currently S2P
under investigation

Fe,O, |CoFe,0,|MO,:CeO,;| La,,Sr,Cr; Mn O,
X Y

0.9 0.5

0.8

10 mol%
Mn, Ni. Co,| 0.7
Mo, & Fe 0.6
0.5

chemical and/or physical
modification required to

e Redox cycle chemistries. achieve performance
— Chemical systems [y goals

e M*/M*+1) redox couples
* MO, ;5 non-stoichiometric oxides
e CU “hercynite”

— Supports I
e m-ZrO,, YSZ, CeO,, Al,O,
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e Experimental approach S

SUBRESHINE

200 300 400 500 600 700
Raman Shift (cm™)

Material properties.

— BET surface area
— SEM-EDX, TEM-EELS, XRD NIR laser toMs o

Surface analysis. _ o I S? .
inlet to pump
— Surface Raman, XPS

Kinetic measurements.

— Stagnation flow reactor
e 500 W CW NIR laser heating a

e Modulated beam mass I E | z
;1.1'

SpectrOI neter
SiC furnace '
Ty = 1600 °C

Z-translate

30 AUGUST 2011  ACS National Meeting



Sunshene to

Oxidation and reduction
behavior SZP

Screen for O, uptake and |2 :ZZJ’UULFLMJ
release. 2
& 1000
— System viability - 2500} [ |
e Resolve thermal reduction §2°°°'LVJWTU9 o
behavior. i IR WGV_” o |
1000 500 1000 15q & 1200 — Vi
— Variable heating rates times) | 3 1000 .
e Resolve gas splitting behavior. § Z
— Variable T, P, [OX] s ;ﬁﬁ A :
° Ana|ysis_ g 1800 — % 100 200 300 400 500
— Rate limiting mechanisms %::i\ ” ’UUL I
— Kinetic models § 1000l
— Material stability B [ T— .
— Cycle performance z C|M f (| [
L&

500 1000 1500 2000
fime {s) é
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Petrol

Solid-state kinetic theory

-S2fm,

Khawam and Flanagan, J. Phys. Chem. B, 110, 17315 (2006)

differential forrn

integral form

Avtami= Erofayev (AZ)
Avrami— Erofeyev (A3)
Avrami— Erofeyev (A4)
Prowi—Tompkins (B1)

contracting area (E2)
contracting vohune (R3)

1-D diffusion (D1)
2-1 diffusion (32)
3-D diffusion=Jander (D3)

Fractional reaction o

Ginstling— Brounshiem (D4

ero-order (FIVEL)

1.0 first-order (F1)

second-order (F2)
Hurd-order (F3)

1 = =l =)=
31— o[—Infl — )]s
41 = a)[~Infl = aj
all —oh
geomenical comtraction models
1 = )t
3(1 - u._jl'.i
diffnsion models
112t
[1/(L — )]

301 — @201 = (1 — )]

F[200 — a1 —17]
reaction-order modals

1

L=
il — o)
(1 — o)

mode] Aoy = Uk doude ) = kf
nuc leation models
power law (F2) 2o il
power law (P3) e ph®
power law (F4) Ay ot

[=1m(1 = g
[—Inil — @)
[=1nf{l — )]
[l — )] + ¢

1=(1 =t
1 U U_}l-j
D.'I

(1 —e)lnil — wh) + o
(L= (1=
1= (28— (1 —a)®

i

—Ini1 — )

[ =g)] =1
(21— o) = 1]

e Master Plot used to screen rate controlling mechanism(s).

— Applied to any measure of the extent of reaction (o).

Extract kinetic parameters from isoconversion analysis.
— Model independent
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Model-based approach to szp
evaluating kinetic behavior ™

ff | shrinking
di u3|onI nuceatlon order = colre 00
1/2a -« 31-a)*
i 1500}
= 3(1- a)( In[(1- 0!)])”3 =
8 5
§ 1000
= — simulated input step
time (s) a0 F -8~ outlet trap inling
[
oo 10 ZQ 60 $I:' 100
time {B] shrinking
dlfoSIon nucleation order core
solid-state T
- &
>

time (s)

e CSTR model accounts for dispersion and detector lag.
— Deconvolute experimental effects from O,, H,, and CO signals

. * Governing equations constitute a system of DAEs.
. Mathematica™ based optimization.

— Least squares objective function
— Stochastic algorithms search for best fit model and kinetic

parameters
e Differential Evolution, Simulated Annealing
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Petrol S

SURSHINE

Transition metal doped CeO,
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£  Thermal reduction of CeO, §
ve ry ra p i d SUNSHINE
g 1600 T el T 2.0 T 1T T
5 151
o 1200F w @)
g @ {03 =
Q =
£ 1000 S 4ol S
w 15k — disk 4 ‘:ﬁ 10« E
5 ol — fiber | © @
E ] 0.5F do1
; 0.0 L - 1 0.0
0 150 300 O 150 300 0 150 3000 150 300
time (s) time (s)
Disk 1000 um thick.

Fiber diameter ~ 10 um.

reduction kinetics.

surface chemistry
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Solid-state dynamics at these length | mass(me)
scales and heating rates do not limit 960

— Thermal conduction, vacancy diffusion,

mole O (x10) 0
220 0.039
207 48 0.039
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Petrol Relatively simple kinetic S2P
model for CeO, reduction ™

T A
—= 1(;} exp[—El/RT]-(éeq—5)m‘
1
u.mzn;t s
J,, = f(LoglF, 1.T) - °Cls
- u.unﬁ% :* 6.7
# Panlener et al. ',,.meuﬂ iﬂ/ : j: | 3.3
R ARSI .
.‘n'ﬂ.r.-,"p-' '_‘! >— I'I_I'h’i]l.'lg' :::i; )
e e P == i 08
= ] A b . | |
.é; 2ol ‘..d' e _ : . j
f,v",- X o J’,mnt}“c ! ' F \
S . [4 : _—
3.0 .,'. ,--‘ ,_"f 7 _I s s PP b v e e
e L 10 400 00 00 100 0 =0.048
6o 2 4 6 8 -0 time (s)
log[Py, ] (atm)
e |ncorporated into engineering "mass” | temp”  "[oxid]" [ "total 02

140.244
137.743
141.993
143.211

models to predict CR5 performance 04129 | 1503.67
0.4129 | 1500.74

0.4129 | 1503.79
0.4129 | 1503.75

oS O o O
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Petrol Reduction behavior of transition- SZP
metal doped CeO, powders

1500 °C

Fe(10mol%)-CeO,

5 &)

Y @D

s | °CIS 3

E 6.7 E

OVN , . 3.3 3
1.7 S
0.8

timé (s)

time (s)

e Goalis to lower the thermal reduction temperature.
— Destabilize the fluorite crystal structure

e O, evolution complex for Mn and Fe doped CeO,.
— Compound formation and phase segregation possible

Significantly more O, evolved per unit mass of material.
— Mn and Fe variants at 10 mol% but O, capacity > 2x

b
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H,O oxidation of CeO, S
exhibits 2nd order behavior ™

I T
40% H,0, 900 °C
107 F .
— residual i F1 gy A
— fit I ]

LSO
(%]
=i
LY
H\'\
~
H, (mole fraction x10 ’ )

H, (mole fraction x10™ )

10

f
2

all |

3 e J'\, F
P Ml Bl L X ™ E-“ﬁ(a.){ - (‘Ir ﬂr) | \__
0 100 200 300 400 -3.0 -20 1.0
time (s) Ln[k,]

da
a’t1 =k[Y,, (t=ty)] (@)

e H, production rate peaks at 900 °C.
~ » Well defined LSQ minimum for the F2 model over all T.
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O, (umoles/s/g)

H,O splitting on Fe-doped CeO,

SUBRESHINE

TR to 1500 °C @ 3.3 °Cls

Fe:CeO I
2 after O, oxidation
dIJIII
(i’
||' |
-!I'ﬂ'-.\ uilJ li'.
[\ B\ after H,O oxidation
W \
| .
|
|
)
|
| e
I| t 1._..:.'“
I||l I.L\"\l.ﬂ
'I; Wﬂ_«,w = -
1 ” . L i
time (s)

H, (umoles/s/g)

3.0F

2.0

I I I
40% H,0, 1000 °C

—— Fe:CeO, |
—o— CeO,

50 100 150 200

time (s)

e 0O, evolution post-H,0O oxidation reveals that active sites in
doped system re-oxidize at different rates.

‘!3“.1 e Presence of 10mol% Fe increases net H, production.

&f
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Dopants have a dramatic effect

on HZ prOdUCtion rates SUNSHINE

S

070 080 090

Time [sec]

1000/T (K

e Peak temperature in volcano plot shifts.
e Effect on net hydrogen production varies.

XYL * Trends not obvious.
_ ?!“if — All multivalent (2*— 4+, or 2*— 6* for Mn)
We

— All have effective ionic radii << Ce3* and Ce**

L
b
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H2 Production During 40% Water oxidation at 1000 C O Ce0,
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08 Fe and Mn enhance sintering

of powders during redox

Calcine in air @ 1400 °C for 36 hrs.

— XRD patterns show little evidence
of other phases

— Material is a loose packed powder
TR in He at 1500 °C followed by
H,O oxidation at 1000 °C.

— Color darkens

— Material sinters

— Need to complete analysis

e Composition and morphology

Fe and Mn-doped ceria not likely a
viable strategy despite greater
redox capacity.

— Slow kinetics on “low energy” O-
site

— Severe problems with
sintering/reactivity with ceramics
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Petrol S

SURSHINE

Fe in YSZ
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High surface area/small SZP
dimension structures desirable ™

Oo mommsm) O O —‘
@ < Chem Red ﬁ ) < ThermRed |

0.
| I
WS @ 600 °C, CR 416 umole/g
ALD coated Fe,0O,:m-ZrQ,
30F - 03F .
- H.0] 5
= — 25% @
R | = : 0
2 201 I\ 12% ] E 7 Bulk Fe:YSZ
=k — B =
& T
= 10F \ 620 pmole/g A 01F WS @ 1100°C, TR
Wy, Fe-ALD coated Zr0, 3% Fe,0,:8YSZ
G b . | Ry .L._- .-.-.'i*"- G _.-..-'_._".. i DO | \
0 20 40 60 80 100 120 ¢ 1000 2000 3000
time (s) time (s)

Rates for water oxidation highly dependent on reactive
structure.

— Different manifestations of Fe2*/Fe3* redox couple

— ALD thin film peak H, production rate 100x faster than Fe dissolved in YSZ é
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Petrol Rate controlling mechanisms SZP
revealed through MP analysis s

WS @ 600 °C, ALD, vary % H,0O, CR WS, co-precipitate, 25% H,0, TR
2.0

Q
; ; o 1.5 =
I 3 =
) 3 )
é : S 10 2.
= -
S g “l 3
|y S 05 c<_>
00 L -~ %
0.0k ®

00 02 04 06 08

(04 (04

e Thin film structure results from ALD films.
— Expect diffusion limited behavior (D3)

— Uniform dispersion of Fe cation
— Expect contracting volume behavior (R3) é
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{8 Iron solubility in 8YSZ limits S2P
performance

0 - & &
I
'Y i &
E?- (1 *
= "
5 g
~— Y
= 7]
= 5
s w 010 a
(=9 w
3 B .
[P]
5 \
7,] &
% X A
A
T T T T T T u_m """""""""""""" T T 1 11
0 5 10 15 20 25 o 5 10 13 N B 30
Iron content in 8YSZ / mol-% Fe Iron oxide content f mol-% Fe

" e Ferrite cycle desirable due to greater redox
capacity compared to ceria.

— Higher efficiency if iron utilization can be improved @
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Petrol Summary S

SUBRESHINE

Solid-state kinetic models show promise for describing oxidation and
reduction behavior.

— Redox models incorporated into CR5 simulation tools
Cerium oxide cycle.
— Facile reduction kinetics

— Complex redox chemistry evident when doped with various transitional
metals (especially Fe and Mn)

Ferrite cycle.
— More desirable than ceria if higher effective mass loading can be realized
— Oxidation rates can be manipulated by choice of reactive structure

Sandia remains committed to demonstrating greater than 2% net
solar-to-fuel conversion efficiency in the CR5 testbed before the end
of 2011.

— 18 KW system with continuous CO production
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SURSHINE

Thank you for your attention.

Questions?
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