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e Mechanical properties of nanocrystalline 500

(NC) materials show potential improvement
compared to larger grained polycrystalline
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e In NC materials, a higher number density of 100?*5;& s 608808 -
atoms are located in grain boundary (GB) 0 l | 1 | ,
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regions. e

e A deeper understanding of the role of
interfaces (e.g., GBs) in NC deformation
processes is still needed.

Important to understand influence of
GBs and related deformation
mechanisms in nanoscale plasticity

Khan et al., IJP, 22 (2006).
Van Swygenhoven et al., Acta Mat., (2006).
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» Interface structures are in agreement with published HRTEM data, e.g.
Al (Mills et al. (1992) and Medlin et al. (1993)) E Structural Unit
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» General (high-angle) interface structure
» Structural unit model (SUM) (Sutton and Vitek, 1983)

» High-angle grain boundaries are composed of combinations of
structural units from ‘favored’ orientations
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Yog = 833 mJ/m?
FVg = 6.226-04

Yo = 890 mJ/m?
FVgg = 6.28-04

Yos = 919 mJ/m?
FVgg = 7.94e-04

NEGB™ "

Free Volume (within GB plane)
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GB Dislocation Nucleation (Tension) 29 (221) 6=141.1°
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Tucker and McDowell, Int. Journal of Plasticity, 27, 6 (2011). 6
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Constant Velocity 25
Cu (EGB) — o
Cutees) 39 (221) 6=141.1
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Strain (%)
« 2D periodic boundary conditions
(parallel to GB plane) « Grain boundary sliding and significant atomic shuffling
‘ . , . occurs in all boundaries
« ‘Constrained’ free vertical faces

» Behavior is nearly elastic-perfectly plastic
- Constant applied velocity y P yp

deformation * Reordering and restructuring processes during

hardening stage of NEGBs
» 109 s-1 constant shear strain rate gstag

*NVT at 10 K
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GB Sliding/Atomic Shuffling Dislocation Nucleation |
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v" Non-Schmid effects
v' Tension-compression asymmetry
v' Competing/combined effects of
* GB reordering, shuffling/sliding, and/or migration

» dislocation nucleation/desorption/absorption

> Sensitive to GB network

» Affected by excess free volume — NEGB structures
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* Zimmerman et al., IJSS (2009) See also Gullett et al. MSMSE (2008),

Hartley and Mishin (2005)
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—

sym " skew
1 1
— _B = —(E — }ET) - Qbk — __Eéjk(Rskew)ij
skew 2 2
microrotation vector
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1 1
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L vorticity vector

* Tucker, G.J., Zimmerman, J.A., and McDowell, D.L., MSMSE 18(1) 2010, 015002.
* Tucker, G.J., Zimmerman, J.A., and McDowell, D.L., Int. J. Engineering Science in memoriam to C. Eringen, in press. 11
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Metal plasticity at the nanoscale is complex

> Use of centrosymmetry, CN, slip vector, etc. is complicated in terms of
characterization and visualization of high density of evolving line defects

> These continuum metrics can address either history of process or
current configuration — useful for understanding mechanisms

Informing continuum models
> Kinematics of continuum description can perhaps be bridged in terms
of understanding based on statistical fields from atomistic simulations
> Check assumptions, trends from proposed continuum constitutive
models (e.g., Khan et al. (2006), Capolungo et al. (2007), Wei and Anand
(2004) and Wei et al.(2006))

Some connections

= microrotation (@) gradient [Atomistics]
~ torsion-flexure tensor [Continuum]

12
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% Formulate nonlocal metrics from continuum mechanics for use in
atomistic simulation analysis

» Investigate the evolution of kinematic metrics for various
deformation mechanisms in NC metals

» Resolve the contribution of different deformation mechanisms
during uniaxial deformation of NC copper

R/

% Dislocation Nucleation

s GB Sliding/Atomic Shuffling

Microrotation

0
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* Tucker, G.J., Zimmerman, J.A., and McDowell, D.L., MSMSE 18(1) 2010, 015002.
* Tucker, G.J., Zimmerman, J.A., and McDowell, D.L., Int. J. Engineering Science in memoriam to C. Eringen, in press. 13
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Slip Vector Energy Microrotation
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1.2395 -3.3326 0.063488
0.9815 -3.3863 0.043358
0.7236 -3.4399 0.023227
0.4657 -3.4935 0.003097
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bl Information gained from Metrics
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Can distinguish differences in deformation fields
produced during GB migration

PN

Microrotation Microrotation
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<d,>=5nm <d;>=10nm <d,>=15nm

e Full 3D nanocrystalline structure (Voronoi Tessellation, random lattice orientations)
e 3D periodic BCs

e Atom overlap deletion and equilibration for 50 ps at 10K

e Uniaxial tension at 10K under NPT, constant strain rate of 10° s!

e Analysis of deformation mechanisms using microscale continuum metrics
16
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6% Tensile Strain
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Slice parallel to slip
plane in grain 20

Microrotation
captures twinning

Microrotation is able to capture
important deformation behavior (e.g.
dislocation slip) and structural features
(e.g. stacking fault) usually visualized
using CNA and atomic slip vector
together.

Potential to be passed into continuum
level models as kinematic variable.

2 Atomic Planes

4 Atomic Planes
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Green Strain
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Green Strain Tensor

E:%(FT-F -1)

* E,, from all atoms in a group (e.g. FCC, GB,

Dislocation).

» Overall, GBs account for a higher fraction of
tensile strain in smaller grain structures. In
contrast, dislocation activity accounts for a
higher fraction in larger grain structures.
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e Different mechanisms provide distinct kinematic signatures and a sense of
deformation history is captured by certain metrics.

e The non-locality of various mechanisms can be probed by employing the
volume-averaging scheme using atomic neighbor lists (1%, 29, 379 and
reference/current).

e Insight into complex deformation landscape in NC materials is provided through
the implementation of microscale continuum metrics, and we can begin to
resolve mechanism contributions to overall deformation.

e Deformation avalanches are of interest (inversion points and plateaus), also
from point of view of distribution of shedding of microkinetic energy.

/

** Investigate tension/compression asymmetry and stress-state dependent
behaviors

+» Quantify the distribution of dislocation slip vs. GB processes during
deformation as a function of grain size.

22
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