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Real Tensor Eigenpairs

A = symmetric mt order n-dimensional real-valued tensor
For m = 3, symmetry means a, ;. = @, = Q. = Qjp; = Qpii = Qs

We say that A € R is an eigenvalue if there exists x € R” such that
Ax™ 1= x and x'x=1.
The vector x is called the eigenvector.
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x Form=3, (Ax" 1) = Zaijk T;j Tg
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Number of Eigenpairs

For a symmetric mt" order n-dimensional real-valued tensor,
the # of distinct eigenpairs (real and complex) is ((12-1)"-1)/(m-2)
Note: For m odd, (-),-x) is also an eigenpair.

For m even, (\,- X) is also an eigenpair.
These are not considered distinct.

Example: Aisofsize2x2x2x2 (m=4andn=2)

with Ajjkl — 0 except aii111 — 1 and aA92999 = —1
1
. a’/‘? = )\ajl )\:]_,X:!O]
Ax"™ = Ax 3
. —T5 = A9
x x = 1



Eigenpairs Correspond to @
Extrema of the Homogeneous Form

max or min f(x)=Ax"

1
st o (Ix|* ~1) =0
X
Form =3,
X .ﬁlxm = Za,,;jk LjLj Tk
A ijk
Lagrangian:

1
£0x, 1) = AX™ + a3 (X ~ 1)

Vi L(x, 1) = mAxX" 1 + px

A real eigenpair is any KKT point of the
constrained homogeneous form.
(Analogous to the matrix case.)

KKT Conditions:

mAx™ ! + px =0 and ||x|| = 1

ff

Eigenpair:

Ax™ ! = Ax and ||x]| =1
(with A = —u/m)
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Eigenpairs Correspond to Best
Symmetric Rank-1 Approximation

Axm 1 = M\x

x'x = 1

max f(x)=Ax™

1
st (x| = 1) =0

min ||J£l—)\xoxo---ox||2
s.t. A=Ax", ||x]|=1

X

Q
>



S-HOPM

Symmetric Higher-Order
Power Method (S-HOPM)

For k=1,2,...
Xp1 = Ax' /|| Ax |

Ak1 = A Xl

Symmetric analogue of convergent
Higher-Order Power Method

Not guaranteed to converge

o May diverge

o May have chaotic behavior

o But sometimes works really well!

3 x 3 x 3 x 3 Symmetric Tensor

aiill = 02883 ajiiz — —0.0031, ajliz —
ayize = —0.2485, ay123 = —0.2939, a1133 =
ajooe = 0.2972, aj203 = 0.1862, ajo33 =
a1333 = —()3()].9 2929 = 0].241. 9993 = —03420
agess = 0.2127, agszs =  0.2727, agzszss = —0.3054.

Optimum: | \| =1.09

S-HOPM fails on this problem for every starting
point we tried
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Shifted S-HOPM (SS-HOPM) ~ B
IS Convergent

f(x) = Ax™ f(x) = f(x) + a(xTx)™/?
S-HOPM SS-HOPM
For k=1.2,... For k=1.2,...
.AXZ“‘l Ax?‘l + axyg
X+l = e Xk+1 — P
T Aaxr AT axa|

A1 = Axpl A1 = A Xpy

In the context of ICA, using a shift has previously been proposed by
Regalia and Kofidis (2005) and Erdogen (2009).



S-HOPM

S-HOPM
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SS-HOPM Finds Real Eigenpair

100 Random Starting Points

SS-HOPM with o = -2

15 -0.0451 35

40 -0.5629 23

45 -1.0954 23

SS-HOPM with ¢ = -2
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-1.0954
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SS-HOPM as a Fixed Point Iteration

SS-HOPM

For k=1.2.... Fixed Point of ¢:¢(x; ) = x
L szn_l S X[

e A + oy Let J(x;a) denote the n x n

Asr = AXT, | Jacobian of ¢(x;).
Fact 1: x is an fixed
pointif o = p(J(x;a)) < 1.

B Axm 1 + ax
- | Ax™m—1 4 ax||

o(x; )

Fast 2: The convergence is linear

with rate o (smaller is faster).
For our problem, any fixed point

is an eigenvector and vice versa.



p(J)

At eigenpair (A\,x):J(x; ) =

10" ¢

2

Convergence Explained via
Fixed Point Analysis

Spectral radius of Jacobian for

(m

— 1) (Ax™?% — Axx!) + oI — xx1)

B %) |aboratories

A+ «

1

eigenvector corresponding to A =-1.09
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How Choice of a Impacts SS-HOPM

3

10 7 : 7 ' - . =0.8893
. »=0.8169 .
Negative values = 0.3633 Positive values
2
of avlead to local 107 ¢ %= -0.0451 of avlead to local
. . A =-0.5629 . .
minima. . = 10954 minima.
SS-HOPM with o = -2 2 10 F _ . 1 SS-HOPM with o = 2
“ e ) \ -
P 10° | B S o
-1 10 1 | i i ¥ i o 1 o 1 ] 1 20 40 60 80 100
® ‘I‘:arat\on ?kf; % 100 _5 -4 _3 21 O 1 2 3 4 5 Iteration (k)

Larger values of o slow convergence.
Some eigenvectors never have a spectral radius less than one;
SS-HOPM cannot find those eigenvectors.



Visualization of Eigenvectors ) .
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Basins of Attraction for o = 2
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* Diffusion Tensor MRI (DT-MRI) is generally used to infer
white matter connectivity in the brain
— Limited resolution
— Reduces to an eigenproblem

* High Angular Resolution Diffusion Imaging (HARDI)
— Higher resolution
— Reduces to a tensor problem

e U.Utah: F lJiao, Y. Gur, C. Johnson, S. Joshi, Detection of
Crossing White Matter Fibers with High-Order Tensors
and Rank-k Decompositions, In Proc. Information
Processing in Medical Imaging (IPMI), 2011

— Focus on challenge of small crossing angle, a.k.a., high
congruence

* Thanks to Yaniv Gur and Fiang Jiao for providing us
sample data

June 14, 2011 T. G. Kolda — Householder 15



SS-HOPM on a GPU gets 317 Gflops/s

* Motivating application

— Diffusion-weighted MRI
_  Need to solve millions of Intel Nahelem (1 core) 2.05 (9% peak)

3x3x3x3 igen-probl
X3x3x3 tensor eigen-problems Intel Nahelem (4 cores)  7.07 (8% peak)

— Use 128 starting vectors per tensor
nVidia Tesla 2050 (Fermi) 317.83

16 streaming multiprocessors (SMPs) (31% pea k)

 New storage format for e

symmetric tensors
— Storage ~(n™)/m)!
— Cost of Ax™~ (n™) / (m-1)!

—  Cost of Ax(m1)~ (mn™) / (m-1)! ——GPU
100 CPU-8cores
“He=CPU - 4 cores

1000

GFLOPS

* GPU implementation
— One “thread block” per tensor 10
— One “thread” per starting point
— Loop unrolling gives up to 20x speed-up

I S ) R g A L LR ) -

Number of Tensors



But... Brain Imaging Application Actual@
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Needs Best Sym. Rank-K Approximation

min ||A - Mxoxo---ox|]* st. x| =1
X
X
~ A
A
X

min HA_Z)\ICXI@OX}@O"'
k

X1
X1

1 = +

X1

okaQ S.t. ||Xk|| = 1Vk

X2 XK

X2 XK
+ -4+

X2 XK
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Optimization Formulation

K
A:ZXkOXkOXk = [X, X, X]
k=1

X1 X2 XK

_ X1 I X2 bt XK
A

X1 X2 XK

F(X) = A~ X, X

1 = 1 o m
= SIMAIP= ) Ax+ 5> > (xxg)
k=1

i=1 j=1

of &
o —mAx ! 4 m;(xgxk)(m_l)xi

VIX)=-mAn (XOXO- - 0X)+mX((X'X)m 1

~

(m — 1) times

Direct optimization

— Motivated by CP-OPT and
similar approaches

Benefits

— Can use any optimization
method (we use NCG)

— Extensible to higher-
order methods

Disadvantages

— Can require extensive
parameter tuning

— May converge to local
minimum



Conclusions and Future Work

' J laboratories

X
SS-HOPM is a convergent method for finding ~ )
tensor eigenvalues A
— Corresponds to best symmetric rank-1 X
approximation problem
— There is also a version for finding complex 7 &
eigenpairs ° e

: Easily implemented, parallelized

: Cannot find all real eigenpairs

More generally interested in best symmetric
rank-K approximation

— See talk from Householder 2011

For more info: Tammy Kolda, tgkolda@sandia.gov

Kolda and Mayo, Shifted Power Method for Computing Tensor Eigenpairs, SIMAX (to appear)
Ballard, Kolda, and Plantenga, Efficiently Computing Tensor Eigenvalues on a GPU, PDSEC-11
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S-HOPM Analysis

= Ax™
Theorem: S-HOPM A, converges to max  f(x) X

eigenvalue if f(x) is convex or concave st [[x|| =1
on unit ball
Key Lemma: Assume f(x) convex on S-HOPM

unit ball and let v be such that ||v||=1.
— Ifw=VAv)/||V V)|
— Then f(w) > f(v)

Importance: If f(x)is convex, then

For k=1.2,...
X1 = Ax /| AxE

Aky1 = Axp

S-HOPM has A.,; > A, forall k

fx)=Ax" = (x8 - ®x)'A(x® - ®x)
Assumes m even. N Ng

l times l times
Letl=m /2.

V2f(x):(I®3{®---®)S)TA(I®\>_€®---®>§)

Vo Y

[ — 1 times [ — 1 times
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Forcing Convexity with a Shift

A quadratic function is convex if all the eigenvalues of A are
positive (and concave if all are negative).

~

max f(x)=x"Ax max f(x)=x" (A + al)x
s.t. [|x]|=1 s.t. ||x||=1

An analogue for even-order tensors:

max f(x)=Ax" |:> max [f(x) = (A+ a&)x™

s.t. ||x|| =1 =
H I st [)x][ =1 |ldentity Tensor

Exml=x Vx
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Rate of Convergence

The rate of
convergence is given
. 1 » = 0.8893
by the spectral radius A \ = 0.8169
of the Jacobian. 08’ \ ). = 0.3633
_ AN = 3 = -0.0451
X % = -0.5629
/ > x 06 . = -1.0954
é it
>
10° ————— - %= 0.8893 IT- 0.4 ( Y i
| o < \
10 ¢ % =-0.0451
% = -0.5629 0.2
] 2 =-1.0954
2 10 \
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Third-Order Example

: 1
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Jacobian explains Convergence
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Relationship to Matrix Power Method

Symmetric Power Method

Fork=1,2....
Xp+1 = Axy/||Axg|

T
)\k;+1 — Xk_|_1AX]{;_+_1

Adding a shift moves the eigenvalues, potentially altering which
eigenvalue is largest in magnitude.

A+ A+oal
)\j < )\j + «
Jacobian of fixed point operator at (A, x,) has eigenvalues:

{O}U{g\\;{%:lgignwithi#j}

Can only possibly have spectral radius less than one for largest or
smallest eigenvalue.



Complex Tensor Eigenpairs

Definition: Assume A is a symmetric mt™ order n-dimensional
real-valued tensor. We say that A € Cis an if
there exists x € C" such that

Ax™ 1= \x and x'x=1.

The vector x is called the

Eigenpairs are not “unique” but define an equivalence class:

A(eicpx)m—l - ei(m—l)apﬂxm—l - ei(m—l){p/\x . (efi(*rn—Q)(,a/\)(eiapX)

Theorem: # of distinct eigenvalues (real and complex) is exactly ((m-1)"-1)/(m-2)

For m = 3 and n =4, we should have 7 distinct eigenvalues.



Complex SS-HOPM

Complex SS-HOPM
Fork=1,2,...

.AXZL_I + axy

Xk+1 = ot o
Xl+1
Xjtl = =5
T 1Rk |

m—1

o
Akt1 = X AX

Eigenrings
1 A
o
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