

Computing Tensor Eigenvalues: Theory and Practice

Tamara G. Kolda & Jackson Mayo

Sandia National Labs

Grey Ballard

UC Berkeley & Sandia National Labs

U.S. Department of Energy
Office of Advanced Scientific Computing Research

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Real Tensor Eigenpairs

Qi (2005), Lim (2005)

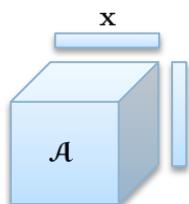
\mathcal{A} = symmetric m^{th} order n -dimensional real-valued tensor

For $m = 3$, symmetry means $a_{ijk} = a_{jik} = a_{ikj} = a_{jki} = a_{kij} = a_{kji}$

We say that $\lambda \in \mathbb{R}$ is an **eigenvalue** if there exists $\mathbf{x} \in \mathbb{R}^n$ such that

$$\mathcal{A}\mathbf{x}^{m-1} = \lambda\mathbf{x} \quad \text{and} \quad \mathbf{x}^T\mathbf{x} = 1.$$

The vector \mathbf{x} is called the **eigenvector**.



$$\text{For } m = 3, \quad (\mathcal{A}\mathbf{x}^{m-1})_i = \sum_{jk} a_{ijk} x_j x_k$$

Number of Eigenpairs

Cartwright & Sturmfels 2010

For a symmetric m^{th} order n -dimensional real-valued tensor,
the # of distinct eigenpairs (real and complex) is $((m-1)^n - 1)/(m-2)$

Note: For m odd, $(-\lambda, -\mathbf{x})$ is also an eigenpair.
For m even, $(\lambda, -\mathbf{x})$ is also an eigenpair.
These are not considered distinct.

Example: \mathcal{A} is of size $2 \times 2 \times 2 \times 2$ ($m = 4$ and $n = 2$)

with $a_{ijkl} = 0$ except $a_{1111} = 1$ and $a_{2222} = -1$

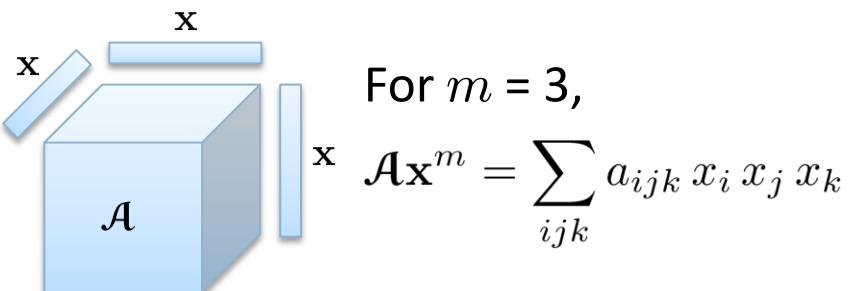
$$\begin{array}{lcl}
 \mathcal{A}\mathbf{x}^{m-1} & = & \lambda\mathbf{x} \\
 \mathbf{x}^T\mathbf{x} & = & 1
 \end{array}
 \quad \xrightarrow{\hspace{2cm}} \quad
 \begin{array}{lcl}
 x_1^3 & = & \lambda x_1 \\
 -x_2^3 & = & \lambda x_2 \\
 x_1^2 + x_2^2 & = & 1
 \end{array}
 \quad \xrightarrow{\hspace{2cm}} \quad
 \begin{array}{l}
 \lambda = 1, \mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\
 \text{or} \\
 \lambda = -1, \mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
 \end{array}$$

[up to 4 solutions] [2 real solutions]

Eigenpairs Correspond to Extrema of the Homogeneous Form

Lim (2005)

$$\begin{aligned} \max \text{ or } \min \quad & f(\mathbf{x}) \equiv \mathcal{A}\mathbf{x}^m \\ \text{s.t.} \quad & \frac{1}{2}(\|\mathbf{x}\|^2 - 1) = 0 \end{aligned}$$



Lagrangian:

$$\mathcal{L}(\mathbf{x}, \mu) = \mathcal{A}\mathbf{x}^m + \mu \frac{1}{2}(\|\mathbf{x}\|^2 - 1)$$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \mu) = m\mathcal{A}\mathbf{x}^{m-1} + \mu\mathbf{x}$$

*A real eigenpair is any KKT point of the constrained homogeneous form.
(Analogous to the matrix case.)*

KKT Conditions:

$$m\mathcal{A}\mathbf{x}^{m-1} + \mu\mathbf{x} = 0 \text{ and } \|\mathbf{x}\| = 1$$

Eigenpair:

$$\mathcal{A}\mathbf{x}^{m-1} = \lambda\mathbf{x} \text{ and } \|\mathbf{x}\| = 1$$

$$(\text{with } \lambda = -\mu/m)$$

Eigenpairs Correspond to Best Symmetric Rank-1 Approximation

Eigenvalue Problem

$$\mathcal{A}\mathbf{x}^{m-1} = \lambda\mathbf{x}$$

$$\mathbf{x}^T\mathbf{x} = 1$$

Extrema of Constrained Homogenous Form

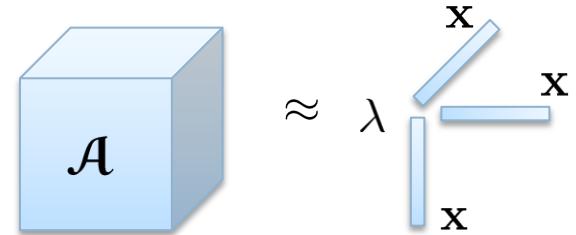
$$\max \quad f(\mathbf{x}) \equiv \mathcal{A}\mathbf{x}^m$$

$$\text{s.t.} \quad \frac{1}{2}(\|\mathbf{x}\|^2 - 1) = 0$$

Best Rank-1 Approximation

$$\min \quad \|\mathcal{A} - \lambda\mathbf{x} \circ \mathbf{x} \circ \cdots \circ \mathbf{x}\|^2$$

$$\text{s.t.} \quad \lambda = \mathcal{A}\mathbf{x}^m, \quad \|\mathbf{x}\| = 1$$



Symmetric Higher-Order Power Method (S-HOPM)

De Lathauwer, De Moor, Vandewalle 2000

S-HOPM

For $k = 1, 2, \dots$

$$\mathbf{x}_{k+1} = \mathcal{A}\mathbf{x}_k^{m-1} / \|\mathcal{A}\mathbf{x}_k^{m-1}\|$$

$$\lambda_{k+1} = \mathcal{A} \mathbf{x}_{k+1}^m$$

- Symmetric analogue of convergent Higher-Order Power Method
- Not guaranteed to converge
 - May diverge
 - May have chaotic behavior
 - *But sometimes works really well!*

Failure Example [Kofidis & Regalia 2002]

- $3 \times 3 \times 3 \times 3$ Symmetric Tensor

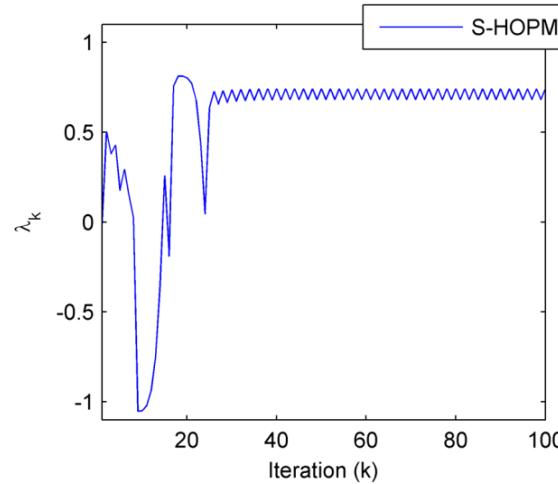
$$a_{1111} = 0.2883, \quad a_{1112} = -0.0031, \quad a_{1113} = 0.1973,$$

$$a_{1122} = -0.2485, \quad a_{1123} = -0.2939, \quad a_{1133} = 0.3847,$$

$$a_{1222} = 0.2972, \quad a_{1223} = 0.1862, \quad a_{1233} = 0.0919,$$

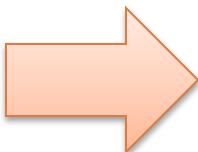
$$a_{1333} = -0.3619, \quad a_{2222} = 0.1241, \quad a_{2223} = -0.3420,$$

$$a_{2233} = 0.2127, \quad a_{2333} = 0.2727, \quad a_{3333} = -0.3054.$$
- Optimum: $|\lambda| = 1.09$
- S-HOPM fails on this problem for every starting point we tried



Shifted S-HOPM (ss-HOPM) is Convergent

$$f(\mathbf{x}) = \mathcal{A}\mathbf{x}^m$$



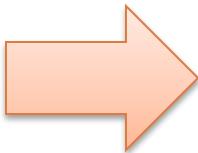
$$\hat{f}(\mathbf{x}) \equiv f(\mathbf{x}) + \alpha(\mathbf{x}^T \mathbf{x})^{m/2}$$

S-HOPM

For $k = 1, 2, \dots$

$$\mathbf{x}_{k+1} = \frac{\mathcal{A}\mathbf{x}_k^{m-1}}{\|\mathcal{A}\mathbf{x}_k^{m-1}\|}$$

$$\lambda_{k+1} = \mathcal{A} \mathbf{x}_{k+1}^m$$



SS-HOPM

For $k = 1, 2, \dots$

$$\mathbf{x}_{k+1} = \frac{\mathcal{A}\mathbf{x}_k^{m-1} + \alpha\mathbf{x}_k}{\|\mathcal{A}\mathbf{x}_k^{m-1} + \alpha\mathbf{x}_k\|}$$

$$\lambda_{k+1} = \mathcal{A} \mathbf{x}_{k+1}^m$$

In the context of ICA, using a shift has previously been proposed by Regalia and Kofidis (2005) and Erdogen (2009).

SS-HOPM Finds Real Eigenpairs

100 Random Starting Points

S-HOPM

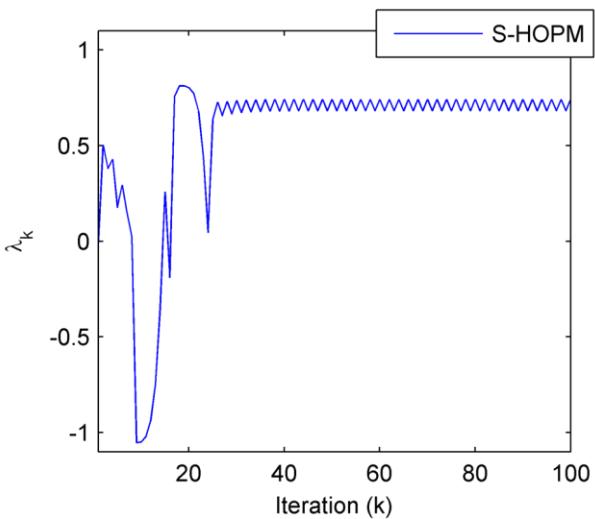
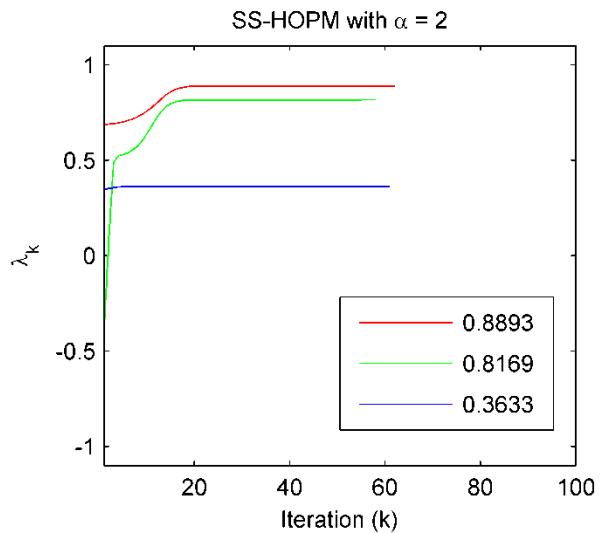
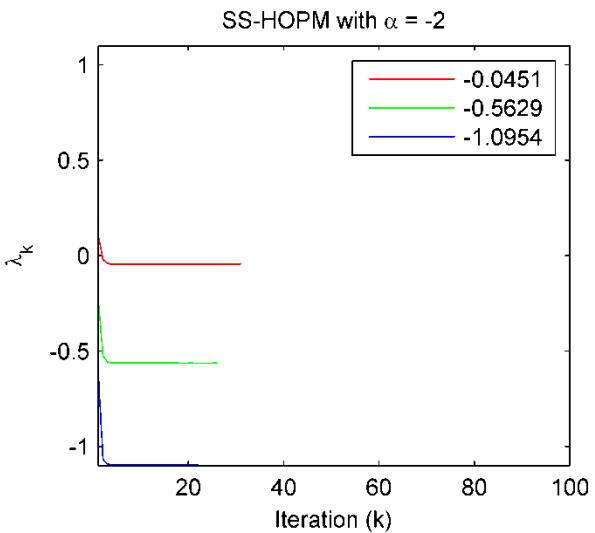
No Convergence

SS-HOPM with $\alpha = 2$

SS-HOPM with $\alpha = -2$

Occurrences	λ	Median Its.
46	0.8893	63
24	0.8169	52
30	0.3633	65

Occurrences	λ	Median Its.
15	-0.0451	35
40	-0.5629	23
45	-1.0954	23



SS-HOPM as a Fixed Point Iteration

SS-HOPM

For $k = 1, 2, \dots$

$$\mathbf{x}_{k+1} = \frac{\mathcal{A}\mathbf{x}_k^{m-1} + \alpha\mathbf{x}_k}{\|\mathcal{A}\mathbf{x}_k^{m-1} + \alpha\mathbf{x}_k\|}$$

$$\lambda_{k+1} = \mathcal{A}\mathbf{x}_{k+1}^m$$

$$\phi(\mathbf{x}; \alpha) = \frac{\mathcal{A}\mathbf{x}^{m-1} + \alpha\mathbf{x}}{\|\mathcal{A}\mathbf{x}^{m-1} + \alpha\mathbf{x}\|}$$

For our problem, any fixed point is an eigenvector and vice versa.

Fixed Point of ϕ : $\phi(\mathbf{x}; \alpha) = \mathbf{x}$

Let $J(\mathbf{x}; \alpha)$ denote the $n \times n$ Jacobian of $\phi(\mathbf{x}; \alpha)$.

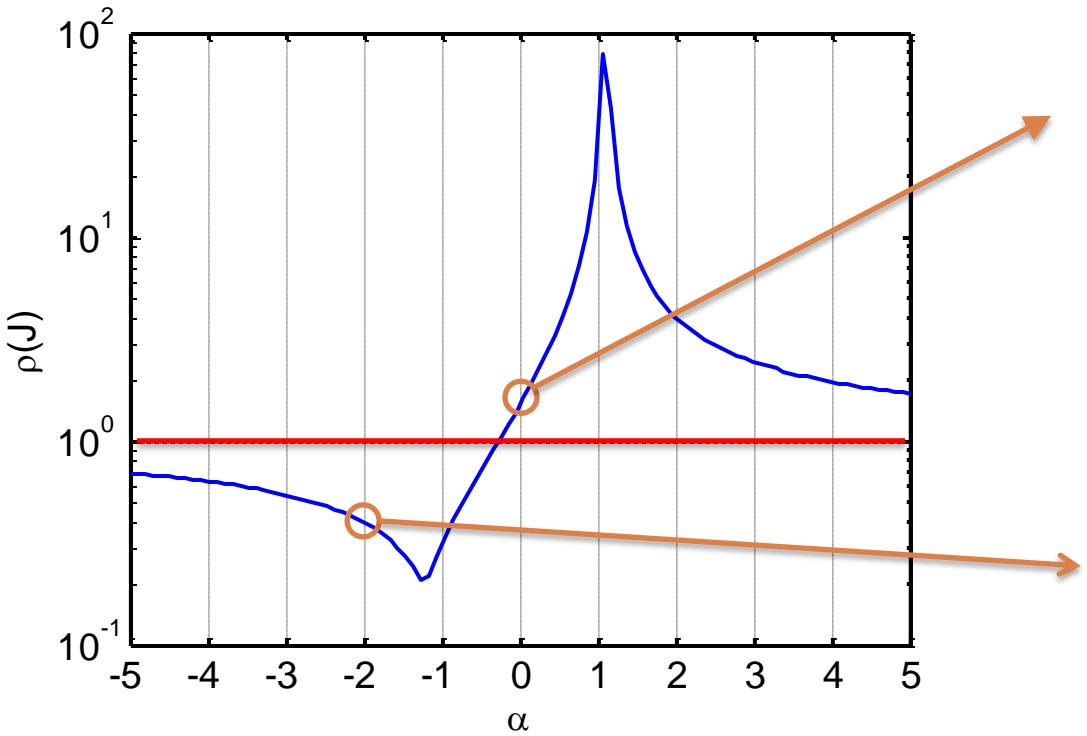
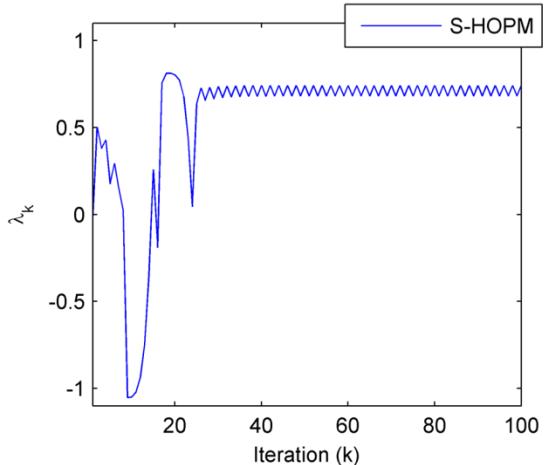
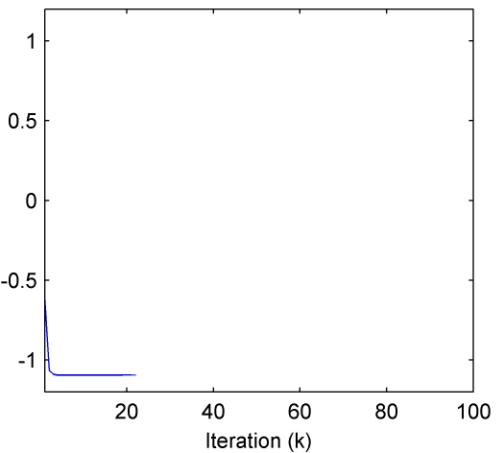
Fact 1: \mathbf{x} is an **attracting** fixed point if $\sigma \equiv \rho(J(\mathbf{x}; \alpha)) < 1$.

Fact 2: The convergence is linear with rate σ (smaller is faster).

Convergence Explained via Fixed Point Analysis

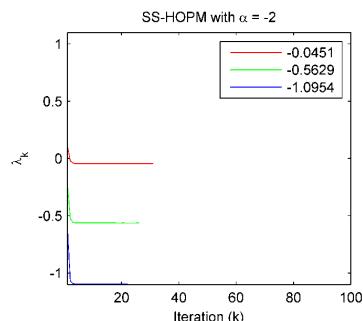
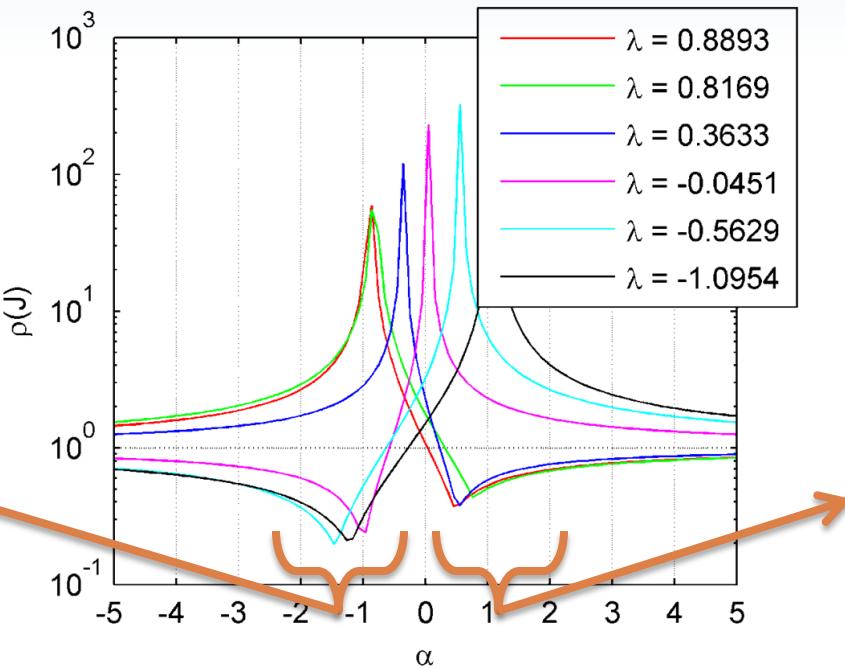
At eigenpair (λ, \mathbf{x}) : $\mathbf{J}(\mathbf{x}; \alpha) = \frac{(m-1)(\mathcal{A}\mathbf{x}^{m-2} - \lambda\mathbf{x}\mathbf{x}^T) + \alpha(\mathbf{I} - \mathbf{x}\mathbf{x}^T)}{\lambda + \alpha}$

Spectral radius of Jacobian for
eigenvector corresponding to $\lambda = -1.09$

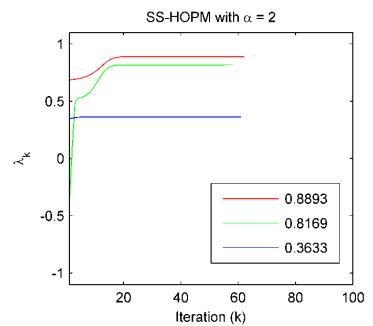


How Choice of α Impacts SS-HOPM

Negative values of α lead to local minima.

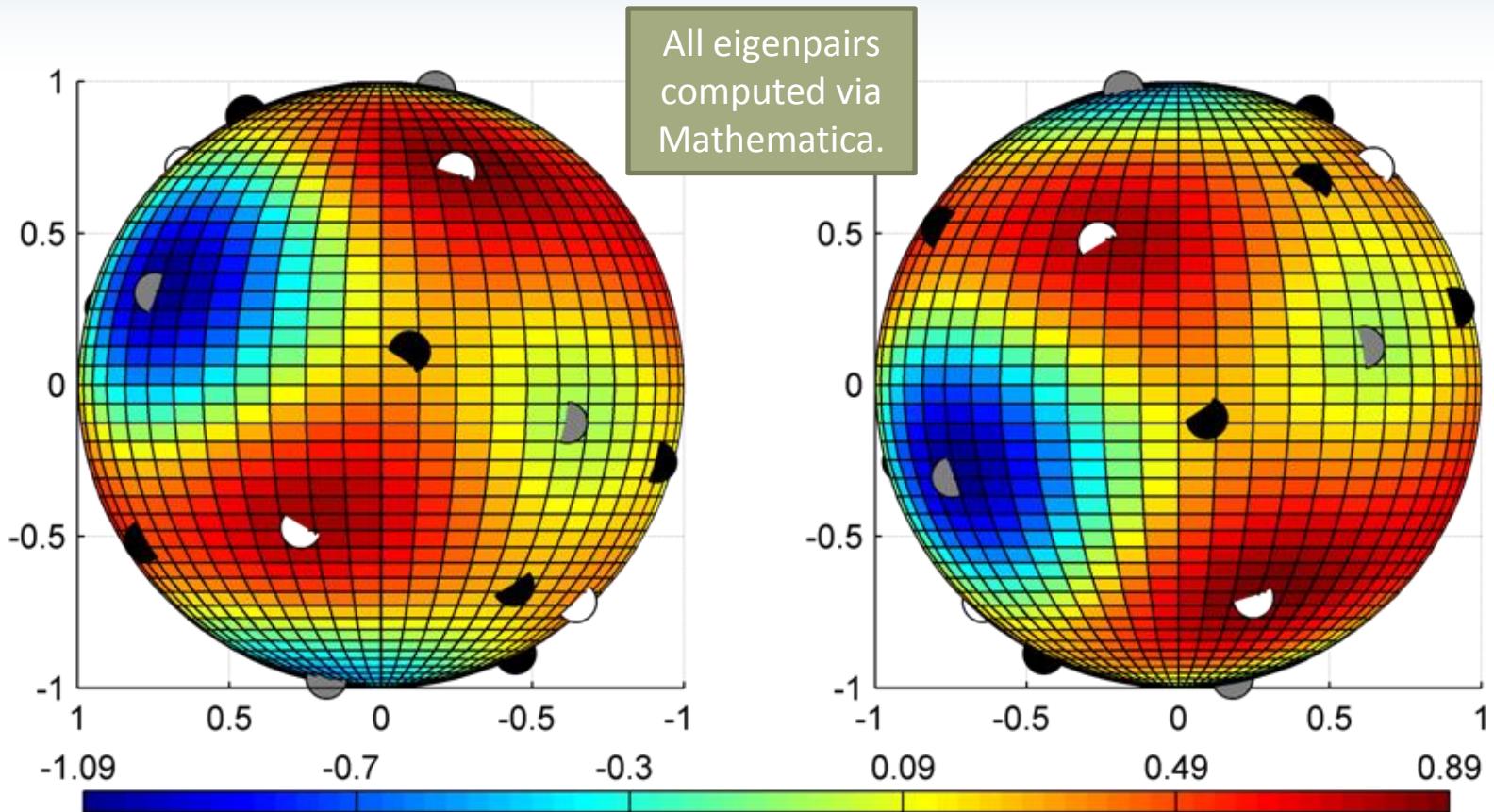


Positive values of α lead to local minima.



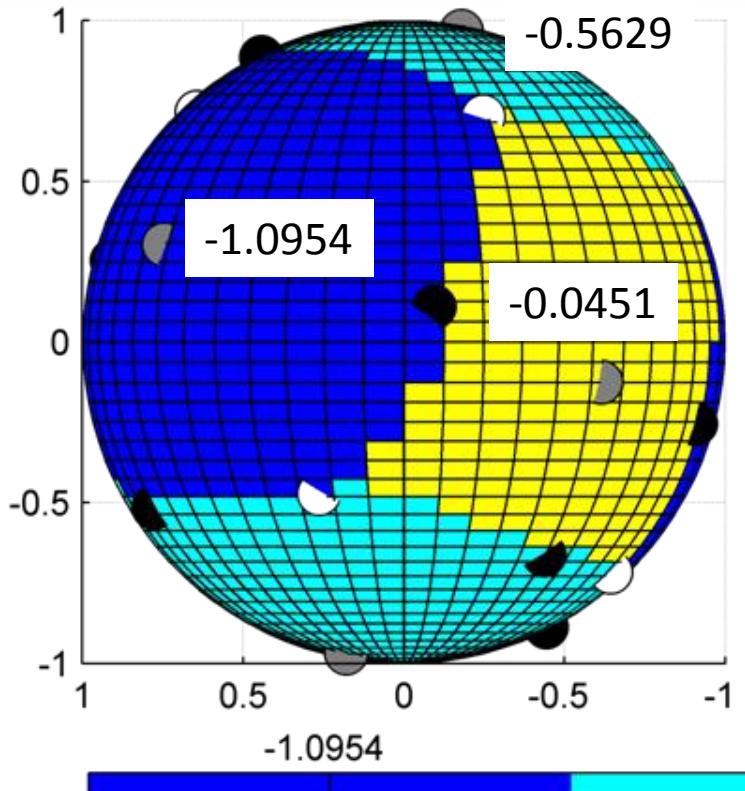
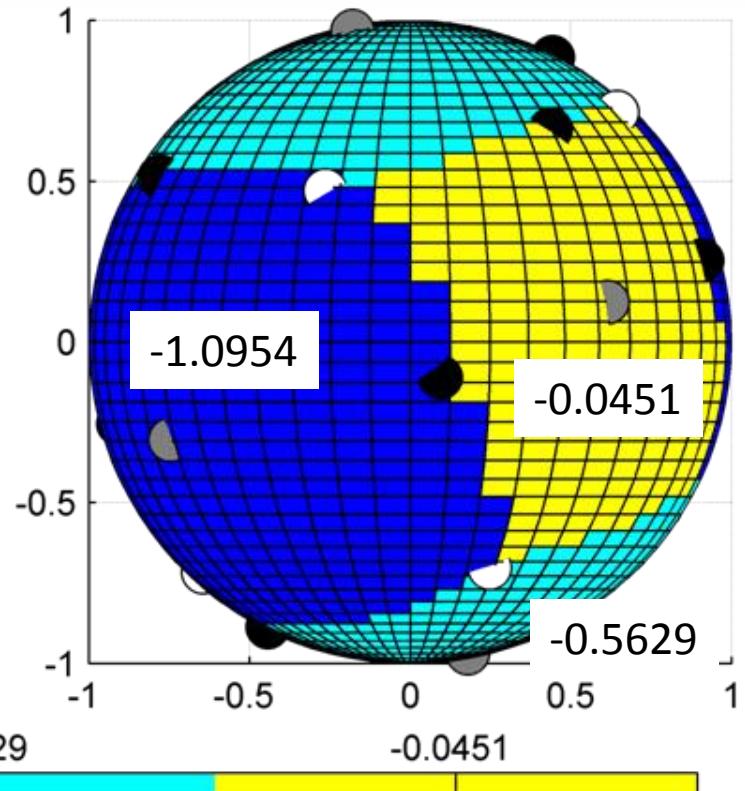
Larger values of α slow convergence.
Some eigenvectors never have a spectral radius less than one; SS-HOPM cannot find those eigenvectors.

Visualization of Eigenvectors



Basins of Attraction for $\alpha = -2$

Limit points correspond to local minima of function.

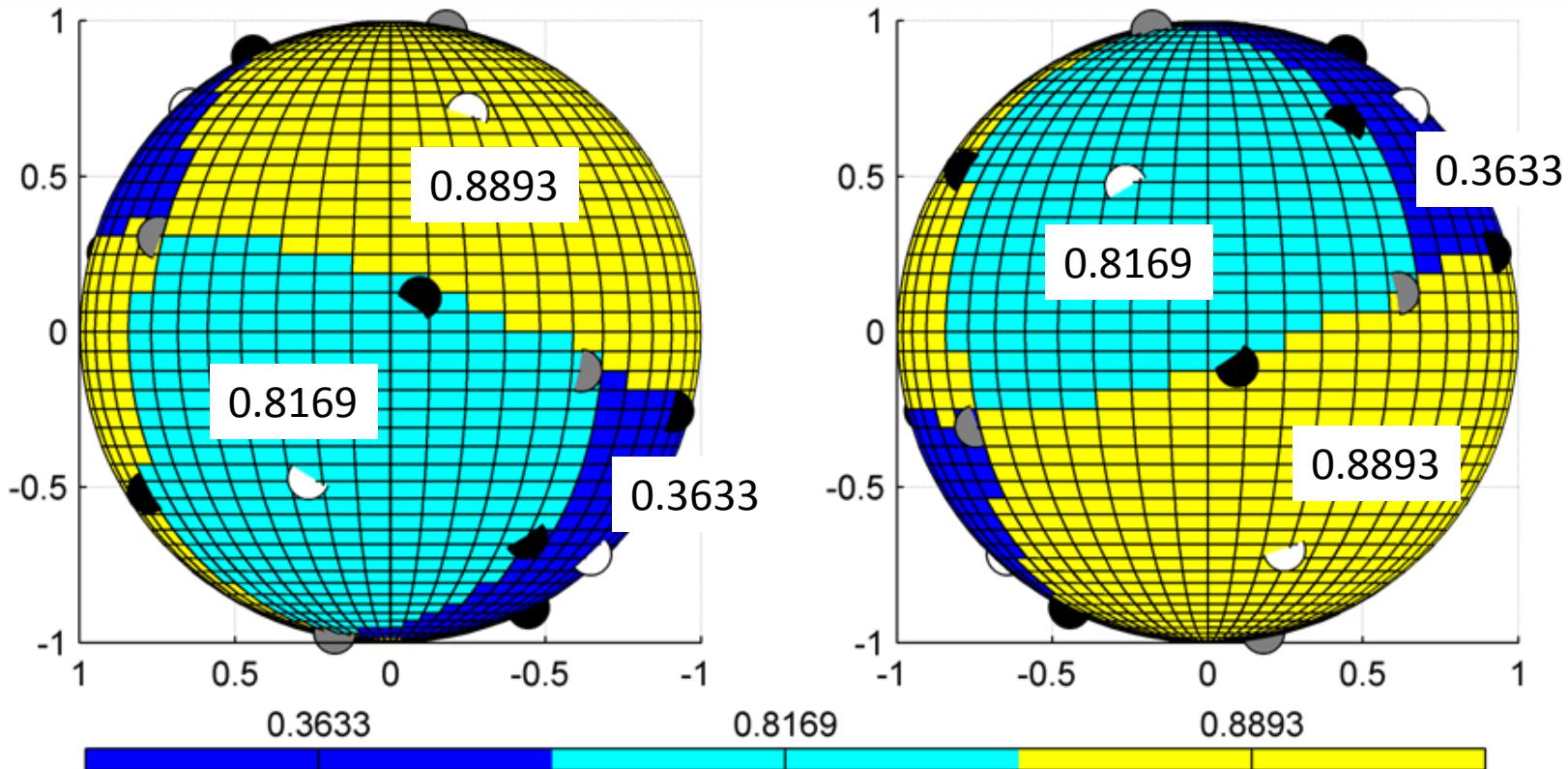


White = Local Max, Gray = Local Min,
Black = Saddle Point

Occurrences	λ
15	-0.0451
40	-0.5629
45	-1.0954

Basins of Attraction for $\alpha = 2$

Limit points correspond to local maxima of function.

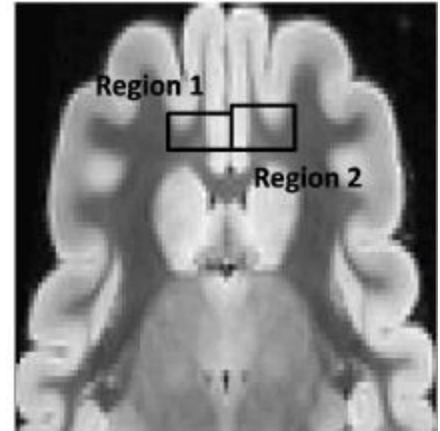
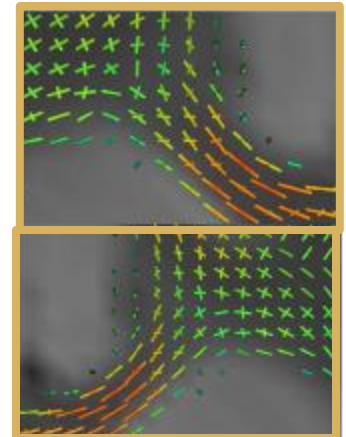


White = Local Max, Gray = Local Min,
Black = Saddle Point

Occurrences	λ
46	0.8893
24	0.8169
30	0.3633

Application to Brain Imaging

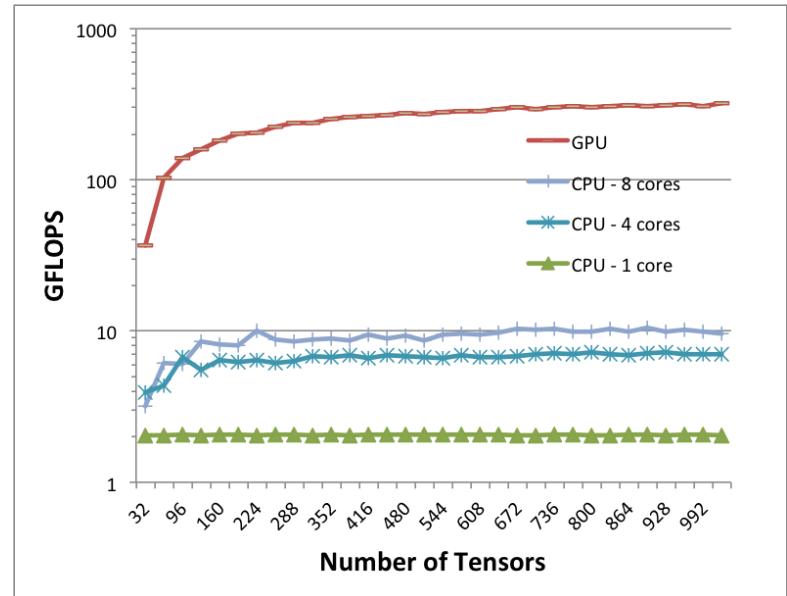
- Diffusion Tensor MRI (DT-MRI) is generally used to infer white matter connectivity in the brain
 - Limited resolution
 - Reduces to an eigenproblem
- High Angular Resolution Diffusion Imaging (HARDI)
 - Higher resolution
 - Reduces to a tensor problem
- U. Utah: F. Jiao, Y. Gur, C. Johnson, S. Joshi, *Detection of Crossing White Matter Fibers with High-Order Tensors and Rank- k Decompositions*, In Proc. Information Processing in Medical Imaging (IPMI), 2011
 - Focus on challenge of small crossing angle, a.k.a., high congruence
- Thanks to Yaniv Gur and Fiang Jiao for providing us sample data



SS-HOPM on a GPU gets 317 Gflops/s

- Motivating application
 - Diffusion-weighted MRI
 - Need to solve millions of $3 \times 3 \times 3 \times 3$ tensor eigen-problems
 - Use 128 starting vectors per tensor
- New storage format for symmetric tensors
 - Storage $\sim (n^m) / m!$
 - Cost of $\mathbf{Ax}^m \sim (n^m) / (m-1)!$
 - Cost of $\mathbf{Ax}^{(m-1)} \sim (mn^m) / (m-1)!$
- GPU implementation
 - One “thread block” per tensor
 - One “thread” per starting point
 - Loop unrolling gives up to 20x speed-up

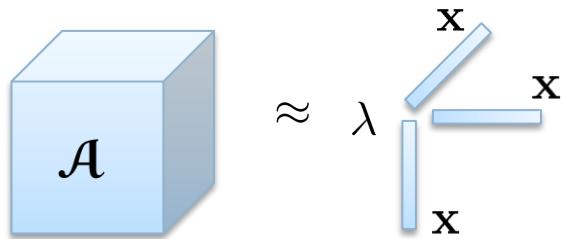
Compute Engine	Gflops/s
Intel Nahelem (1 core)	2.05 (9% peak)
Intel Nahelem (4 cores)	7.07 (8% peak)
nVidia Tesla 2050 (Fermi) 16 streaming multiprocessors (SMPs) 32 cores per SMP	317.83 (31% peak)



But... Brain Imaging Application Actually Needs Best Sym. Rank- K Approximation

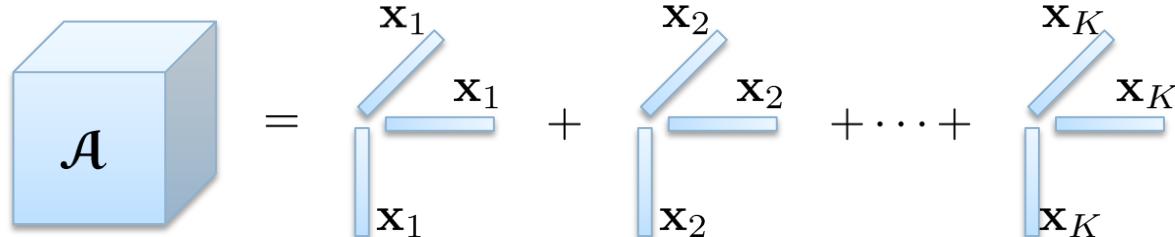
Best Symmetric Rank-1 Approximation

$$\min \|\mathcal{A} - \lambda \mathbf{x} \circ \mathbf{x} \circ \cdots \circ \mathbf{x}\|^2 \text{ s.t. } \|\mathbf{x}\| = 1$$



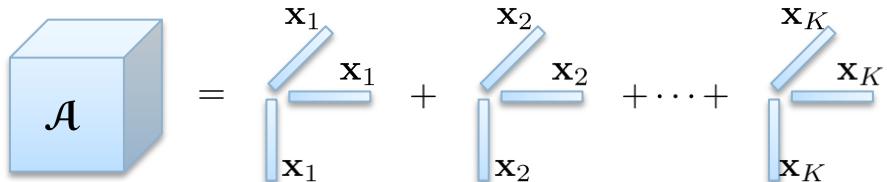
Best Symmetric Rank- K Approximation

$$\min \|\mathcal{A} - \sum_k \lambda_k \mathbf{x}_k \circ \mathbf{x}_k \circ \cdots \circ \mathbf{x}_k\|^2 \text{ s.t. } \|\mathbf{x}_k\| = 1 \forall k$$



Optimization Formulation

$$\mathcal{A} = \sum_{k=1}^K \mathbf{x}_k \circ \mathbf{x}_k \circ \mathbf{x}_k = \llbracket \mathbf{X}, \mathbf{X}, \mathbf{X} \rrbracket$$



Objective Function

$$\begin{aligned} f(\mathbf{X}) &= \frac{1}{2} \|\mathcal{A} - \llbracket \mathbf{X}, \dots, \mathbf{X} \rrbracket\|^2 \\ &= \frac{1}{2} \|\mathcal{A}\|^2 - \sum_{k=1}^K \mathcal{A} \mathbf{x}_k^m + \frac{1}{2} \sum_{i=1}^K \sum_{j=1}^K (\mathbf{x}_i^\top \mathbf{x}_j)^m \end{aligned}$$

Gradient

$$\frac{\partial f}{\partial \mathbf{x}_k} = -m \mathcal{A} \mathbf{x}_k^{m-1} + m \sum_{i=1}^K (\mathbf{x}_i^\top \mathbf{x}_k)^{(m-1)} \mathbf{x}_i$$

Gradient in Matrix Format

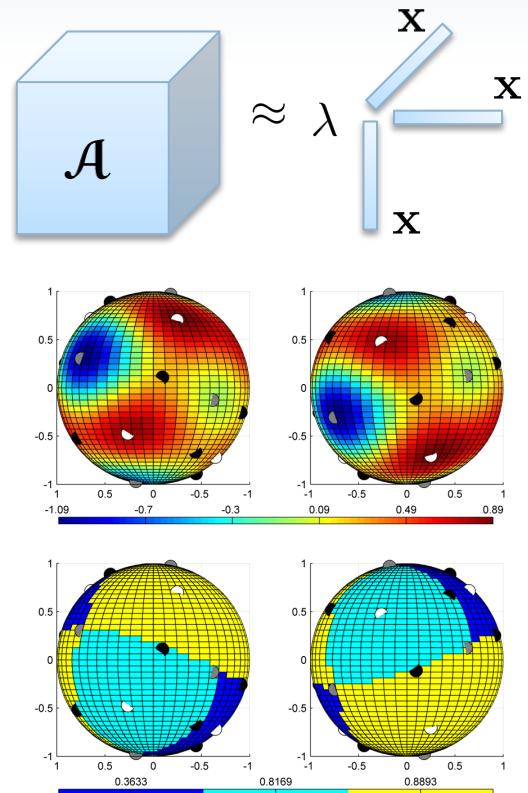
$$\nabla f(\mathbf{X}) = -m \mathbf{A}_{(1)} \underbrace{(\mathbf{X} \odot \mathbf{X} \odot \dots \odot \mathbf{X})}_{(m-1) \text{ times}} + m \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{[m-1]}$$

- Direct optimization
 - Motivated by CP-OPT and similar approaches
- Benefits
 - Can use any optimization method (we use NCG)
 - Extensible to higher-order methods
- Disadvantages
 - Can require extensive parameter tuning
 - May converge to local minimum

Conclusions and Future Work

- SS-HOPM is a convergent method for finding tensor eigenvalues
 - Corresponds to best symmetric rank-1 approximation problem
 - There is also a version for finding complex eigenpairs
 - **PROS**: Easily implemented, parallelized
 - **CONS**: Cannot find *all* real eigenpairs
- More generally interested in best symmetric rank- K approximation
 - See talk from Householder 2011

For more info: Tammy Kolda, tgkolda@sandia.gov



Kolda and Mayo, *Shifted Power Method for Computing Tensor Eigenpairs*, SIMAX (to appear)
 Ballard, Kolda, and Plantenga, *Efficiently Computing Tensor Eigenvalues on a GPU*, PDSEC-11

Backup Slides

Interesting result
because operating on
unit sphere which is
not convex.

S-HOPM Analysis

Kofidis and Regalia (2002)

- Theorem: S-HOPM λ_k converges to eigenvalue if $f(\mathbf{x})$ is convex or concave on unit ball
- Key Lemma: Assume $f(\mathbf{x})$ convex on unit ball and let \mathbf{v} be such that $\|\mathbf{v}\|=1$.
 - If $\mathbf{w} = \nabla f(\mathbf{v})/\|\nabla f(\mathbf{v})\|$
 - Then $f(\mathbf{w}) \geq f(\mathbf{v})$
- Importance: If $f(\mathbf{x})$ is convex, then S-HOPM has $\lambda_{k+1} \geq \lambda_k$ for all k

$$\begin{aligned} \max \quad & f(\mathbf{x}) \equiv \mathcal{A}\mathbf{x}^m \\ \text{s.t.} \quad & \|\mathbf{x}\| = 1 \end{aligned}$$

S-HOPM

For $k = 1, 2, \dots$

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathcal{A}\mathbf{x}_k^{m-1}/\|\mathcal{A}\mathbf{x}_k^{m-1}\| \\ \lambda_{k+1} &= \mathcal{A} \mathbf{x}_{k+1}^m \end{aligned}$$

Assumes m even.

Let $l = m/2$.

$$f(\mathbf{x}) = \mathcal{A}\mathbf{x}^m = (\underbrace{\mathbf{x} \otimes \cdots \otimes \mathbf{x}}_{l \text{ times}})^T \mathbf{A} (\underbrace{\mathbf{x} \otimes \cdots \otimes \mathbf{x}}_{l \text{ times}})$$

$$\nabla^2 f(\mathbf{x}) = (\mathbf{I} \otimes \underbrace{\mathbf{x} \otimes \cdots \otimes \mathbf{x}}_{l-1 \text{ times}})^T \mathbf{A} (\mathbf{I} \otimes \underbrace{\mathbf{x} \otimes \cdots \otimes \mathbf{x}}_{l-1 \text{ times}})$$

Forcing Convexity with a Shift

A quadratic function is convex if all the eigenvalues of \mathbf{A} are positive (and concave if all are negative).

$$\begin{array}{ll} \max & f(\mathbf{x}) \equiv \mathbf{x}^T \mathbf{A} \mathbf{x} \\ \text{s.t.} & \|\mathbf{x}\| = 1 \end{array} \quad \xrightarrow{\hspace{1.5cm}} \quad \begin{array}{ll} \max & \hat{f}(\mathbf{x}) \equiv \mathbf{x}^T (\mathbf{A} + \alpha \mathbf{I}) \mathbf{x} \\ \text{s.t.} & \|\mathbf{x}\| = 1 \end{array}$$

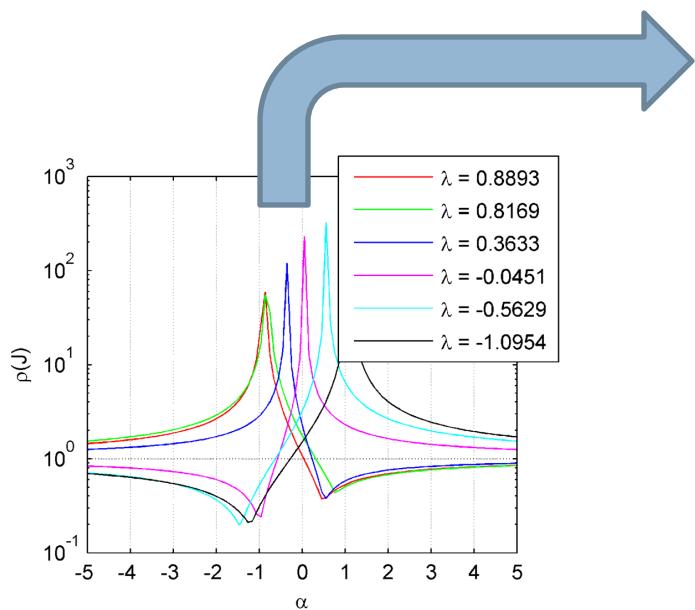
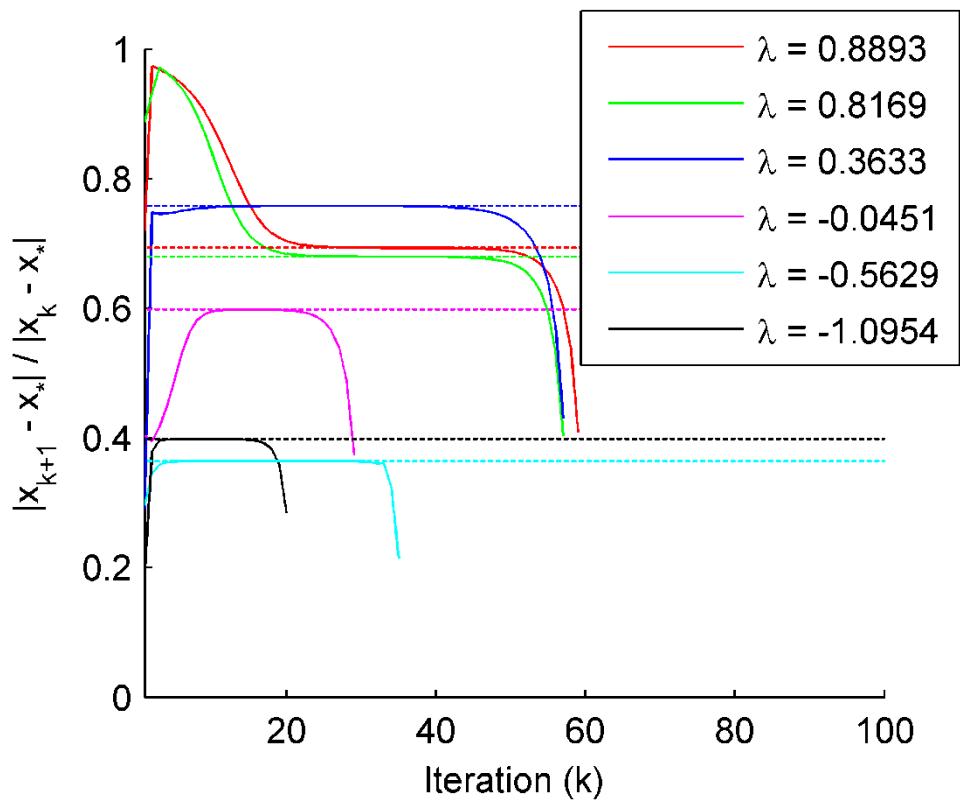
An analogue for even-order tensors:

$$\begin{array}{ll} \max & f(\mathbf{x}) \equiv \mathcal{A} \mathbf{x}^m \\ \text{s.t.} & \|\mathbf{x}\| = 1 \end{array} \quad \xrightarrow{\hspace{1.5cm}} \quad \begin{array}{ll} \max & \hat{f}(\mathbf{x}) \equiv (\mathcal{A} + \alpha \mathcal{E}) \mathbf{x}^m \\ \text{s.t.} & \|\mathbf{x}\| = 1 \end{array}$$

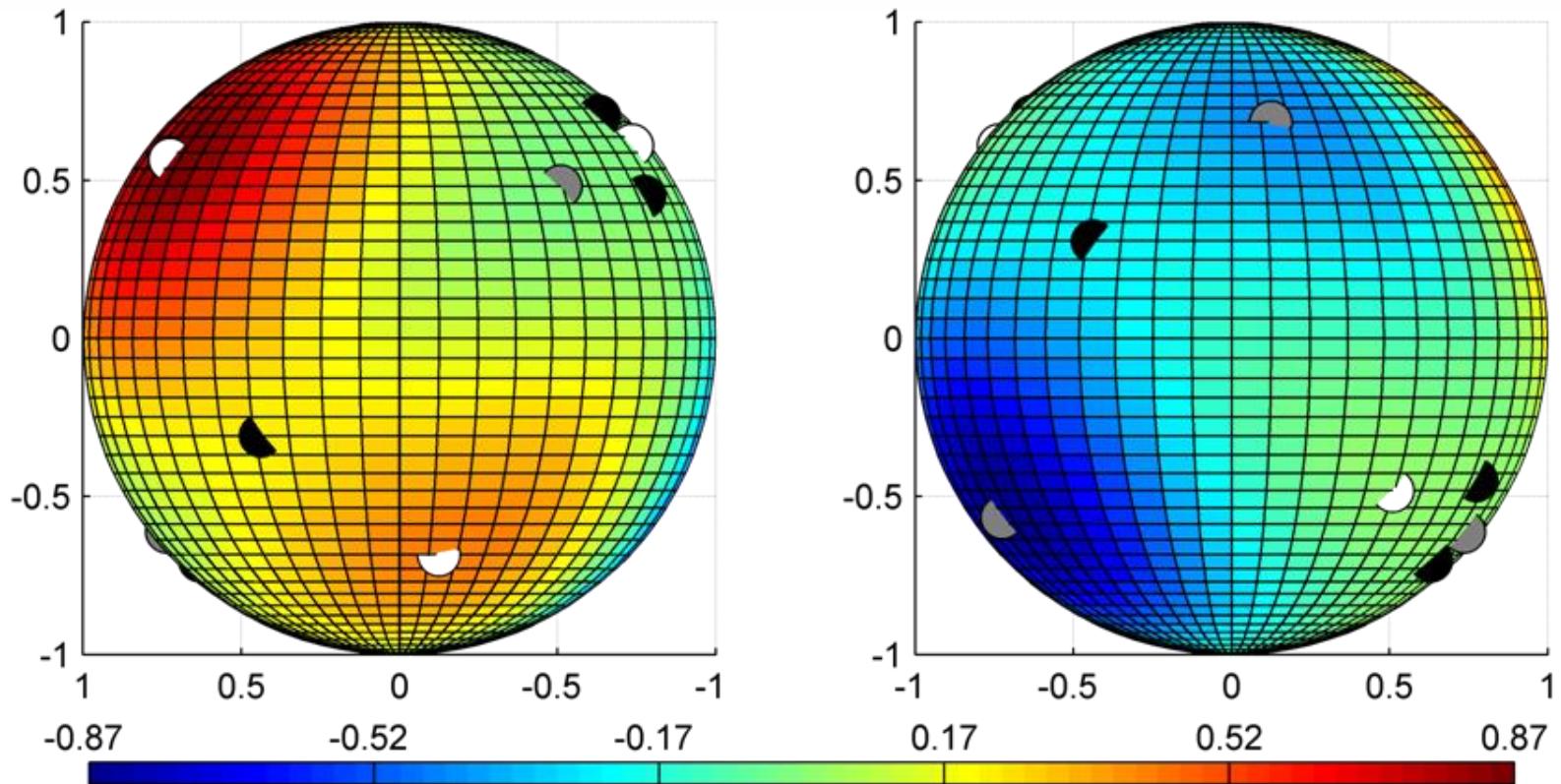
Identity Tensor
 $\mathcal{E} \mathbf{x}^{m-1} = \mathbf{x} \quad \forall \mathbf{x}$

Rate of Convergence

The rate of convergence is given by the spectral radius of the Jacobian.

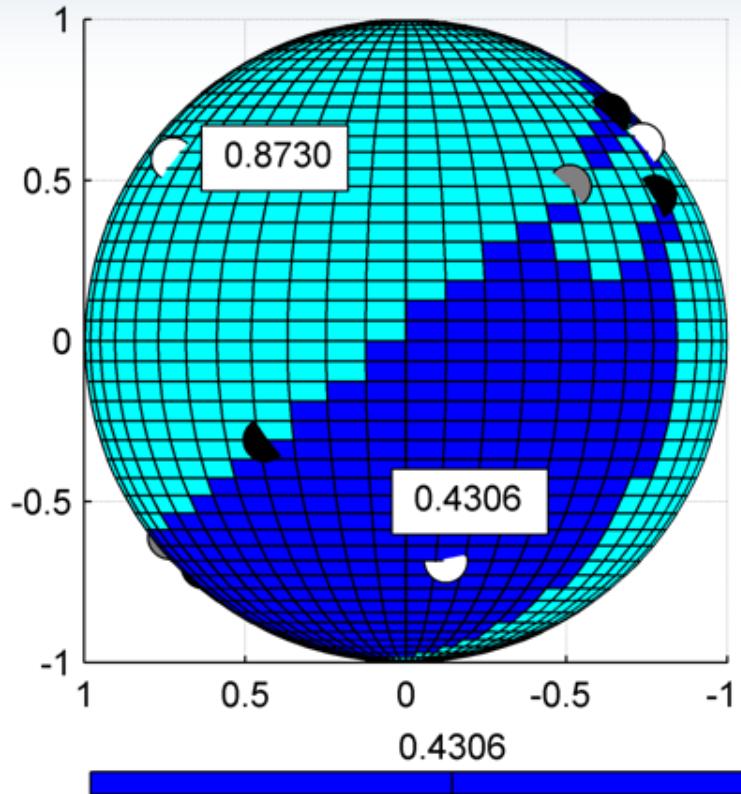
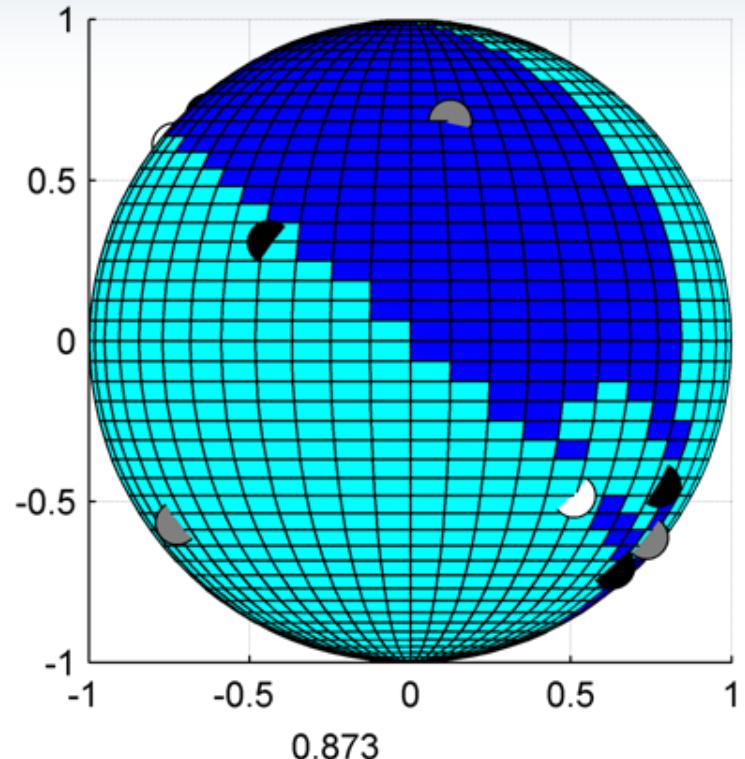


Third-Order Example



White = Local Max, Gray = Local Min, Black = Saddle Point

Jacobian explains Convergence

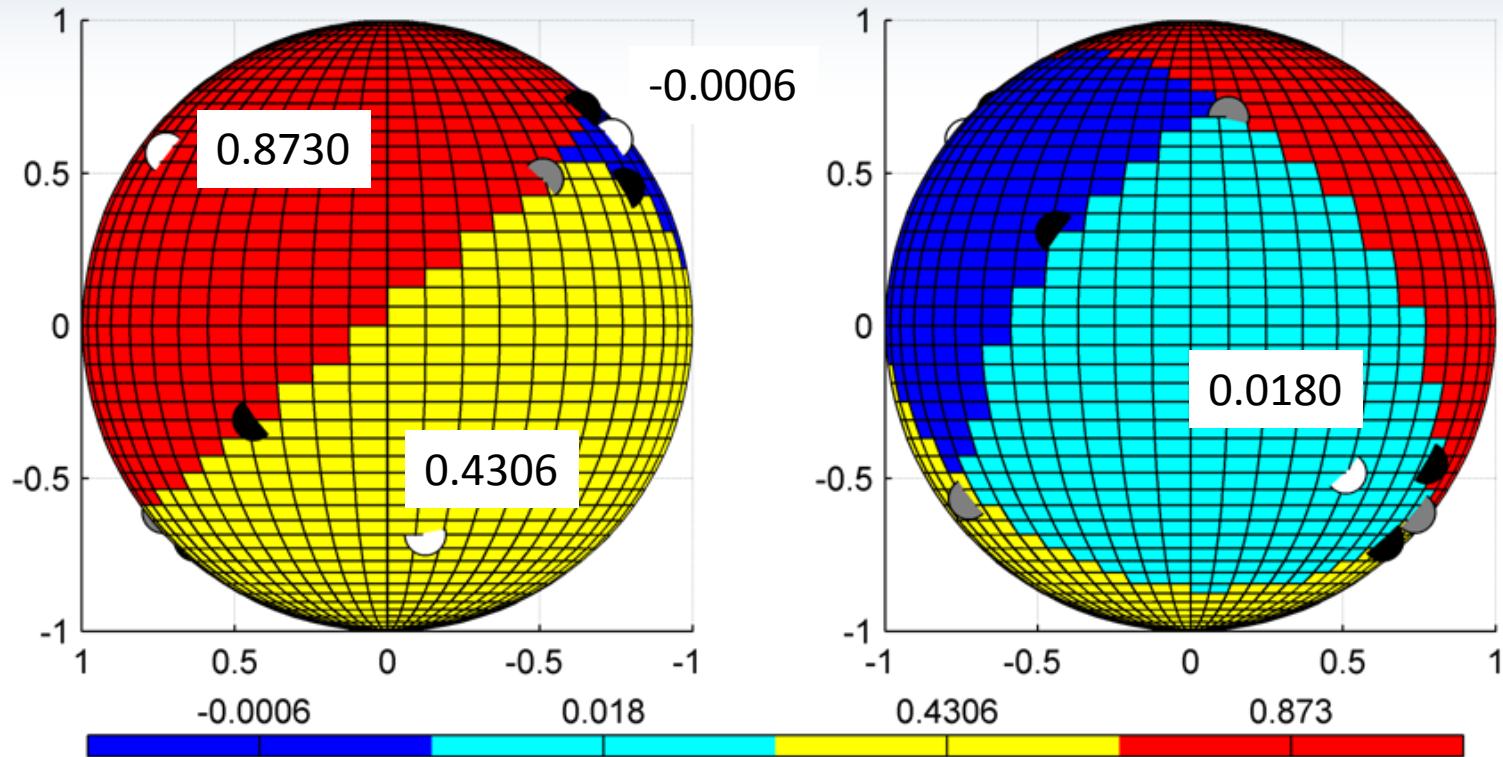


White = Local Max,
Gray = Local Min,
Black = Saddle Point

100 Random Starts

Occurrences	Lambda	Median Its.
62	0.8730	19
38	0.4306	184

Basins of Attraction for $\alpha = 1$



White = Local Max,
Gray = Local Min,
Black = Saddle Point

Occurrences	Lambda	Median Its
40	0.8730	32
29	0.4306	48
18	0.0180	116
13	-0.0006	145

Relationship to Matrix Power Method

Symmetric Power Method

For $k = 1, 2, \dots$

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k / \|\mathbf{A}\mathbf{x}_k\|$$

$$\lambda_{k+1} = \mathbf{x}_{k+1}^T \mathbf{A} \mathbf{x}_{k+1}$$

Adding a shift moves the eigenvalues, potentially altering which eigenvalue is largest in magnitude.

$$\mathbf{A} \leftarrow \mathbf{A} + \alpha \mathbf{I}$$

$$\lambda_j \leftarrow \lambda_j + \alpha$$

Jacobian of fixed point operator at $(\lambda_j, \mathbf{x}_j)$ has eigenvalues:

$$\{0\} \cup \left\{ \frac{\lambda_i + \alpha}{\lambda_j + \alpha} : 1 \leq i \leq n \text{ with } i \neq j \right\}$$

Can only possibly have spectral radius less than one for largest or smallest eigenvalue.

Complex Tensor Eigenpairs

Qi (2005), Lim (2005)

Definition: Assume \mathcal{A} is a symmetric m^{th} order n -dimensional real-valued tensor. We say that $\lambda \in \mathbb{C}$ is an **eigenvalue** if there exists $\mathbf{x} \in \mathbb{C}^n$ such that

$$\mathcal{A}\mathbf{x}^{m-1} = \lambda\mathbf{x} \quad \text{and} \quad \mathbf{x}^\dagger \mathbf{x} = 1.$$

The vector \mathbf{x} is called the **eigenvector**.

Eigenpairs are not “unique” but define an equivalence class:

$$\mathcal{A}(e^{i\varphi}\mathbf{x})^{m-1} = e^{i(m-1)\varphi}\mathcal{A}\mathbf{x}^{m-1} = e^{i(m-1)\varphi}\lambda\mathbf{x} = (e^{i(m-2)\varphi}\lambda)(e^{i\varphi}\mathbf{x})$$

Theorem: # of distinct eigenvalues (real and complex) is exactly $((m-1)^n - 1)/(m-2)$
Cartwright/Sturmfels 2010

For $m = 3$ and $n = 4$, we should have 7 distinct eigenvalues.

Complex SS-HOPM

Complex SS-HOPM

For $k = 1, 2, \dots$

$$\hat{\mathbf{x}}_{k+1} = \frac{\mathcal{A}\mathbf{x}_k^{m-1} + \alpha\mathbf{x}_k}{\lambda_k + \alpha}$$

$$\mathbf{x}_{k+1} = \frac{\hat{\mathbf{x}}_{k+1}}{\|\hat{\mathbf{x}}_{k+1}\|}$$

$$\lambda_{k+1} = \mathbf{x}_{k+1}^\dagger \mathcal{A} \mathbf{x}_{k+1}^{m-1}$$

$ \lambda $	$\alpha = 2$	$\alpha = 2^{1/2}(1+i)$
1.0954	18	22
0.8893	18	15
0.8169	21	12
0.6694	1	4
0.5629	22	16
0.3633	8	9
0.0451	12	20

