

Role and Impact of Uncertainty Quantification in the Coming Decade

Habib N. Najm

Sandia National Laboratories
Livermore, CA

SciDAC 2011
Denver, CO; Jul 10-14, 2011

Definition of Uncertainty Quantification (UQ)

UQ is the end-to-end estimation and analysis of uncertainty in

- models and their parameters
 - assimilation of experimental/observational data
 - model fitting and parameter estimation
- model predictions
 - forward propagation of parametric uncertainty to model outputs
 - accounting for alternate plausible models

Sources of Uncertainty in computational models

- model structure
 - participating physical processes
 - governing equations
 - constitutive relations
- model parameters
 - transport properties
 - thermodynamic properties
 - constitutive relations
 - rate coefficients
- initial and boundary conditions
- geometry
- numerical errors
- bugs
- faults, data loss, silent errors

The Case for Uncertainty Quantification

UQ enables:

- enhanced scientific understanding from computations
 - exploration of model predictions over range of uncertainty
- Assessment of confidence in computational predictions
- Validation and comparison of scientific/engineering models employing (noisy) data
- Design optimization
- Use of computational predictions for decision-support
- Assimilation of observational data and model construction

Applications of UQ over the past decade

- UQ has been used in a range of physical systems
 - Continuum mechanics; Geophysics; Fluid dynamics
 - Wave phenomena; Electromagnetics; Combustion; Climate
 - Network models; Molecular Dynamics; Multiscale coupling
- UQ has been used for
 - Parameter estimation from data
 - Global sensitivity analysis
 - Estimation of uncertainty in predictions
 - Model validation
- Increased application of UQ methods has been driven by
 - Advances in UQ methods/software
 - Continuing increase in computational science/performance
 - Increased awareness of the need for model validation

UQ will:

- be applied to increasingly large-scale computational problems of some relevance – power grids, climate
- enhance understanding of large-scale physical models
- inform observational/experimental campaigns
- drive interdisciplinary math/eng/stats developments
 - Data–UQ–Models
- inform optimal complexity of computational model detail
- require continued expansion in capabilities of computational platforms

Impact on the Computational Scientist

Working with UQ experts:

- Know your model
 - Are there alternate/competing submodels?
 - What's the (experimental/theoretical) evidence for each?
 - Statistical methods for model comparison/selection
 - Model validation
- Know your parameters
 - Identify uncertain parameters
 - Quantify their uncertainties ... joint PDF!
 - Statistical inverse problem – data?
 - Identify important parameters – reduce dimensionality
 - Global sensitivity analysis
- Forward propagation of uncertainty
- Close the loop (again) with data, model validation

- Robust statistical methods for stochastic inverse problems
- Characterization of uncertain inputs
- High dimensionality
- Spatiotemporally adaptive order/dimensionality for robust representation of random fields
- Oscillatory/chaotic time dynamics over long time horizons
- Nonlinearity and bifurcations
- Effective sampling strategies in high-D
 - Adaptive sparse quadrature methods
 - Compressive sensing
- Optimized intrusive solvers
- Fault tolerance in UQ algorithms