SAND2011- 3380C

Biologically inspired feature creation for
multi-sensory perception

Brandon ROHRER &1
& Sandia National Laboratories, USA

Abstract. Automatic feature creation is a powerful tool for identifying and reach-
ing goals in the natural world. This paper describes in detail a biologically-inspired
method of feature creation that can be applied to sensory information of any modal-
ity. The algorithm is incremental and on-line; it enforces sparseness in the features
it creates; and it can form features from other features, making a hierarchical feature
set. Here it demonstrates the creation of both visual and audio features.

Keywords. feature creation, unsupervised learning, perception, abstraction, vision
processing, sensor fusion

1. Introduction

The purpose of this work is to demonstrate feature creation in multiple sensory modal-
ities that is inspired by observations of neurological activity and structure. A feature
is a combination of inputs that is useful in sparsely representing a state variable or in
predicting future inputs. Feature creation” is most often found to be useful in machine
learning problems with high-dimensional inputs and has received increased attention in
recent years in problems with large input spaces, such as gene selection and natural lan-
guage analysis. [5] The problem addressed here is multisensory perception, as in an au-
tonomous robot.

The power of features is well illustrated by a simple example, the exclusive-or
(XOR) problem. (See Figure 1.) As posed, the two classes are not linearly separable, that
is, they are not separable by a single straight line and cannot be segregated in a two-layer
neural network. [9] However, a nonlinear feature, created by multiplying the values of
x1 and x5 for each data point, transforms the classification problem to a space in which
it is trivial.

The ability of appropriately selected features to simplify otherwise intractable prob-
lems makes the approach appealing for challenging machine learning applications. Iden-
tifying an object category, based on an image, or a topic, based on a text snippet, are pop-
ular problems in which constructed features are commonly used. Deciding that an array
of pixels represents, say, a dog, may involve several levels of features. Pixels may be in-

!Corresponding Author: Sandia National Laboratories, Albuquerque, New Mexico, USA, Email:
brrohre @sandia.gov, Web: http://www.sandia.gov/ brrohre

2Synonymous and closely related terms include feature extraction, feature construction, feature selection,
feature generation, concept generation, sparse representation, kernel learning, manifold detection, or state space
dimensionality reduction.

o X
a) ° 2 ®e b)
20 o’
- *@go'n—ﬁ—"mf’
o
L) 00
..-. Ooo

Figure 1. a) The exclusive-or problem, named for the XOR logic table it resembles. The challenge is to sepa-
rate the data points into their respective classes. It clearly cannot be achieved by a linear separation boundary.
b) The same problem with each data point expressed in a feature space with fi = x1 X 2. Once transformed
into this feature space, linear separation becomes straightforward.

terpreted as edge features, which in turn may be used to infer topological features, which
may then be classified. As opposed to the XOR problem which has only two dimensions,
input in the image classification problem may have millions of dimensions.

One of the challenges when creating features is determining the quality of a given
feature set. In isolation, feature creation is an unsupervised learning problem and cannot
be evaluated without additional information, such as an objective function or the perfor-
mance of a second machine learning algorithm that uses the created features as input.
For example, in clustering, a closely related unsupervised learning problem, the qual-
ity of clusters can either be determined by a measure, such as the standard deviation of
elements within a cluster, or by the performance of a classification algorithm that uses
the clusters as input. Data compression and prediction are other tasks that may be paired
with feature creators.

The feature creation algorithm presented here is used in tandem with a reinforce-
ment learning (RL) algorithm. Feature sets that enable the RL algorithm to collect more
reward are considered superior, setting up a basis for comparison. Together the feature
creator and RL algorithm form BECCA, a brain-emulating cognition and control archi-
tecture. (See Figure 2.) BECCA was designed to address the problem of natural world
interaction—making intelligent agents capable of pursuing arbitrary goals in unfamiliar
and complex environments.

1.1. Related work

The introduction to the 2003 NIPS Feature Extraction Challenge [10] gives an overview
of common feature creation methods. [5] It differentiates feature selection from feature
construction. In feature selection a few of the inputs are assumed to provide most of
the information required for classification. For instance, of all the millions of tests and
observations that could be made on a human body, only a few need to made to determine
whether a patient has a cold: checking for sore throat, fever, and runny nose. A competent
feature selection algorithm would be able to identify these discriminating features, given
sufficient training data.

Alternatively, feature construction is useful when a combination of many inputs car-
ries the discriminative information. In image classification, for example, a set of images
of pepperoni pizza may not have any single pixels that have the same value in all im-
ages, so a feature selection approach would not work. Feature construction would be
necessary, finding operations on the input that allow the category to be discriminated.
Common methods include principal components analysis, support vector machines, lin-

ear discriminant analysis, Fourier transforms, and information theoretic tools. Entries to
the Feature Extraction Challenge used both feature selection and feature construction
approaches, and the winners are described in the same volume as the introduction. [17,
e.g.]

It is interesting to note that, in a follow-up activity, organizers of the Feature Extrac-
tion Challenge tasked a class of undergraduates with creating their own entries. [6] Using
relatively simple feature creation methods, the students improved upon the performance
of the best challenge entries. This may have been due to the fact that the challenge con-
sisted of two-class classification problems. More sophisticated tasks may require more
complex feature sets. Whatever the cause, it demonstrates the room for growth that fea-
ture creation has as an academic field.

Another name for feature creation is "deep learning", [2] a label adopted by a re-
search community seeking to discover and exploit the structure that underlies large, high-
dimensional data. Deep learning approaches create high-level, low-dimensional feature
representations using tools like Convolutional Neural Networks (CNNs) [8], Deep Belief
Networks (DBNs) [7,3], and Deep SpatioTemporal Inference Network (DeSTIN) [1].
CNNs are designed to work with two-dimensional data, such as images, and they do
not apply to arbitrarily structured data. By using several layers of Restricted Boltzmann
Machines, DBNs are capable of generating sophisticated features that allow it to inter-
pret novel inputs. However, they are typically applied to the supervised learning prob-
lem of discrimination, and require a substantial amount of labeled data in order to be
adequately trained. Whether DBN’s can be applied to the unsupervised learning problem
of feature creation is unclear. DeSTIN incorporates both unsupervised and supervised
learning methods and appears to be fully capable of hierarchical feature creation. It has
been published only recently; future papers describing its operation and performance
will allow it to be fully evaluated. Similar to these deep learning approaches, BECCA’s
feature creator is hierarchical, meaning that it repeatedly creates higher-level features
from lower-level features. In contrast to them, it is incremental and on-line, efficiently
incorporating new data as it is observed and updating itself after each time step.

2. Method

BECCA’s feature creator takes in m inputs and produces n outputs, each on the interval
[0, 1], at every time step. It assumes nothing about the source of its inputs or the desti-
nation of its outputs. Inputs are treated the same whether they represent a pixel value, a
sensed touch, or a joint position. The feature creator also takes in a scalar reward at each
time step.

The feature creator first breaks the inputs into groups by finding sets of inputs that
are, on average, somewhat correlated. Each group is a subspace of the full input space,
and it is in these subspaces that features are defined. Whenever the inputs to a group are
sufficiently different from the features in that groups, the inputs become a new feature
and are added to the feature set. Also at each time step, the inputs are used to "vote" for
the activity level of each feature by calculating their similarity to each. The activity of the
most similar feature is preserved and the others are suppressed through a winner-take-all
operation. The feature activities across all groups are concatenated to produce an output
vector. A copy of the output vector is fed back and concatenated with the input vector as
well, allowing the features to be constructed into yet higher-level features.

@@ BECCAAgent HG® g
feature reinforcement- || % d
creator || based learner wor

reward

® observations

Figure 2. At each timestep, the BECCA agent completes one iteration of the sensing-learning-planning-acting
loop, consisting of six major steps: 1) Reading in observations and reward. 2) Updating its feature set. 3)
Expressing observations in terms of features. 4) Predicting likely outcomes based on an internal model. 5)
Selecting an action based on the expected reward of likely outcomes. 6) Updating its world model.

feature creator
@-® . >
2 =
c 8 —OE =
S 5 o O~ = v]
w 9O P - v | ©
s O > 2 @ - S o>
Q o oy |go[go|Ex g
[T > 5 |& So|=8 3
w £ o o = > =]
= ©
o o OB o @

observations

Figure 3. Block diagram of the feature creator, illustrating its operation. Numbered labels refer to steps in
Algorithm 1.

The operation of the feature creator can be illustrated by providing it with a variety
of inputs. Here, it was given two separate input sets, corresponding to two tasks, watch
and listen. In the watch task, the inputs consisted of sections of images from the Caltech-
256 data set. [4] These were converted to black and white and pixelized to a 10 x 10
array of super-pixels. A center-difference image was created by subtracting a portion of a
pixel’s neighbors’ values from its own, and the 100-pixel array was normalized to fall on
[0, 1]. The array, v, and its complement, 1 — v, were passed to BECCA’s feature creator,
resulting in a 200-dimensional input vector.

In the listen task, an audio stream taken from the KUNM radio station in Albu-
querque (89.9 FM) was recorded in 100 ms intervals. The frequency content of each
snippet between 10 and 10,000 Hz was collapsed into bins of one-sixth of an octave (one
whole note in modern music). The level of each bin was low-pass filtered and increases in
bin level were used as inputs. The data that resulted from this pre-processing resembled
a 60-channel graphic equalizer.

A block diagram describing the feature creator’s operation (See Figure 3.) and pseu-
docode (See Table 2.) provide additional details. Full MATLAB (Mathworks, Natick,
MA) code for BECCA and the watch and listen tasks is available as well. [13]

Algorithm 1 FEATURE CREATOR

Input: observation vector

Output: feature_activity vector

1: form input vector by concatenating observation
and previous feature_activity
2: update estimate of correlation between inputs
3: if MAX(correlation) > C7 then
add the two input elements achieving the
maximum correlation to the new group
5: while NOT(stop_condition_met) do
6: find mean_correlation between each

remaining input and group members

7 if MAX(mean_correlation)> Cg and
group size < C3 then

8: add the input element to the group

9: else stop_condition_met

10: for each group do

11: if MIN (DISTANCE (input, features))> C4 then
12: add normalized input to set of features

13: for each feature do

14: Sfeature_vote = feature - input

15: feature_activity = WTA(feature_vote)

Figure 4. Examples of three inputs to the feature creator before and after preprocessing. From left to right
the images are of a woman, a lawnmower, and a snake. (From [4].) When reduced to a 10 x 10 pixelation,
the resulting image is unidentifiable, but retains coarse aspects of the original image. Light pixels represent
locations that are brighter than their neighbors and dark pixels signify the opposite. Neutral gray pixels show
locations that are approximately the same intensity as those around them.

3. Results

The feature creator stepped through 150,000 time steps in the watch task. Examples
of the inputs at three different time steps are shown in Figure 4. During the course of
learning, 264 groups were created, containing 1828 features in all. The complete set of
features from one of the groups are in Figure 5, and samples of other groups can be seen
in Figure 6. The entire set of features, broken out by group, can be found in an online
supplement [15].

Figure 5. Receptive fields for all the features from one group. Although each feature is a linear combination
of the same set of input pixels, the weighting of the pixels in each feature varies and is sometimes near zero.
Inspection of the features suggests that they would be differentially activated by a wide variety of visual stimuli.
Some would respond well to bright horizontal line segments and some to dark vertical line segments, some to
continuous lines and some to line terminations.

Figure 6. Receptive fields for features from 12 of the 264 groups. The six groups in the top row are first-level
features, meaning that they are each composed of raw center-surround pixel inputs. The six groups on the
bottom row are higher-level features. Each of them are composed of a mixture of first-level features and raw
inputs. They tend to span a much larger portion of the visual field than first-level features.

In the listen task, the feature creator stepped through 15,000 time steps, creating 80
groups with 381 features. Examples of audio features can be seen in Figure 7. The entire
feature set can be viewed in the online supplemental material [14]. A video showing both
visual and audio representations of the features can be found here [12].

4. Discussion

BECCA’s method of feature creation results in features that are sparse, that is, they are
functions of only a small number of inputs. Sparsity is often considered a desirable at-
tribute of a feature set. Principal Components Analysis and related methods lack it en-
tirely, creating linear combinations of the entire input set. In order to encourage sparsity,
many feature creation algorithms include a normalization term. Occasionally the [y norm
is used, [18] (the count of the number of inputs used in a feature, the strongest spar-
sity condition) but more often it is the /; norm (a weaker sparsity condition, but more
amenable to computation and analysis). By fixing the number of input elements in each
group, BECCA’s feature creator enforces a maximum /o norm, creating strongly sparse
features.

By not making assumptions about the source of its inputs, BECCA’s feature creator
gains the capability of handling inputs of all modalities, and of combining them. It is not
uncommon for feature creators to assume that incoming data is from a one-dimensional

Frequency content of feature 18 in group 3

a)

Frequency content of feature 3 in group 4

b)

L L .
10 700 7000 10,000
Frequency (Hz)

Frequency content of feature 6 in group 7

d)

. II”. . .
101 00

10 0 10 10,000
Frequency (Hz)

Frequency content of feature 4 in group 7

e)

Frequency content of feature 1 in group 73

Q)

10 10,000

0 7000
Frequency (H2)

Frequency content of feature 7 in group 7

f)

I] L 1 Il] L 1
10 100 1000 10,000 10 100 10,000 10 100
Frequency (Hz)

J
000 10,000

1000 7
Frequency (Hz) Frequency (Hz)

Figure 7. Receptive fields for six features from the listen task. An octave, a factor of two difference in fre-
quency, is represented by a fixed interval on these logarithmically-scaled plots. The harmonic overtones of a
fundamental frequency are its integer multiples. The magnitudes of the various overtones determine the quality
or timbre of the sound. The difference between, say, a violin and a flute playing the same note lies primarily
in their differing patterns of overtones. Due to resonant nature of sounds, single sources often produce sounds
consisting of a fundamental frequence with its harmonic overtones. These commonly occurring patterns are
observed in the groups and features created. a) This feature shows a fundamental frequency cluster and its first
harmonic, separated by an interval of one octave. b) In this feature, a fundamental frequency of approximately
45 Hz is accompanied by its first, third, and seventh harmonics (two, four, and eight times the fundamental fre-
quency, respectively) and several lower non-harmonic overtones. ¢) Where both a) and b) are composed of raw
inputs, this feature combines other features to make a more complex, high-level audio feature. There are many
examples of high-level features like this one in the created feature set. d-f) These features are all from the same
group. They illustrate receptive fields of the same fundamental frequency, but with different timbres. In each
case, the fundamental frequency is accompanied by its first, third, and fifth overtones. Changes in their relative
amplitudes make them sensitive to sounds with distinctly different qualities. (See [12] for a full audiovisual
representation.)

array of sensors, as in an encoder, or a two-dimensional sensor array, as in a camera.
Hand-crafted kernels or transformations are often built in. These engineered approaches
can produce striking results, but at the cost of some generality. The approach presented
here aims to be as general as possible, allowing a programmer to be agnostic about
the source and meaning of inputs. This opens the door for automatic feature creation
in not only vision and hearing, demonstrated here, but also in laser scanning, whisker
contact, radiation detection, network traffic monitoring, and any other conceivable sensor
modality, in addition to combinations of all the above.

Feature creation allows robots to interact with their environments in increasingly so-
phisticated ways. In cases where their environments and tasks are unfamiliar, feature cre-
ation may be necessary for any better-than-random performance on a task. It is a means
of abstracting specific experience into a more symbolic representation. In a sufficiently
complex environment, an agent is unlikely to experience the exact same set of inputs
more than once. If that agent is to learn from its experience, it must have a way to re-
late its current experience to previous ones. Abstract features make this possible. They
allow one to claim that two objects are both books, even though they are of different
sizes, weights, colors, ages, smells, and textures. And in this way, they allow experience

-— sdnoib

Features developed during the listen task

features —>—

I I I P N P T P T P

o o o Lo G D T b e e
o B bl b

O VT O T
T T O
N T o O L

L e
L Lo L L
L
I
Ll b
L
L DT
[
bl
P P NP P P TR TR
i L |
P P R YO A T R R T A

o
b ek

[
Ll

b
bl

ol

L
|

L

I
Ll
|

|

L
e
|

'

ARRnnnnnnnnNnnnnnnn
Ml
Ll I
LI
wWMMMWMWWWMNMH
|

AL
[
Ll

1
bl

T EEFELEE
= FCEE

o
L
I

b i

I8
]
b

il

i
i
1

MEFETNEET
=l F

e

Features created during
the listen task

features —-

~— sdnoib

gained with one book to be transferred to the other. Natural language acquisition can be
understood as feature creation operating at an advanced level. The symbols for words
can be created from their corresponding printed and spoken forms and the visual and
other sensory experiences associated with them. Automatic feature creation will almost
certainly be a capability of any machine capable of human-level learning behavior and
performance.

BECCA’s feature creator was inspired by evidence of biological feature creation. At
a high level, human capabilities of analogy, association, generalization, and abstraction
suggest that arbitrary symbols may be combined and related to one another. Our ability
to learn and understand such things as microcircuit design and quantum physics suggests
that these symbols are acquired rather than evolved and innate. The mammalian primary
visual area of the cerebral cortex, V1, has inputs that are excited by small center-surround
stimulus fields and outputs that are activated by appropriately oriented line segments.
Other areas of the cortex, such as V2, V4, and the medio-temporal area, take these out-
puts as their inputs and build them into outputs that respond to increasingly complex
features. Other areas of the cortex appear to serve the same function for touch [11] and
hearing, as demonstrated by the aural representation in bats that enables echolocation.
Re-routing sensory inputs to a new cortical location results in similar feature creation
phenomena, [16] hinting that the cortex may be performing a similar function throughout
its extent. If that is the case, the function it performs may be nothing more than feature
creation. However, there is still far too little data available to certify or disprove such a
statement. It is at most a conjecture, and regardless of its accuracy, the feature creation
observed in the cortex provides a rich source of insights for the development of machine
learning algorithms seeking to do the same.

Acknowledgements

This work was supported by the Laboratory Directed Research and Development pro-
gram at Sandia National Laboratories. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

References

[1] 1. Arel, D. Rose, and B. Coop. DeSTIN: A deep learning architecture with application to high-
dimensional robust pattern recognition. In Proc. AAAI Workshop Biologically Inspired Cognitive Archi-
tectures (BICA), 2009.

[2] 1. Arel, D. C. Rose, and T. P. Karnowski. Deep machine learning—a new frontier in artificial intelligence
research. IEEE Computational Intelligence Magazine, November 2010.

[3] 1. Fasel and J. Berry. Deep belief networks for real-time extraction of tongue contours from ultrasound
during speech. In Proceedings of the International Conference on Pattern Recognition (ICPR), 2010.

[4] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report 7694,
California Institute of Technology, 2007. http://authors.library.caltech.edu/7694.

[5] 1. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine
Learning Research, 3:1157-1182, 2003.

[6] 1. Guyon, J. Li, T. Mader, P. A. Pletscher, G. Schneider, and M. Uhr. Competitive baseline methods set
new standards for the nips 2003 feature selection benchmark. Pattern Recognition Letters, 28:1438—
1444, 2007.
[71 G.E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Computa-
tion, 18:152701554, 2006.
[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recogni-
tion. Proc. IEEE, 86(11):2278-2324, 1998.
[91 M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. MIT Press, Cam-
bridge, 1969.
[10] Neural Information Processing Systems. NIPS Feature Extraction Challenge, 2003.
http://www.nipsfsc.ecs.soton.ac.uk/, Accessed April 25, 2011.
[11] J. R. Phillips, K. O. Johnson, and S. S. Hsiao. Spatial pattern representation and transformation in
monkey somatosensory cortex. Proceedings of the National Academy of Sciences, 85:1317-1321, 1988.
[12] B.Rohrer. Automatically created audio features. http://www.sandia.gov/ brrohre/video/AudioFeatures.mp4,
2011.
[13] B. Rohrer. BECCA code page. http://www.sandia.gov/"brrohre/code.html, 2011.
[14] B. Rohrer. Listen task features. http://www.sandia.gov/ brrohre/doc/Rohrer11BicaSuppB.pdf, 2011.
[15] B. Rohrer. Watch task features. http://www.sandia.gov/ brrohre/doc/Rohrer11BicaSuppA.pdf, 2011.
[16] J. Sharma, A. Angelucci, and M. Sur. Induction of visual orientation modules in auditory cortex. Nature,
404:841-847, 2000.
[17] K. Torkkola. Feature extraction by non-parametric mutual information maximization. Journal of Ma-
chine Learning Research, 3:1415-1438, 2003.
[18] J. Weston, A. Elisseft, B. Schoelkopf, and M. Tipping. Use of the zero norm with linear models and
kernel methods. Journal of Machine Learning Research, 3:1439-1461, 2003.

