SAND2011- 7850C

Skel: Generative Software for Producing
Skeletal I/O Applications

Jeremy Logan*, Scott Klasky*, Jay Lofstead?,

Hasan Abbasi*, Stephane Ethier”, Ray Grout'T, Seung-Hoe Ku**, Qing Liu*,
Xiaosong Ma®, Manish Parashar¥, Norbert Podhorszki*, Karsten Schwan', Matthew Wolf®
*National Center for Computational Science, Oak Ridge National Laboratory, Oak Ridge, TN
11Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ
**Courant Institute of Mathematical Sciences, New York University, New York, NY
$Department of Computer Science, North Carolina State University, Raleigh, NC
I Plasma Physics Laboratory, Princeton University, Princeton, New Jersey
tTNational Renewable Energy Laboratory, Golden, CO
TCollege of Computing, Georgia Tech, Atlanta GA
{Sandia National Laboratories, Albuquerque, NM

Abstract—Massively parallel computations consist of a mixture
of computation, communication, and I/O. As part of the co-
design for the inevitable progress towards exascale computing,
we must apply lessons learned from past work to succeed in
this new age of computing. Of the three components listed
above, implementing an effective parallel I/O solution has often
been overlooked by application scientists and was usually added
to large scale simulations only when existing serial techniques
had failed. As scientists’ teams scaled their codes to run on
hundreds of processors, it was common to call on an I/O expert
to implement a set of more scalable I/O routines. These routines
were easily separated from the calculations and communication,
and in many cases, an I/0O kernel was derived from the application
which could be used for testing I/O performance independent
of the application. These I/O kernels developed a life of their
own used as a broad measure for comparing different 1/0
techniques. Unfortunately, as years passed and computation and
communication changes required changes to the I/0, the separate
I/O kernel used for benchmarking remained static no longer
providing an accurate indicator of the I/O performance of the
simulation making I/O research less relevant for the application
scientists.

In this paper we describe a new approach to this problem
where 1/O kernels are replaced with skeletal I/O applications
automatically generated from an abstract set of simulation
I/0O parameters. We realize this abstraction by leveraging the
ADIOS [1] middleware’s XML I/O specification with additional
runtime parameters. Skeletal applications offer all of the benefits
of I/O kernels including allowing I/O optimizations to focus
on useful I/O patterns. Moreover, since they are automatically
generated, it is easy to produce an updated I/O skeleton whenever
the simulation’s I/O changes. In this paper we analyze the
performance of automatically generated I/O skeletal applications
for the S3D and GTS codes. We show that these skeletal applica-
tions achieve performance comparable to that of the production
applications. We wrap up the paper with a discussion of future
changes to make the skeletal application better approximate the
actual I/O performed in the simulation.

I. INTRODUCTION

As simulations begin to scale to hundreds of thousands
of processors, I/O is becoming an increasingly painful area
because an ever increasing percentage of time is spent in 1/O,

communication, and memory movement causing less time to
be spent on the calculations. Recently, the Department of En-
ergy has funded three large-scale co-design centers whose aim
is to use three application areas, Nuclear Energy, Combustion,
and Extreme Materials, as a basis to co-design the fundamental
science applications, the exascale hardware, and the associated
data analytic capabilities in a holistic system. To realize this
vision, teams need to create skeletal and compact applications
for use in hardware simulators to better understand the way
that algorithms, hardware, and science impact one another. An
existing set of such small applications is Mantevo [2], [3] cre-
ated by Sandia Labs. This package contains miniapplications
that embody essential performance characteristics of key appli-
cations, minidrivers that exercise Trilinos [4] math pacakges,
and paramaterizable application proxies that can be calibrated
to mimic the performance of a large scale application. Similar
to the Mantevo effort, skeletal applications are small scale
applications which remove the basic floating point calculations
but retain the basic communication and I/O in the code.
Compact applications add a portion of science kernels to these
skeletal applications but are generally simple in terms of lines-
of-code and software complexity. Decoupling the I/O from
the application allows hardware simulators to execute these
instructions in a reasonable amount of time facilitating the
co-design of the hardware with the algorithms. The inclusion
of I/O in skeleton and compact applications improves the
usefulness of these tools over what Mantevo currently provides
and will more completely represent application activities on
potential exascale hardware designs. By keeping these I/O
kernels current, these data movement activities can be more
accurately represented when modeling new systems.

We believe that a phase transition is necessary for the paral-
lel I/O community. “Custom” I/O kernels such as Flash-1O [5]
and MADbench2 [6] should be replaced with automatically
created I/O kernels representing the current state of application
I/O tasks. Our reasoning is three-fold. First, I/O kernels may
be difficult to extract from complex simulations. This barrier

limits the number of kernels to teams that can spend the time
and effort to extract a kernel that accurately represents the
I/O patterns of the science application. Second, I/O kernels
can be difficult to use as their interfaces vary widely between
kernels and they are sometimes derived from the already
complex simulation interfaces with few changes to make them
accessible to anyone but an application expert. Third, I/O
kernels quickly become dated and are rarely updated. For
example, Argonne National Laboratory maintains a list of 14
parallel I/O benchmarks' (updated June 22, 2011) for use by
the I/O and co-design communities. Digging deeper into the
benchmarks themselves reveals, for example, Flash-IO was
last updated 6-22-2001; Chombo, QIO, and SSCA, point to
pages not found; and PIO/IOR, MaDbench, and MPI-IO were
last updated in 2006. All of these benchmarks quickly become
outdated as the I/O demands of simulations evolve and yet they
are still used in many publications to illustrate the performance
of new I/O methods.

While having a consistent, stable set of benchmarks is
certainly desirable for easier apples-to-apples comparisons
between different papers, for tests using these benchmarks
to be meaningful for scientific application developers making
selections for their I/O routines, the benchmarks must be kept
relatively current. Moving from static benchmarks extracted
from scientific applications to automatically generated skele-
tal applications achieves this goal. Each generated skeletal
application has a version associated with it that can be
reported along with the results. This achieves both keeping
the benchmarks current and affording easier apples-to-apples
comparisons.

In order to create I/O skeletal applications, we have worked
closely with many application teams. In fact, several of
the application authors are co-authors of this paper. These
application scientists agree with the benefit of such skeletal
applications and illustrate the seriousness of our team to create
I/0O kernels that are accurate, automatically created, and openly
delivered to the science community. In order to realize our
vision, we have utilized the ADIOS framework, which allows
I/O experts the ability to create new I/O techniques and try
them on any system or with any ADIOS integrated application
without changing the source code.

Briefly, in an effort to illustrate how ADIOS features support
Skel, we recap ADIOS here. Our team created ADIOS to
simplify I/O on the largest supercomputers in the world for
application teams. Our goal was to reduce the I/O complexity
while delivering “extreme” I/O performance. ADIOS allows
scientist to create groups of variables that they want to write
out on each process, termed a Process Group (PG). Each PG
can be written out synchronously or asynchronously using the
host of different transport methods that ADIOS provides. Most
simulations that use ADIOS have an external XML file, such
as the excerpt from the GTC XML configuration file shown in
Figure 1. In this illustration, one large array, electrons, will be
written to the file system using the MPI transport method. This

Uhttp://www.mcs.anl.gov/~thakur/pio-benchmarks.html

<adios—group name="particles"

coordination-communicator="comm">

<var name="mype" type="integer"/>

<var name="nparam" type="integer"/>

<var name="pes" type="integer"/>

<var name="nparamxpes" type="integer" />

<var name="nparamxmype" type="integer" />

<var name="ntracke" type="integer" />

<global-bounds dimensions="nparams*pes,ntracke"
offsets="nparamxmype, 0">
<var name="electrons" type="real"
dimensions="nparam,ntracke"/>
</global-bounds>
</adios—-group>
<transport method="MPI" group="particles"/>

Fig. 1. GTC I/O descriptor

is a synchronous method in which each participating process
arranges data in local, self-describing chunks, writing them
to storage in parallel. While this “chunked” style of output
is commonly believed to give poor reading performance,
extensive testing of this data organization has shown [7], [8],
[9] that it allows for arbitrary access patterns for reading and,
in general, can give unprecedented read performance for the
most common read access patterns used in scientific codes.
ADIOS contains many different I/O methods from many
different institutions, including MPI, MPI-AMR, MPI-lustre,
PHDF5, NETCDF-4, POSIX, DataSpaces, DataTap, NSSI, and
EDO. These were created at ORNL, Sandia, Georgia Tech,
Rutgers University, and Auburn University. A central goal was
to allow any I/O scientist the ability to create new ADIOS
transport methods that can be used by the application scientist
by just changing the transport method entry in the XML from
MPI in the above example to any other transport. Application
scientists can also publicly release their XML file to I/O
scientist to afford them the ability to optimize their I/O on
different platforms. [10]

One of our goals is to abstract /O APIs away from the
actual implementation to allow any I/O scientist the ability
to create new transport methods and try them with produc-
tion science codes. ADIOS uses a generative programming
technique [11] to convert the XML code into ADIOS write
statements to perform the actual output. Recently this func-
tionality was extended with a new application called skel that
affords simulation of the I/O patterns of a science code by
creating full skeletal applications based on an application’s
external XML file. The creation of the skeletal applications is
steered by an additional XML file containing test parameters.
This file is generated by skel and is initially populated with
default values that can be tuned by the user. Using only the
application specific information in these two files, the skel tool
creates source code to mimic the application’s I/O operations.
Since the XML file describing the I/O is used when running
applications that use ADIOS, application scientist can archive
the additional XML file describing the input parameters as
well as their actual input files so that we can automatically

create new I/O skeletal applications that provide a consistent
interface from one application, such as the GTC fusion code,
to another, such as the S3D combustion code.

The rest of this paper is organized as follows. First we
describe our general vision for leveraging I/O skeletal applica-
tions and discuss some of the differences and similarities be-
tween traditional I/O kernels and the skeletal applications. We
then give a description of the way we generate these skeletal
applications discussing not just writing 1/0 kernels, but also
reading the patterns most common to large scale scientific
computing. We then compare and contrast the performance of
running the skeletal application to the actual I/O performance
for the simulation. Later we look at the work related to this
research and compare and contrast this with our techniques.
Finally we examine the pros and cons of our approach and
explore future work that is necessary to remove bottlenecks in
I/0O performance paving the way for progress towards extreme
scale computing.

II. I/0 SKELETAL APPLICATIONS

Initially, the emergence of skeletal applications will have a
profound effect on the ability of /O middleware developers
to quickly and accurately test the performance of I/O methods
in a context of actual science application usage scenarios. By
reducing the time required to evaluate new methods, more time
will be available to advance the methods themselves resulting
in more efficient I/O and better utilization of the available I/O
resources.

The skeletal applications will also improve over time by
better approximating the application’s I/O performance. The
generation process will become simpler with skeletal ap-
plication parameters being extracted from output files and
application traces automatically. Integrating application traces
with skel would also provide more realistic control of the
timing of I/O operations allowing the skeletal application to
mimic the jitter present in the simulations and give a better
representation of the amount of time available to move data
asynchronously between output events.

We envision a repository containing various I/O descriptors
that are available to developers wishing to test a new 1/O
implementation against realistic I/O requirements. We also
envision a database of performance measurements representing
a selection of skeletal applications that have been tested on
a variety of computing platforms. Such a database would
initially assist users in selecting an optimal I/O method for
a particular I/O pattern. In the future, intelligent middleware
will consult the database to find the optimal method without
the user’s involvement.

The work presented here represents the first steps in a ripe
new research area. For now, we see this project as producing
a comprehensive set of skeletal applications representing the
I/O patterns of actual scientific simulations. This set of skeletal
applications will share a uniform interface, will be easily kept
up to date, and will accurately reflect the I/O performance of
the original simulations in their evolving forms.

h 4

gts_params.
xml

v

Submit
scripts

v
Source files

[¥

Makefile ‘

Executables

skel_gts

Fig. 2. Skel system overview

III. THE SKEL SYSTEM

We have developed skel, a software tool used to create,
deploy, and execute skeletal I/O applications. This section
details the design of skel and illustrates how it is used to
generate skeletal I/O codes.

A. System Structure

Figure 2 illustrates the process of using skel to produce
skeletal applications. The system requires only two inputs:
the original xml file from the application of interest and a
parameter file that the user populates with the details of the
tests that are to be run. Except for supplying these input files,
generation of a skeletal application using skel requires very
little user participation.

Processing begins with a call to skel-xml to prepare the IO
descriptor for use with the generated skeletal application. This
involves aligning the file with the target language (currently C
or Fortran), reordering dimensions as needed. Variable names
are rewritten by replacing any characters that would be invalid
in the target language, such as mathematical operators and
struct accessors, and renaming any variables that conflict
with a skel variable or a language keyword, e.g., enum, a
reserved word in C, is used as a variable name in the XGCl1
code. This produces an I/O descriptor that can be safely used
for generating the parameter file and the skeletal application
source files as well as for execution of the skeletal application.

Next, a parameter file is produced from the app_skel.xml
file. The generated parameter file contains reasonable defaults
for most of the scalar variables used as array sizes that are
typically produced dynamically by the application and do not
appear in the XML descriptor. The file also contains a default
set of tests including each of the I/O groups in the input
file. We expect that users will typically make changes to the
parameter file to reflect the particular tests to be performed.
We discuss the details of the parameter file in the next section.

Once the parameters have been edited to the user’s satisfac-
tion, the output files that make up the skeletal application are
generated. The commands skel-src, skel-make, and skel-submit
are used (as shown in Figure 2) to produce, respectively, the
skeletal application source code (in C or Fortran), makefile,
and submission scripts. The generated makefile contains tar-
gets for compiling the skeletal application and deploying the
relevant files to the target filesystem as well as for performing
the earlier tasks of producing the skel XML file and parameter
file. In fact, we have written a bootstrapping script that creates
an initial project makefile, which, once created, hides all of the
complexity of the various skel calls behind a few simple make
targets. Thus, despite the apparent complexity of the diagram,
the tool is very easy to use, requiring only the ability to edit
the XML code in the parameter file.

B. Skeletal application parameters

We have chosen to place all settings and parameters for the
automatically generated codes into a single XML parameter
file. This contrasts with many I/O benchmarks that provide
control via command line arguments or using a flat configu-
ration file. Though XML is often viewed as a bulky format, it
offers several advantages that we felt justified its use. First, we
are building from an existing XML file for the I/O specification
so using XML to specify parameters means that we are not
dealing with an additional format. Second, the amount of data
required for the parameters is relatively small making the
overhead of the text-based XML encoding inconsequential.
Third, the Measurement data from the skeletal applications is
also generated as XML. In fact, we embed the skel parameter
data directly in the results file providing a record of exactly
what tests generated those results. This is simple to do with
XML and the parameters are simple to extract should the tests
need to be repeated.

The parameters to the skeletal application can be divided
into two categories. The first category includes the details
about the application. These details consist mainly of values
for some of the application variables. Generally the skeletal ap-
plication is not concerned with values of simulation variables,
but only with the size and memory layout of data. However,
some of the application’s scalar variables will typically be used
to represent the size of stored arrays. It is these values that
are important in specifying the I/O pattern. Since the values
of these variables are not located in the I/O descriptor, we
must supply them as parameters. This category also includes
parameters to specify values for the array elements in the
skeletal application. By initializing arrays to known values,

such as MPI rank or array location, it is possible to verify the
correctness of the underlying I/O method.

The other category of parameters includes those related
to the execution of the skeletal application. Skel users may
specify any number of individual tests by providing the test
type (e.g., write, read), groups to be included in the test,
I/O method and corresponding parameters, and directions for
handling output files. The specified tests are collected into
batches for which individual submission scripts are created by
skel-submit. Batches are further parameterized by core count
and target platform.

<skel-params>
<adios—group name="restart">
<scalar name="inum" value="1000000" />
<scalar name="inphase" value="8" />
<array name="sp__pct__gid" dims="inum"
fill-method="rank" />
<array name="sp__pct__phase"
dims="inum, inphase"
fill-method="rank" />
</adios—group>

<batch name="write_read" cores="1024"

target ="pbs_cray">
<test type="write" method="POSIX"
group="restart" />
<test type="read_all" group="restart" />
</batch>
</skel-params>

Fig. 3. An excerpt from an XGCI1 parameter file

An excerpt from a parameter file is shown in Figure 3.
The example shows parameters for testing the restart group
for the XGC1 simulation. Here we provide values for the two
scalars that are used as array dimensions. Other scalars in
the restart group are omitted from the parameters file. The
fill-method attribute specifies that the arrays be filled with
the rank of the writing process. Finally we specify a single
batch consisting of two tests: one write test and one read test.
We note that the structure of the parameters file is provided
by skel and the user needs only to fill in the desired values.

C. Code generation

Implemented in Python, skel’s approach to code generation
is simple yet powerful. Skel uses a combination of template
text for the fixed parts of the skeletal application and simple
traversals of the data in the XML input files to generate
application specific code in the target language. Generation
of each source file is done by iterating over the parts of the
target application emitting appropriate code for each part. For
instance, in the case of C files, this includes:

e include statements

« main function and MPI setup

« variable declarations and memory allocation

e 1/0O code interspersed with the associated timing code
« release allocated memory

« finalization and closing code block

We use the Python minidom parser for simple parsing of
each XML files into a document object model (DOM) and
provide an abstract representation of the XML content by
using wrapper classes to hide the details of the DOM from
the rest of the code.

Each test specified in the parameter file initiates the genera-
tion of a separate executable that implements the test. Thus, the
Makefile generated for the skeletal application must provide
instructions for building the executable for each test. Likewise,
each batch in the parameter file induces the generation of a
submission script that includes code to run the corresponding
executable for each test in the batch. The deploy target in the
generated Makefile copies all of the executables, submission
scripts, and XML descriptors into a user specified directory
from which test will be run.

D. Specifying read patterns

While writing is typically done just one way, that is by
writing out all values for every variable in a group, reading
patterns of interest are considerably more varied [7]. In the
case of a restart file, it is often the case that it is necessary to
read exactly the same pattern that was written using the same
number of processors. However, there may be times when the
restart data must be read by a different number of processes,
for instance when the number of available processors has
decreased since a restart was written, and we want to continue
the execution of a simulation using fewer cores.

For analysis data however, the situation is more compli-
cated. Analysis and visualization work is typically performed
on a significantly smaller number of processors than were used
to generate the data. And quite often the focus is on some
subset of the data, either a subset of the variables in a group,
or a spatial subset of some or all of the variables, e.g., a single
plane in a 3D space, or a sub-volume.

So getting a true picture of read performance will require
looking at particular read scenarios that are common for
an application and the read scenarios of interest may vary
between applications. Thus, we are incorporating into skel
a flexible mechanism that allows various read tests to be
specified. We discuss this here in some detail, but note that,
at the time of this writing, we have not begun to gather data
on read performance.

Read patterns in skel are being implemented as an extension
to the parameters file. For the type attribute of the test
element, we allow, in addition to write, two other options:
read and read_all. Use of read_all, illustrated in
Figure 3, indicates that the file is being read by the same
number of processes and using the same pattern as was used
when the file was written.

The read option allows more general read tasks to be
specified. Figure 4 shows two examples of read pattern specifi-
cation using data from the S3D simulation. The figure contains
a batch with two read tests specified. The first test specifies
that the skeletal application should read data for a partial plane
for the single variable OH. In the second test we specify a
subvolume to be read for the three related variables uvel,

<batch name="read_methods" cores="96"

target ="pbs_ib">

<!-- Read a partial plane for one variable-—>
<test type="read" group="restart">
<read_var name="OH" offset="320,400, 960"
size="480,360,1" />
</test>

<!-- Read a subvolume for several related

variables——>
<test type="read" group="restart">
<global-bounds offset="80,80,120"
size="320,240,240" >
<read_var name="uvel" />
<read_var name="vvel" />
<read_var name="wvel" />
</global-bounds>
</test>
</batch>

Fig. 4. S3D read patterns

vvel and wvel. By allowing read operations to be specified
using a combination of variables, offsets, and sizes, we offer
a great deal of flexibility capable of supporting all of the most
commonly used read patterns.

IV. PERFORMANCE COMPARISON

Our experience in I/O applications comes from working
directly with many codes. The first code that we placed
ADIOS was the Gyrokinetic Toroidal Code (GTC) [12], a first
principles fusion microturbulence code that studies turbulent
transport of energy. Related to GTC is the GTS code [13],
which uses a generalized geometry to solve the realistic
geometries from many fusion reactors used today. Similarly,
the XGCI1 code studies fusion microturbulence around the
edge of a plasma. All three of these codes use a Particle
In Cell (PIC) method for solving the fundamental equations
used in the simulation. The Pixie3D code is a fusion Magneto
Hydrodynamic code that has also incorporated ADIOS in daily
use to study larger scale instabilities in fusion reactors. The
S3D combustion code is a Direct Numerical Solver (DNS)
code that has very different properties than the PIC codes.
It writes more frequently than PIC codes, but much less
data per process. Likewise, the PMCL3D is an earthquake
code that produces an extremely large amount of data per
process making efficient I/O essential for checkpoint-restarts
and analysis. We used the ADIOS descriptors from each of
these applications to develop and test skel. In the following
sections we provide performance comparisons with two of
these applications, GTS and S3D.

Our experiments were conducted using Jaguar [14], a Cray
XT5 machine with 18,688 compute nodes, each containing 2
hex-core AMD Opteron processors. Jaguar is located at the
Oak Ridge Leadership Computing Facility (OLCF), and is
connected to Spider, a large center-wide Lustre file system.
As host to our target applications, Jaguar was a natural choice
for the initial testing of skel.

A. GTS

We chose the GTS application for our first performance
tests. The goal was to see how well our GTS skeletal appli-
cation was able to mimic the IO performance of GTS. To
accomplish this, we performed a weak scaling experiment
using the GTS application and then used skel to create several
GTS skeletal application tests corresponding to the GTS weak
scaling runs. These tests were performed using core counts
from 128 to 2048 coinciding with powers of two. Each core
produced approximately 55 MB of data resulting in a total
data size ranging from 6.9 GB for 128 cores up to 112 GB
for the 2048 core run. The ADIOS POSIX method was used
for all cases.

The results of these tests are shown in Figure 5. As can
be seen, the measured performance of the skeletal application
closely resembles that of GTS. As time was limited, these
results reflect only a single run for each data point. As we
continue to refine skel, we will perform much more detailed
testing.

B. S3D

We employed a similar strategy to evaluate skel with S3D.
We began with a strong scaling test using the S3D I/O Kernel.
Then, we produced the corresponding skeletal application tests
using skel. Here we varied the core counts between 128 and
1024, again in powers of two. The strong scaling tests each
produced a fixed data size of approximately 1.7 GB distributed
across all cores. Again, the ADIOS POSIX method was used.

Results of the S3D testing is shown in Figure 6. Once
again, we observe that the relative performance of the S3D
I/O kernel and the S3D skeletal application are similar showing
roughly the same qualitative behavior, but with some variation
in observed throughput, particularly in the 256- and 512-
core cases. We find these preliminary results promising, and
hope to develop a better understanding of any differences in
performance as we continue to develop and test skel.

GTS Comparison
100
=
o
i}
-
3
o
=
®
o 10
E e=(==GTS App
§ e==skel GTS
g
2
[=]
1
128 256 512 1024 2048

Number of cores

Fig. 5. GTS Weak Scaling Comparison

S$3D Comparison

=
@

-9
L

IS

e=(==53D Kernel

=m=Skel S3D

Observed Throughput (GB/s)
N

128 256 512 1024
Number of cores

Fig. 6. S3D Strong Scaling Comparison

V. RELATED WORK

IOR [15] is a versatile tool for measuring I/O performance.
It is widely used to determine the raw performance capabilities
of a system. IOR provides a great deal of configurability,
however it contains no mechanism to mimic the I/O pattern
of an application. It is left to the user to determine how a
particular IOR configuration relates to the performance of a
specific application [16]. In contrast, our aim is to minimize
options available to the user while insuring that the tests
consist of realistic access patterns that reflect the style of I/O
that is performed by applications of interest.

There are a number of I/O kernel benchmarks that are
derived from HPC applications, including FLASH-IO [5],
MADBench?2 [6], S3aSim [17] and S3D-IO to name a few. As
with our skeletal applications, this style of benchmark aims
to capture the I/O pattern of the application, often utilizing
an I/O kernel taken directly from the application. There are
several drawbacks to this approach that are directly addressed
by skel. The first is the lack of a consistent user interface
among these application derived benchmarks. Another issue is
that the benchmarks are seldom kept up to date with changes to
the application on which they are based. Finally, these derived
benchmarks are manually coded, making it a nontrivial process
to create a new benchmark for an application where one does
not already exist.

The Darshan project [18] is examining the I/O patterns used
by applications of interest. Darshan provides a lightweight
library for gathering runtime information about the I/O being
performed by an application, with one goal of the project
being to collect this information from a large number of users.
Data that can be collected includes a large number (~100) of
statistics, many relating to low level POSIX or MPI-10 events.

The ScalalOTrace tool [19] also addresses the measurement
and analysis of I/O performance. Similar to Darshan, it works
by capturing a trace of I/O activities performed by a running
application. The multilevel traces may then be analyzed offline
at various levels of detail. Furthermore, traces may be executed
outside of the application using a replay engine.

Both ScalalOTrace and Darshan are useful for understand-

ing the I/O behavior of an application that is executed with the
I/O method in question as the traces reflect not only the appli-
cation’s behaviors, but also the effects of the I/O middleware in
use during execution. For testing new I/O middleware methods
or keeping traces up to date with application changes, use of
either of these tools would require applications to be executed
again using the new methods to acquire a relevant trace.
Our skel system does not require execution of an application,
only a high level descriptor of the I/O being performed. The
skeletal application could even be built before the application
in question has been developed in order to test the behavior
of existing I/O methods with the new application in advance.

VI. CONCLUSION AND FUTURE WORK

We have presented skel, a new tool for generating skeletal
I/O applications, and demonstrated its ability to generate
skeletal applications based on a variety of scientific simulation
codes. We have, for two of those codes, provided preliminary
tests that show that our automatically produced skeletal appli-
cations mimic simulation performance reasonable well.

We have outlined several advantages to using skeletal
applications to measure performance characteristics of I/O
middleware. First, they are easily generated from a high-level
I/O descriptor, such as the one used by ADIOS. They are easily
updated when applications change, thus skeletal applications
are much more likely to be kept up to date with changes in the
applications on which they are based. Finally, skel provides a
consistent interface across all generated skeletal applications
making them easy to use and lessening the burden of porting
benchmark codes to different platforms.

In the future we plan to work on refining the performance
of the skeletal applications to more closely resemble the /O
performance of the original simulations. We plan to investigate
the integration of other sources of application behavior data,
possibly including I/O traces and application output files.

I/O benchmarks quite often can be used to accurately
illustrate potential I/O performance on new systems for the
versions of the applications they represent, but numerous
problems exist for using them to represent the prouction. For
example, many file systems use a form of asynchronous data
movement, which can dramatically interfere with the applica-
tion’s communication patterns. Our work in I/O staging [20]
revealed that asynchronous data movement can interfere with
MPI collectives and other interprocess communication. We
quite often see this performance degradation on systems that
have the concept of “dirty” cache, such as Lustre, which does a
majority of data output after the I/O requests are finished. Ac-
curate I/O skeletal applications will eventually have to take this
into effect if we are truly able to see I/O interference effects of
asynchronous data movement techniques. I/O performance is
also greatly affected by I/O interference [21] from other clients
of the file system and great care most be taken to overcome
these effects to get the best average I/O performance.

VII. ACKNOWLEDGEMENTS

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL.85000.

REFERENCES

[1] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible 10 and integration for scientific codes through the
Adaptable 10 System (ADIOS),” June 2008. [Online]. Available:
http://www.adiosapi.org/uploads/clade110-lofstead.pdf

[2] M. A. Heroux, “Design issues for numerical libraries on scalable
multicore architectures,” Journal of Physics: Conference Series,
vol. 125, no. 1, p. 012035, 2008. [Online]. Available: http:
/Istacks.iop.org/1742-6596/125/i=1/a=012035

[3] M. Heroux, D. Doerfler, P. Crozier, J. Willenbring, C. Edwards,
A. Williams, M. Rajan, E. Keiter, H. Thronquist, and R. Numrich,
“Improving performance via mini-applications,” Sandia National Lab-
oratories, Tech. Rep., 2009.

[4] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,
A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley, “An overview of the trilinos project,”
ACM Trans. Math. Softw., vol. 31, no. 3, pp. 397423, 2005.

[5] “FLASH I/O benchmark routine — parallel HDFS,” http://www.ucolick.
org/~zingale/flash_benchmark_io/.

[6] “MADbench2,” http://crd.Ibl.gov/~borril/MADbench2/.

[7] J. Lofstead, M. Polte, G. Gibson, S. Klasky, K. Schwan, R. Oldfield,
M. Wolf, and Q. Liu, “Six degrees of scientific data: reading patterns
for extreme scale science 10,” in Proceedings of the 20th international
symposium on High performance distributed computing, ser. HPDC *11.
New York, NY, USA: ACM, 2011, pp. 49-60. [Online]. Available:
http://doi.acm.org/10.1145/1996130.1996139

[8] M. Polte, J. Lofstead, J. Bent, G. Gibson, S. A. Klasky, Q. Liu,
M. Parashar, N. Podhorszki, K. Schwan, M. Wingate, and M. Wolf,
“..and eat it too: high read performance in write-optimized HPC
I/O middleware file formats,” in Proceedings of the 4th Annual
Workshop on Petascale Data Storage, ser. PDSW ’09. New
York, NY, USA: ACM, 2009, pp. 21-25. [Online]. Available:
http://doi.acm.org/10.1145/1713072.1713079

[9]1 Y. Tian, S. Klasky, H. Abbasi, J. Lofstead, R. Grout, N. Podhorski,

Q. Liu, W. Yandong, and Y. Weikuan, “EDO: improving read perfor-

mance for scientific applications through elastic data organization,” in

Proceedings of IEEE Cluster 2011, to appear.

“ADIOS 1.3 user’s manual,” http://users.nccs.gov/~pnorbert/

ADIOS-UsersManual-1.3.pdf.

K. Czarnecki, U. W. Eisenecker, R. Gliick, D. Vandevoorde, and T. L.

Veldhuizen, “Generative programming and active libraries,” in Selected

Papers from the International Seminar on Generic Programming.

London, UK: Springer-Verlag, 2000, pp. 25-39. [Online]. Available:

http://portal.acm.org/citation.cfm?id=647373.724187

S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R. Samtaney,

“Grid -based parallel data streaming implemented for the gyrokinetic

toroidal code,” in SC, 2003, p. 24.

[13] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier, J. L. V.

Lewandowski, G. Rewoldt, T. S. Hahm, and J. Manickam, “Gyro-

kinetic simulation of global turbulent transport properties in tokamak

experiments,” Physics of Plasmas, vol. 13, no. 9, p. 092505, 2006.

[Online]. Available: http://link.aip.org/link/PHPAEN/v13/i9/p092505/

sl&Agg=doi

“Jaguar,” http://www.olcf.ornl.gov/computing-resources/jaguar/.

“IOR HPC Benchmark,” http://sourceforge.net/projects/ior-sio/.

H. Shan and J. Shalf, “Using IOR to analyze the I/O performance for

HPC platforms,” in Cray Users Group Meeting (CUG) 2007, Seattle,

Washington, May 2007.

“Avery Ching, S3aSim,” http://users.eecs.northwestern.edu/~aching/

research_webpage/s3asim.html.

“Darshan, petascale I/O characterization tool,” http://www.mcs.anl.gov/

research/projects/darshan/.

(10]

(11]

[12]

[14]
[15]
[16]
(17]

(18]

[19]

[20]

[21]

K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth, “Scalable
I/O tracing and analysis,” in Proceedings of the 4th Annual
Workshop on Petascale Data Storage, ser. PDSW ’09. New
York, NY, USA: ACM, 2009, pp. 26-31. [Online]. Available:
http://doi.acm.org/10.1145/1713072.1713080

H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
“DataStager: scalable data staging services for petascale applications,”
in HPDC, 2009, pp. 39-48.

J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing variability in the IO performance
of petascale storage systems,” in Supercomputing. 1EEE, 2010, pp.
1-12.

