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The Case for Uncertainty Quantification

UQ enables:

enhanced scientific understanding from computations
exploration of model predictions over range of uncertainty

Assessment of confidence in computational predictions

Validation and comparison of scientific/engineering models
employing (noisy) data

Design optimization

Use of computational predictions for decision-support

Assimilation of observational data and model construction
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Sources of Uncertainty in computational models

model structure
participating physical processes
governing equations
constitutive relations

model parameters
transport and thermodynamic properties
constitutive relations, equations of state
source term rate parameters

initial and boundary conditions

geometry

numerical errors

bugs

faults, data loss, silent errors
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Overview of UQ Methods

Estimation of model/parametric uncertainty

Expert opinion, data collection

Regression analysis, fitting, parameter estimation

Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models

Local sensitivity analysis (SA) and error propagation

Fuzzy logic; Evidence theory — interval math
Probabilistic framework — Global SA / stochastic UQ

Random sampling, statistical methods
Polynomial Chaos (PC) methods

– Collocation methods — sampling — non-intrusive
– Galerkin methods — direct — intrusive
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Different Types of Uncertainty?

Epistemic versus Aleatoric uncertainty
Both can be handled equally well with probability theory

Bayesian viewpoint encompasses both
Probabilistic math structure is self-consistent for both

When interval methods are used in practical problems:
Challenges with blow up of interval ranges – Singer, SISC 2006

Resort to random sampling – Kreinovich, RC 2007

Any quantity can be estimated probabilistically
Expert opinion
Maximum Entropy
Bayes rule

Epistemic parameters at interval limits can be easily
accomodated using conditional probability densities
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Parameter Estimation

Model calibration — Inverse problem – Bayes rule
Data:

Experimental observations
Computational predictions – high-fidelity “truth" model

Missing data — Bayesian Imputation
– Simulates missing data using posterior predictive

distribution given observed values
– Observed data posterior

No data – but given summary statistics
Simulate data satisfying summary statistics/constraints
Pooled posterior

Expert elicitation

Computational predictions — Forward UQ
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Bayes formula for Parameter Inference

Data Model (fit model + noise model): y = f (λ) ∗ g(ǫ)

Bayes Formula:

p(λ, y) = p(λ|y)p(y) = p(y|λ)p(λ)

p(λ|y)
Posterior

=

Likelihood

p(y|λ)
Prior

p(λ)

p(y)
Evidence

Prior: knowledge of λ prior to data

Likelihood: forward model and measurement noise

Posterior: combines information from prior and data

Evidence: normalizing constant for present context
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Exploring the Posterior

Given any sample λ, the un-normalized posterior
probability can be easily computed

p(λ|y) ∝ p(y|λ)p(λ)

Explore posterior w/ Markov Chain Monte Carlo (MCMC)
– Metropolis-Hastings algorithm:

Random walk with proposal PDF & rejection rules

– Computationally intensive, O(105) samples
– Each sample: evaluation of the forward model

Surrogate models

Evaluate moments/marginals from the MCMC statistics
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Surrogate Models for Bayesian Inference

Need an inexpensive response surface for
Observables of interest y
as functions of parameters of interest λ

Gaussian Process (GP) surrogate
GP goes through all data points with probability 1.0
Uncertainty between the points

Fit a convenient polynomial to y = f (λ)

– over the range of uncertainty in λ

Employ a number of samples (λi , yi)
Fit with interpolants, regression, ... global/local
With uncertain λ :

– Construct polynomial chaos response surface
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Prior Modeling

Informative prior
(Mostly) Uninformative prior

Improper prior
Objective prior
Maxent prior
Reference prior
Jeffreys prior

The choice of prior can be crucial when there is little
information in the data relative to the number of degrees of
freedom in the inference problem

When there is sufficient information in the data, the data
can overrule the prior
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Likelihood Modeling

This is frequently the core modeling challenge
Error model: a statistical model for the discrepancy
between the forward model and the data
composition of the error model with the forward model

Hierarchical Bayes modeling, and dependence trees

p(φ, θ) = p(φ|θ)p(θ)

Choice of observable – constraint on Quantity of Interest?
Stochastic versus Deterministic forward models

Intrinsic noise term, e.g. Langevin eqn.
Specified uncertain parameter in fit model

Error model:
Composed of discrepancy between

– data and the truth – (data error)
– model prediction and the truth – (model error)

Mean bias and correlated/uncorrelated noise structure
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Experimental Data

Empirical data error model structure can be informed
based on knowledge of the experimental apparatus

Both bias and noise models are typically available from
instrument calibration
Noise PDF structure

A counting instrument would exhibit Poisson noise
A measurement combining many noise sources would
exhibit Gaussian noise
Noise correlation structure

– Point measurement
– Field measurement

Error model composed of model error + data error
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Computational Data

Computational predictions from a high-fidelity model;
presumed “true" — No data error

Model error due to discrepancy between (simple) forward
model prediction and truth
Not statistical (for deterministic forward models)

Yet modeled statistically

Where/How to incorporate this error term with the model
On model output observables

– Not consistent with physical models
– Not useful for one out of multiple observables

In a sub-model — Constitutive law, closure relation
In an existing model parameter
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Parameter Estimation in the Absence of Data

Frequently:
– we know summary statistics about parameters

from previous fitting
– the raw data used to arrive at these statistics is

not available

How can we construct a joint PDF on the parameters?

In the absence of data, the structure of the fit model,
combined with the summary statistics, implicitly inform the
joint PDF on the parameters

Goal: Make available information explicit in the joint PDF
Data Free Inference (DFI):

Discover a consensus joint PDF on the parameters
consistent with given information in the absence of data
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DFI Algorithm Structure (Berry et al., JCP)

Basic idea:

Explore the space of hypothetical data sets
– MCMC chain on the data
– Each state defines a data set

For each data set:
– MCMC chain on the parameters
– Evaluate statistics on resulting posterior
– Accept data set if posterior is consistent with

given information

Evaluate pooled posterior from all acceptable posteriors
Logarithmic pooling:

p(λ|y) =

[

K
∏

i=1

p(λ|yi)

]1/K
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Example: Parameter Estimation in Chemical Systems

Forward UQ requires the joint PDF on the input space
– Published data is frequently inadequate

Bayesian inference can provide the joint PDF
– Requires raw data ... which is not available

At best: nominal parameter values and error bars

Fitting hypothesized PDFs to each parameter
nominals/bounds independently is not a good answer

– Correlations and joint PDF structure can be
crucial to uncertainty in predictions
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Generate ignition "data" using a detailed model+noise

Ignition using a detailed
chemical model for
methane-air chemistry

Ignition time versus Initial
Temperature

Multiplicative noise error
model

11 data points:
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Fitting with a simple chemical model

Fit a global single-step
irreversible chemical
model

CH4 + 2O2 → CO2 + 2H2O

R = [CH4][O2]kf

kf = Aexp(−E/RoT)

Infer 3-D parameter
vector (ln A, ln E, lnσ)

Good mixing with
adaptive MCMC when
start at MLE
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Bayesian Inference Posterior and Nominal Prediction
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Marginal joint posterior on
(ln A, ln E) exhibits strong
correlation

Nominal fit model is con-
sistent with the true model
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Data Free Inference Challenge

Discarding initial data, reconstruct marginal (ln A, ln E) posterior
using the following information

Form of fit model

Range of initial temperature

Nominal fit parameter values of ln A and ln E

Marginal 5% and 95% quantiles on ln A and ln E

Further, for now, presume

Multiplicative Gaussian errors

N = 8 data points
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DFI Uses two nested MCMC chains
An outer chain on the data, (2N + 1)–dimensional

– Generally high-dimensional
– N data points (xi , yi) + σ
– Likelihood function captures constraints on

parameter nominals+bounds

An inner chain on the model parameters
– Conventional MCMC for parameter estimation
– Likelihood based on fit-model
– parameter vector (ln A, ln E, lnσ)

Computationally challenging
– Single-site update on outer chain
– Adaptive MCMC on inner chain
– Run multiple outer chains in parallel, and

aggregate resulting acceptable data sets
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Short sample from outer/data chain
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Reference Posterior – based on actual data
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Ref + DFI posterior based on a 1000-long data chain
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Ref + DFI posterior based on a 5000-long data chain
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Marginal Pooled DFI Posteriors on ln A and ln E
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Probabilistic Forward UQ

With y = f (x), x a random variable, estimate the RV y

Can describe a RV in terms of its density, moments,
characteristic function, or most fundamentally as a function
on a probability space

Constraining the analysis to functions in L2, i.e. to RVs with
finite variance, enables the representation of a RV as a
spectral expansion in terms of orthogonal functions of
standard RVs.

– Polynomial Chaos

Enables the use of available functional analysis methods
for forward UQ

SNL Najm UQ 29 / 41



Intro Inference Chem ForwardUQ Model UQ Closure

Polynomial Chaos Methods for UQ

Model uncertain quantities as random variables (RVs)

Any RV with finite variance can be represented as a
Polynomial Chaos expansion (PCE)

u(x, t, ω) ≃
P
∑

k=0

uk(x, t)Ψk(ξ(ω))

– uk(x, t) are mode strengths
– ξ(ω) = {ξ1, · · · , ξn} is a vector of standard RVs
– Ψk() are functions orthogonal w.r.t. the density of ξ

with dimension n and order p:

P+ 1 =
(n+ p)!

n!p!
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Orthogonality

By construction, the functions Ψk() are orthogonal with respect
to the density of the basis/germ ξ

uk(x, t) =
〈uΨk〉

〈Ψ2
k〉

=
1

〈Ψ2
k〉

∫

u(x, t;λ(ξ))Ψk(ξ)pξ(ξ)dξ

Examples:

Hermite polynomials with Gaussian basis

Legendre polynomials with Uniform basis, ...

Global versus Local PC methods
– Adaptive domain decomposition of the stochastic

support of u

SNL Najm UQ 31 / 41



Intro Inference Chem ForwardUQ Model UQ Closure

Essential Use of PC in UQ

Strategy:

Represent model parameters/solution as random variables

Construct PCEs for uncertain parameters

Evaluate PCEs for model outputs

Advantages:

Computational efficiency

Sensitivity information

Requirement:

Random variables in L2, i.e. with finite variance
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Intrusive PC UQ: A direct non-sampling method

Given model equations: M(u(x, t);λ) = 0

Express uncertain parameters/variables using PCEs

u =
P

∑

k=0

ukΨk; λ =
P
∑

k=0

λkΨk

Substitute in model equations; apply Galerkin projection

New set of equations: G(U(x, t),Λ) = 0

– with U = [u0, . . . ,uP]
T, Λ = [λ0, . . . , λP]

T

Solving this system once provides the full specification of
uncertain model ouputs
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Non-intrusive Spectral Projection (NISP) PC UQ

Sampling-based; black-box use of the computational model.
For any model output of interest φ(·;λ(ξ)) =

∑

k φk(·)Ψk(ξ):

φk(·) =
1

〈

Ψ2
k

〉

∫

φ(·;λ(ξ))Ψk(ξ)pξ(ξ)dξ, k = 0, . . . ,P

Integrals can be evaluated numerically using
A variety of (Quasi) Monte Carlo methods
Quadrature/Sparse-Quadrature methods

PC surface
∑

k φk(·)Ψk(ξ) can be fitted using regression or
Bayesian Inference employing computational samples

Discovering/exploiting sparsity via L1-norm minimization
– (Bayesian) compressed sensing
– Lasso
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Challenges in Forward PC UQ – High-Dimensionality

Dimensionality n of the PC basis: ξ = {ξ1, . . . , ξn}

– number of degrees of freedom
– P+ 1 = (n+ p)!/n!p! grows fast with n

Impacts:
– Size of intrusive system
– # non-intrusive (sparse) quadrature samples

Generally n ≈ number of uncertain parameters

Reduction of n:
– Sensitivity analysis
– Dependencies/correlations among parameters
– Identification of dominant modes in random fields

Karhunen-Loéve, PCA, ...
– ANOVA/HDMR methods
– L1 norm minimization
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Challenges in Forward PC UQ – Non-Linearity

Bifurcative response at critical parameter values
Rayleigh-Bénard convection
Transition to turbulence
Chemical ignition

Discontinuous u(λ(ξ))
Failure of global PCEs in terms of smooth Ψk()
⇔ failure of Fourier series in representing a step function

Local PC methods
Subdivide support of λ(ξ) into regions of smooth u ◦ λ(ξ)
Employ PC with compact support basis on each region
A spectral-element vs. spectral construction
Domain-mapping for arbitrary discontinuity shapes
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Challenges in Forward PC UQ – Time Dynamics

Systems with limit-cycle or chaotic dynamics

Large amplification of phase errors over long time horizon

PC order needs to be increased in time to retain accuracy

Time shifting/scaling remedies

Futile to attempt representation of detailed turbulent
velocity field v(x, t;λ(ξ)) as a PCE

– Fast loss of correlation due to energy cascade
– Problem studied in 60’s and 70’s

Focus on flow statistics, e.g. Mean/RMS quantities
Well behaved
Argues for non-intrusive methods with DNS/LES of
turbulent flow
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Model UQ

No model of a physical system is strictly true

The probability of a model being strictly true is zero

Given limited information, some models may be relied
upon for describing the system

Let M = {M1,M2, . . .} be the set of all models

p(Mk|I) is the probability that Mk is the model behind the
available information

Model Plausibility

Parameter estimation from data is conditioned on the
model

p(θ|D,Mk) =
p(D|θ,Mk)π(θ|Mk)

p(D|Mk)
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Bayesian Model Comparison

Evidence (marginal likelihood) for Mk:

p(D|Mk) =

∫

p(D|θ,Mk)π(θ|Mk)dθ

Bayes Factor Bij :

Bij =
p(D|Mi)

p(D|Mj)

Plausibility of Mk:

p(Mk|D,M) =
p(D|Mk) π(Mk|M)

∑

s p(D|Ms)π(Ms|M)
k = 1, . . .

Posterior odds:

p(Mi |D,M)

p(Mj |D,M)
= Bij

π(Mi |M)

π(Mj |M)
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Validation

Validity is a statement of model utility for predicting a given
observable under given conditions

Inspection of model utility requires accounting for
uncertainty

Statistical tool-chest for model validation
– Cross-validation
– Bayes Factor
– Model Plausibility
– Posterior Odds
– Posterior predictive:

p(D̃|D,Mk) =

∫

p(D̃|θ,Mk)p(θ|D,Mk)dθ
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Closure

UQ is increasingly important in computational modeling

Probabilistic UQ framework
Bayesian parameter estimation, model calibration

Data sources
Error modeling
Missing/absent data

Forward PC UQ
Representation
Propagation

Model uncertainty
Model comparison
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