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Intro

The Case for Uncertainty Quantification

UQ enables:

enhanced scientific understanding from computations
@ exploration of model predictions over range of uncertainty

Assessment of confidence in computational predictions

Validation and comparison of scientific/engineering models
employing (noisy) data

Design optimization

Use of computational predictions for decision-support

Assimilation of observational data and model construction




Intro
Sources of Uncertainty in computational models

@ model structure
@ participating physical processes
@ governing equations
@ constitutive relations

model parameters
@ transport and thermodynamic properties
@ constitutive relations, equations of state
@ source term rate parameters

initial and boundary conditions
geometry

numerical errors

bugs

faults, data loss, silent errors




Intro

Overview of UQ Methods

Estimation of model/parametric uncertainty
@ Expert opinion, data collection
@ Regression analysis, fitting, parameter estimation
@ Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models
@ Local sensitivity analysis (SA) and error propagation

@ Fuzzy logic; Evidence theory — interval math
@ Probabilistic framework — Global SA / stochastic UQ
@ Random sampling, statistical methods
@ Polynomial Chaos (PC) methods
— Collocation methods — sampling — non-intrusive
— Galerkin methods — direct — intrusive




Different Types of Uncertainty?

@ Epistemic versus Aleatoric uncertainty
@ Both can be handled equally well with probability theory
@ Bayesian viewpoint encompasses both
@ Probabilistic math structure is self-consistent for both
@ When interval methods are used in practical problems:
@ Challenges with blow up of interval ranges — Singer, SISC 2006
@ Resort to random sampling — Kreinovich, RC 2007
@ Any quantity can be estimated probabilistically
@ Expert opinion
@ Maximum Entropy
@ Bayes rule

@ Epistemic parameters at interval limits can be easily
accomodated using conditional probability densities




Inference
Parameter Estimation

@ Model calibration — Inverse problem — Bayes rule
o Data:
@ Experimental observations
@ Computational predictions — high-fidelity “truth" model
@ Missing data — Bayesian Imputation
— Simulates missing data using posterior predictive
distribution given observed values
— Observed data posterior
@ No data — but given summary statistics

@ Simulate data satisfying summary statistics/constraints
@ Pooled posterior

@ Expert elicitation
@ Computational predictions — Forward UQ




Inference
Bayes formula for Parameter Inference

@ Data Model (fit model + noise model): y=1(A) *x9g(e)
@ Bayes Formula:
PAY) = P(AlY)P(Y) = P(YIA)P(A)
Likelihood Prior
A A
p(Aly) p(Y[A)  P(A)
Posterior
p(Y)
Evidence
@ Prior: knowledge of A prior to data
@ Likelihood: forward model and measurement noise
@ Posterior: combines information from prior and data
@ Evidence: normalizing constant for present context




Inference
Exploring the Posterior

@ Given any sample ), the un-normalized posterior
probability can be easily computed

P(AlY) o< p(Y[A)p(A)

@ Explore posterior w/ Markov Chain Monte Carlo (MCMC)
— Metropolis-Hastings algorithm:
@ Random walk with proposal PDF & rejection rules

— Computationally intensive, ©(10°) samples
— Each sample: evaluation of the forward model

@ Surrogate models

@ Evaluate moments/marginals from the MCMC statistics




Inference
Surrogate Models for Bayesian Inference

@ Need an inexpensive response surface for

@ Observables of interest y
@ as functions of parameters of interest A

@ Gaussian Process (GP) surrogate

@ GP goes through all data points with probability 1.0
@ Uncertainty between the points

@ Fit a convenient polynomial toy = f())
— over the range of uncertainty in A
@ Employ a number of samples (A, vi)

@ Fit with interpolants, regression, ... global/local
@ With uncertain A :

— Construct polynomial chaos response surface




Inference
Prior Modeling

@ Informative prior

@ (Mostly) Uninformative prior
@ Improper prior
@ Objective prior
@ Maxent prior

Reference prior

o Jeffreys prior

(4

@ The choice of prior can be crucial when there is little
information in the data relative to the number of degrees of
freedom in the inference problem

® When there is sufficient information in the data, the data
can overrule the prior




Likelihood Modeling

@ This is frequently the core modeling challenge

@ Error model: a statistical model for the discrepancy
between the forward model and the data
@ composition of the error model with the forward model

@ Hierarchical Bayes modeling, and dependence trees
P(¢,0) = p(4]6)p(0)
@ Choice of observable — constraint on Quantity of Interest?

@ Stochastic versus Deterministic forward models
@ Intrinsic noise term, e.g. Langevin egn.
@ Specified uncertain parameter in fit model

@ Error model:
@ Composed of discrepancy between

— data and the truth — (data error)
— model prediction and the truth — (model error)

@ Mean bias and correlated/uncorrelated noise structure
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Inference
Experimental Data

@ Empirical data error model structure can be informed
based on knowledge of the experimental apparatus

@ Both bias and noise models are typically available from
instrument calibration
@ Noise PDF structure
@ A counting instrument would exhibit Poisson noise
@ A measurement combining many noise sources would
exhibit Gaussian noise
@ Noise correlation structure

— Point measurement
— Field measurement

@ Error model composed of model error + data error




Inference
Computational Data

@ Computational predictions from a high-fidelity model;
presumed “true” — No data error

@ Model error due to discrepancy between (simple) forward
model prediction and truth
@ Not statistical (for deterministic forward models)
@ Yet modeled statistically
@ Where/How to incorporate this error term with the model
@ On model output observables
— Not consistent with physical models
— Not useful for one out of multiple observables

@ In a sub-model — Constitutive law, closure relation
@ In an existing model parameter




Parameter Estimation in the Absence of Data

@ Frequently:
— we know summary statistics about parameters
from previous fitting
— the raw data used to arrive at these statistics is
not available

@ How can we construct a joint PDF on the parameters?

@ In the absence of data, the structure of the fit model,
combined with the summary statistics, implicitly inform the
joint PDF on the parameters

@ Goal: Make available information explicit in the joint PDF

@ Data Free Inference (DFI):

@ Discover a consensus joint PDF on the parameters
consistent with given information in the absence of data




Inference

DFI Algorithm Structure (Berry et al., JCP)

Basic idea:
@ Explore the space of hypothetical data sets

— MCMC chain on the data
— Each state defines a data set

@ For each data set:

— MCMC chain on the parameters

— Evaluate statistics on resulting posterior

— Accept data set if posterior is consistent with
given information

@ Evaluate pooled posterior from all acceptable posteriors
Logarithmic pooling:

p(AlY) = [Hp Alyi) r/K




Chem

Example: Parameter Estimation in Chemical Systems

@ Forward UQ requires the joint PDF on the input space
— Published data is frequently inadequate

@ Bayesian inference can provide the joint PDF
— Requires raw data ... which is not available

@ At best: nominal parameter values and error bars

@ Fitting hypothesized PDFs to each parameter
nominals/bounds independently is not a good answer
— Correlations and joint PDF structure can be
crucial to uncertainty in predictions




Chem

Generate ignition "data" using a detailed model+noise

@ Ignition using a detailed
chemical model for

methane-air chemistry a3 E
@ Ignition time versus Initial . [ GRI
Temperature 8 I =
L . . 8 GRI+noise
® Multiplicative noise error = | i
model 2
k)

@ 11 data points:

di - tiva$l(l + O‘6i) 0.01f A ! A | s =
1000 1100 1200 1300
e N(O, 1) Initial Temperature (K)




Fitting with a simple chemical model

@ Fit a global single-step %
irreversible chemical sl ]
model L32p

CH4 + 205 — COs + 2H,0

R = [CHyJ[O]ks
kk = Aexp(—E/R°T)

@ Infer 3-D parameter

vector (InA,InE,Ino) ;’

@ Good mixing with ; ;g: o
adaptive MCMC when 0 A0 s 0 10w
start at MLE




Chem

Bayesian Inference Posterior and Nominal Prediction

: .
1!\ 4
\ —GRI
r == GRI+noise
'g Fit Model
g | GRI+noise
‘é 0.1k -
= \
0.01f, ‘

. | . | B
® # % ® 3“ * 1000 1100 1200 1300
Initial Temperature (K)

Marginal joint posterior on

(InA,InE) exhibits strong Nominal fit model is con-
correlation sistent with the true model




Chem
Data Free Inference Challenge

Discarding initial data, reconstruct marginal (InA, InE) posterior
using the following information

@ Form of fit model

@ Range of initial temperature

@ Nominal fit parameter values of InA and InE

@ Marginal 5% and 95% quantiles on InA and InE

Further, for now, presume
@ Multiplicative Gaussian errors

@ N = 8 data points




DFI Uses two nested MCMC chains

@ An outer chain on the data, (2N + 1)—dimensional
— Generally high-dimensional
— N data points (X,y;) + o
— Likelihood function captures constraints on
parameter nominals+bounds

@ An inner chain on the model parameters
— Conventional MCMC for parameter estimation
— Likelihood based on fit-model
— parameter vector (InA,InE,Ino)
@ Computationally challenging
— Single-site update on outer chain
— Adaptive MCMC on inner chain
— Run multiple outer chains in parallel, and
aggregate resulting acceptable data sets




Chem

Short sample from outer/data chain
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Chem
Reference Posterior — based on actual data

! ! ! ! — 108
L 11078
| | | | -~ 10.76

- 4 10.74
§ InE
- 4 1072

| | | -1 107
o 10,68

B0 ‘ ‘ 5 5 L 1066
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InA
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Chem

Ref + DFI posterior based on a 1000-long data chain

108
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Chem

Ref + DFI posterior based on a 5000-long data chain
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Marginal Pooled DFI Posteriors on InAand InE
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ForwardUQ

Probabilistic Forward UQ

@ With y = f(x), x a random variable, estimate the RV y

@ Can describe a RV in terms of its density, moments,
characteristic function, or most fundamentally as a function
on a probability space

@ Constraining the analysis to functions in L?, i.e. to RVs with
finite variance, enables the representation of a RV as a
spectral expansion in terms of orthogonal functions of
standard RVs.

— Polynomial Chaos

@ Enables the use of available functional analysis methods
for forward UQ




ForwardUQ
Polynomial Chaos Methods for UQ

@ Model uncertain quantities as random variables (RVS)

@ Any RV with finite variance can be represented as a
Polynomial Chaos expansion (PCE)

u(x, t,w) Zukxt\lfk w))

— Uk(x,t) are mode strengths
— &(w) ={&, - ,&n} is avector of standard RVs
— Wy() are functions orthogonal w.r.t. the density of £

with dimension n and order p:

|
pi1- (NP

n!p!




ForwardUQ
Orthogonality

By construction, the functions ¥() are orthogonal with respect
to the density of the basis/germ &

1
wet) = = g [ Ut AE) H(© Pl

Examples:
@ Hermite polynomials with Gaussian basis
@ Legendre polynomials with Uniform basis, ...
@ Global versus Local PC methods

— Adaptive domain decomposition of the stochastic
support of u




ForwardUQ
Essential Use of PC in UQ

Strategy:
@ Represent model parameters/solution as random variables
@ Construct PCEs for uncertain parameters
@ Evaluate PCEs for model outputs

Advantages:
@ Computational efficiency
@ Sensitivity information

Requirement:
@ Random variables in L2, i.e. with finite variance




ForwardUQ

Intrusive PC UQ: A direct non-sampling method

M(u(x,t); ) =0

Given model equations:
Express uncertain parameters/variables using PCEs

P P
u= Z Wy, A= Z APk
k=0 k=0

Substitute in model equations; apply Galerkin projection
G(U(x,1),A) =0

New set of equations:

— withU = [Uo,...,Up]T, A= [Ao,...,AP]T
Solving this system once provides the full specification of
uncertain model ouputs




ForwardUQ

Non-intrusive Spectral Projection (NISP) PC UQ

Sampling-based; black-box use of the computational model.
For any model output of interest ¢(-; A(§)) = >y ok(-) Yk (§):

ou(*) Wy /¢> (€)pe(€)de, k=0,...,P

@ Integrals can be evaluated numerically using
@ A variety of (Quasi) Monte Carlo methods
@ Quadrature/Sparse-Quadrature methods
@ PC surface ), ¢x(-)¥k(&) can be fitted using regression or
Bayesian Inference employing computational samples
o Discovering/exploiting sparsity via L*-norm minimization

— (Bayesian) compressed sensing
— Lasso




ForwardUQ

Challenges in Forward PC UQ — High-Dimensionality

@ Dimensionality n of the PC basis: & = {&1,...,&n}

— number of degrees of freedom

- P+ 1= (n+p)!/nlp! grows fast with n
@ Impacts:

— Size of intrusive system

— # non-intrusive (sparse) quadrature samples
@ Generally n = number of uncertain parameters
@ Reduction of n:

— Sensitivity analysis
Dependencies/correlations among parameters
Identification of dominant modes in random fields

Karhunen-Loéve, PCA, ...

ANOVA/HDMR methods
L1 norm minimization
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ForwardUQ

Challenges in Forward PC UQ — Non-Linearity

@ Bifurcative response at critical parameter values
@ Rayleigh-Bénard convection
@ Transition to turbulence
@ Chemical ignition

@ Discontinuous u(A())

@ Failure of global PCEs in terms of smooth ¥y ()
@ & failure of Fourier series in representing a step function

@ Local PC methods

@ Subdivide support of A(§) into regions of smooth uo A\(£)
@ Employ PC with compact support basis on each region
@ A spectral-element vs. spectral construction

@ Domain-mapping for arbitrary discontinuity shapes




ForwardUQ
Challenges in Forward PC UQ — Time Dynamics

@ Systems with limit-cycle or chaotic dynamics

@ Large amplification of phase errors over long time horizon
@ PC order needs to be increased in time to retain accuracy
@ Time shifting/scaling remedies

@ Futile to attempt representation of detailed turbulent
velocity field v(x,t; A\(§)) as a PCE
— Fast loss of correlation due to energy cascade
— Problem studied in 60’s and 70’s

@ Focus on flow statistics, e.g. Mean/RMS quantities

@ Well behaved
@ Argues for non-intrusive methods with DNS/LES of
turbulent flow




Model UQ
Model UQ

@ No model of a physical system is strictly true
@ The probability of a model being strictly true is zero

@ Given limited information, some models may be relied
upon for describing the system

Let M = {M31, My, ...} be the set of all models

@ p(M|l) is the probability that My is the model behind the
available information

@ Model Plausibility
@ Parameter estimation from data is conditioned on the
model

P(0|D, M) = p(D|6, My) 7 (6|Mx)

P(DIMy)




Model UQ
Bayesian Model Comparison

Evidence (marginal likelihood) for My:
p(DIMY) = [ P(DI6. M) (6 Mot
Bayes Factor Bjj:
Bij = ——

Plausibility of My:

_ p(D|My) (M| M)
p(Mk|D, M) = > <P(D|Ms)7(Mg| M) “

I
P

Posterior odds:
p(MiD, M) . w(Mi|M)

p(MjD, M) — " w(Mj|M)

NET uQ



Model UQ
Validation

@ Validity is a statement of model utility for predicting a given
observable under given conditions

@ Inspection of model utility requires accounting for
uncertainty
@ Statistical tool-chest for model validation
— Cross-validation
Bayes Factor
Model Plausibility
Posterior Odds
Posterior predictive:

p(B|D. My) = / p(B]0, Mi)p(8|D, Mi)dé




Closure
Closure

UQ is increasingly important in computational modeling

Probabilistic UQ framewaork
Bayesian parameter estimation, model calibration

o Data sources
@ Error modeling
@ Missing/absent data

Forward PC UQ

@ Representation
@ Propagation

Model uncertainty
@ Model comparison
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