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Abstract

The manycore revolution can be characterized by increasing thread counts, decreasing memory per thread,
and diversity of continually evolving manycore architectures. High performance computing (HPC) applica-
tions and libraries must exploit increasingly finer levels of parallelism within their codes to sustain scalability
on these devices. A major obstacle to performance portability is the diverse and conflicting set of constraints
on memory access patterns across devices. Contemporary portable programming models address manycore
parallelism (e.g., OpenMP, OpenACC, OpenCL) but fail to address memory access patterns. The Kokkos
C++ library enables applications and domain libraries to achieve performance portability on diverse many-
core architectures by unifying abstractions for both fine-grain data parallelism and memory access patterns.
In this paper we describe Kokkos’ abstractions, summarize its application programmer interface (API),
present performance results for unit-test kernels and mini-applications, and outline an incremental strategy
for migrating legacy C++ codes to Kokkos. The Kokkos library is under active research and development
to incorporate capabilities from new generations of manycore architectures, and to address an growing list
of applications and domain libraries.

Keywords: parallel computing, thread parallelism, manycore, GPU, performance portability,
multidimensional array, mini-application

1. Introduction The scope of Kokkos has evolved from a hidden
portability layer for sparse linear algebra kernels
[1] to a hierarchy of broadly usable libraries. Our
earlier implementation of Kokkos’ fundamental ab-
stractions was referred to as KokkosArray (2, 3, 4].
These fundamental abstractions have persisted to
the current version of Kokkos. The semantics,
syntax, and implementation of Kokkos has sig-
nificantly evolved in response to new device ca-
pabilities, performance evaluations, and usability
evaluations through an expanding suite of mini-
applications.

Our fundamental programming model abstrac-
tions are as follows:

The Kokkos C++ library provides scientific and
engineering codes with a programming model that
enables performance portability across diverse and
evolving manycore devices. Our performance porta-
bility objective is to maximize the amount of user
code that can be compiled for diverse devices and
obtain the same (or nearly the same) performance
as a variant of the code that is written specifically
for that device. Performance portability is our pri-
mary objective for a high performance computing
(HPC) programming model, and we address usabil-
ity only within this constraint. Future usability
studies will be conducted in conjunction with early

adoption of Kokkos by applications and domain li- 1. Kokkos executes computational kernels in fine-

grain data parallel within an execution space.

braries. . o
2. Computational kernels operate on multidimen-
sional arrays residing in memory spaces.
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Kokkos enables computational kernels to be per-
formance portable across manycore architectures
(i.e., CPU and GPU) by unifying these abstrac-
tions. A data parallel computational kernel’s data
access pattern can have a significant impact on its
performance. On a CPU a computational kernel
should have blocked data access pattern; however,
on a GPU the computational kernel should have a
coalesced data access pattern. This conflicting data
access pattern requirement is commonly referred to
as the array of structures (AoS) versus structure of
arrays (SoA) problem. We solve the AoS vs. SoA
performance portability problem by controlling the
data parallel execution of computational kernels on
a device, providing a multidimensional array data
structure for those kernels to use, and choosing the
multidimensional array layout that results in the re-
quired memory access pattern. Kokkos enables per-
formance portable user code if that code is imple-
mented with Kokkos” multidimensional arrays and
parallel execution capabilities.

Many programming models control fine-grain
parallel execution, as enumerated in Table 1. These
programming models have a variety of implementa-
tion approaches: a library within a standard pro-
gramming language, directives added to a standard
language (e.g., #pragne statements), language
extensions supported by source-to-source transla-
tors, or language variants supported by a compiler.
Among the programming models that we surveyed
(Table 1), Kokkos is unique in that (1) it is purely
a library approach, and (2) it enables portability
to CPUs and GPUs, and (3) it provides polymor-
phic data layout. These three characteristics of our
programming model are essential for performance
portability and maintainability of HPC applications
and domain libraries that must move to diverse and
evolving manycore architectures.

Kokkos has thin back-end implementations that
map portable user code to lower level, device spe-
cialized programming models. This software design
allows us to choose the most performant back-end
for each target device and optimize Kokkos’ imple-
mentation for that back-end. Our current back-end
implementations include CUDA [31] for NVIDIA
GPUs, and pthreads [32] or OpenMP [30] for CPUs
and Intel Xeon Phi. Pthreads and OpenMP back-
ends optionally use the portable hardware locality
(hwloc) library [33] for explicit placement of threads
on cores. We use the Intel Xeon Phi co-processor
in self-hosted mode, where processes run entirely on
this device as opposed to using the offload model.

Table 1: Programming models for manycore parallelism.

Programming Portable  Data Approach
Model cpu/gpu  Layout

Kokkos [6] yes yes Library
C++ AMP [7, §] yes yes Language
Thrust [9] yes no Library
SGPU2 [10] yes no Library
XKAAPI [11, 12] yes no Library
OpenACC [13] yes no Directives
OpenHMPP [14] yes no Directives
StarSs [15] yes no Directives
OmpSs [16, 17] yes no Directives
HOMPI [18] ves no Translator
PEPPHER [19] yes no Translator
OpenCL [20] yes no Language
StarPU [21, 22] yes no Language
Loci [23, 24] no yes Library
Cilk Plus [25] no yes Language
TBB [26, 27] no no Library
Charm++ [28, 29] no no Library
OpenMP [30] no* no Directives
CUDA [31] no** no Language

* OpenMP 4.0 addresses GPU; however, compilers are
not yet available.
** PGI compiler can generate x86 code from CUDA.

In this paper, we first describe Kokkos abstrac-
tions, API, and extension points. Then, we present
performance results for unit-test kernels and mini-
applications. Finally, we outline a strategy for
legacy C++ codes to migrate to manycore devices.

2. Abstraction of a Manycore Device

Our abstraction of a modern HPC environment
is a network of compute nodes where each com-
pute node contains one or more manycore devices.
A typical HPC application in this environment has
at least two levels of parallelism: (1) distributed
memory parallelism typically supported through
a Message Passing Interface (MPI) library and
(2) fine-grain shared memory parallelism supported
through one of the many thread-level programming
models.

In our abstraction, an MPI process has a single
master thread that performs serial computations,
calls MPI functions, and dispatches computational
kernels for execution by worker threads of a many-
core device. This “work dispatch” or “callback”
pattern is common in numerous programming mod-
els; for example, function objects are dispatched to
C++ Standard Template Library (STL) algorithms
[34], TBB, and Thrust. A key element of this ab-



straction is that a master thread executes on the
CPU and worker threads execute on a manycore
device. When the master and worker threads exe-
cute on a multicore CPU or self-hosted device (how
we use the Intel Xeon Phi) then the device is the
CPU.

2.1. Ezxecution and Memory Spaces

Threads execute in an execution space and data
resides a memory space. For example, the master
thread performs serial computations in the CPU’s
execution space and operates on data in the CPU’s
memory space. Similarly, worker threads call com-
putational kernels in a device execution space, and
these kernels operate on data in the device memory
space.

An execution space has accessibility and perfor-
mance relationships with memory spaces. For ex-
ample, a computation in the CPU execution space
may be prohibited from accessing data residing in
a CUDA memory space. Similarly a computation
in a CUDA execution space could access data in a
host-pinned memory space (a capability supported
by newer CUDA-GPU devices) with degraded per-
formance compared to that computation accessing
data in the CUDA memory space. A programming
model for manycore architectures should include se-
mantics to expose execution spaces, memory spaces,
and relationships among these spaces.

2.2. Abstracting Spaces

In the Kokkos API, each execution space and
memory space is defined by a unique C+-+ class.
This API enables enforcement of execution-memory
space accessibility constraints at compile-time. For
example, the master thread in the CPU execution
space is prevented from accessing memory in the
CUDA memory space, as opposed to generating a
runtime memory fault. When devices provide vir-
tual unified addressing across memory spaces (e.g.,
NVIDIA’s host-pinned memory capability), we will
define additional memory spaces and the associated
execution-memory space relationship.

Our abstraction for execution and memory spaces
is an extension point in Kokkos’ design for express-
ing and managing increasing complex device ar-
chitectures. For example, NVIDIA devices have
global and shared memory spaces with different
performance characteristics. We believe that this
execution-memory space abstraction and extension
point is critical for “future proofing” codes.

3. Multidimensional Array

A Kokkos multidimensional array consists of: (1)
a set of datum {z,} of the same value type and
residing in the same memory space, (2) an index
space Xg defined by the Cartesian product of in-
teger ranges, and (3) a layout X — a bijective
map between the index space and the set of da-
tum. (Note that equality of datums’ values does
not imply the same datum: z, =z, & = K.)

X = ({xb}5XS7XL)
Xs = [0..Ng) x [0..N7) x -~
X, : Xsg e {x}

A function typically contains a sequence of nested
loops over dimensions of an array Xg and accesses
array datum via the layout X;. Thus, the compo-
sition of a function’s loop-and-indexing pattern and
the array’s layout yields a memory access pattern.

F[Xs]
F[Xg]o Xgl resulting memory access pattern

function implemented for Xg

To modify the function’s memory access pattern
one must either (1) change the dimension ordering
X and the loop-and-indexing pattern of the func-
tion F[Xg| or (2) change the layout of the array
Xr.

Programming languages with built-in multidi-
mensional arrays have a prescribed layout. For ex-
ample, FORTRAN and C languages prescribe lay-
outs that are reversed with respect to a similarly
declared index space. When using a language’s
built-in array, a function’s memory access pattern
can only be changed by reordering dimensions and
changing both loop and indexing patterns. Such
a function must have distinct, device-dependent
versions to satisfy each memory access pattern re-
quired by diverse manycore devices.

Layout Polymorphism. Kokkos array layouts (X)
are chosen at compile time. Thus, a func-
tion’s memory access pattern (F[Xg]oX;') can
be changed without modifying that function’s code.
Layout polymorphism requires a function to strictly
adhere to Kokkos’ mapping operator — the func-
tion does not bypass the Kokkos API nor assumes
a particular layout. Layout polymorphism enables
Kokkos to choose array layouts that lead to device-
appropriate memory access patterns. Choosing lay-
outs at compile-time allows back-end compilers to
in-line or optimize layout mapping computations
within a function.



3.1. Declaration, Allocation, and Access

Kokkos arrays are implemented with a C++ tem-
plate class named Vi ew (we explain why this name
was chosen in the next section). The design pattern
of encapsulating multidimensional array semantics
in a C++ class, or even a C struct, has been fun-
damental to well-engineered numerically-oriented C
and C++ libraries for decades [35, 36]. We tailor
this pervasive design pattern to compactly declare
multidimensional array dimensions, identify mem-
ory spaces for the datum, specify layouts, and an-
notate behavioral traits.

Array declaration, allocation, and value access
operations are illustrated in Figure 1.

/1 The View constructor allocates an array
/1 in Device nmenory space w th di nensions
/1 N«M8*x3, where each '*’ token denotes a
/1 dinmension to be supplied at runtine.

/1 The label "A" is used in error nessages
/1 which may occur in regard to this array.
Vi ew<doubl ex*[ 8] [ 3], Devi ce> a("A", N, M ;

/'l The parentheses operator inplenents the
/'l layout map.
a(i,j,k, 1) = value ;

Figure 1: The fundamental declaration, allocation, and ac-
cess operators shown here are designed to be compact, intu-
itive, and strictly compliant with C++ language standards.

The first Vi ew template argument specifies the
value type, number of dynamic dimensions (de-
noted by the number of "*’ tokens), and static di-
mensions denoted by ’[#]" expressions. The sec-
ond template argument defines the memory space
in which the values of the array are allocated. The
Vi ew constructor allocates memory according to
the layout chosen for that space, static dimensions,
and dynamic dimensions input to the constructor.
The Vi ew parentheses operator implements the
layout, enforces execution-memory space relation-
ships, and optionally enforces index space bounds
(used when debugging code).

Unconventional Syntaz. The syntax using *’ to-
kens and ’[#]’ expressions to declare array dimen-
sions is unconventional with respect to other multi-
dimensional array APIs. The driving factor in this
API design was to allow a mix of static and dynamic
dimensions. Performance testing, early in develop-
ment of Kokkos, showed that layout computations
can be optimized in the presence of static dimen-
sions, and that such an optimization can have a

significant impact on the performance of computa-
tional kernels. The combined goals of compact no-
tation and mixed dynamic and static dimensions,
and strict conformance to C++ syntax standards,
led to this unconventional API. The potential con-
fusion of interpreting a dynamic dimension ("*’ to-
ken) to mean that a value type is a pointer has not
been an issue. This is because our numerical kernels
have consistently been clearer and perform better
when they do not “pointer chase,” and instead use
indices for indirect addressing. Furthermore, we
want to discourage the use of pointer chasing as it
impedes a compiler’s ability to optimize computa-
tions.

Const-ness. The “const-ness” semantics of Vi ews
is analogous to the “const-ness” semantics for C++
pointers, as illustrated in Figure 2. Just as a const
pointer cannot be reassigned a const Vi ew can-
not be reassigned. However, the memory referenced
by a const pointer can be modified, likewise the
datum referenced by a const Vi ew can be modi-
fied. A “pointer to const ” is different, it declares
that what the pointer references cannot be mod-
ified. A “Vi ew to const” is declared by associ-
ating the const keyword with the value type of
the Vi ew. Datum referenced by a Vi ew to const
cannot be modified.

typedef double * PtrT ;
typedef double * const ConstPtrT ;
typedef const double * PtrToConstT ;

typedef Vi ew<doubl e*, Devi ce> Vi ewT ;
typedef const Vi ew<doubl ex, Devi ce> Const Vi ewT ;
typedef Vi ew<const doubl ex, Devi ce> Vi ewloConst T ;

/1 const-ness is enforced at conpile-tine:
Vi ewT x("nyx",N); // allocate
ConstViewl vy ;

Vi ewToConstT ¢cx = x ; // this assignnment is OK
Vi ewTl e =cx ; // error: violate const-ness
y =x; [/ error: reassign const

Figure 2: The “const-ness” semantics of Views and pointers
are analogous. This is illustrated by similar declarations for
pointer and View types and “const-ness” violations

3.2. View and Deep Copy Semantics

The class name Vi ew was chosen to inform and
remind users that Vi ew objects have shared own-
ership semantics as shown in Figure 3. In con-
trast to C++ standard container semantics, mul-
tiple Vi ew objects can reference the same allo-
cated array. Vi ew semantics are analogous to




C++ std::shared_ptr semantics where allo-
cated memory is deallocated when the last view of
that memory is destroyed or reassigned.

typedef Vi ew<doubl ex*[8][ 3], Device> ny_type ;

typedef Vi ew<const doubl ex*[8][3], Device>
my_const _type ;

ny_type a("a",N,M; // Alocate an array

{ /1 Begin a nested scope
/'l Create nore views of the sane array
ny_type a2 = a; [/ shallow copy assignnent
ny_const _type a3 = a2 ; // conpatible shallow copy

/1 "a and 'a2' are cleared (set to 'null")
a = ny_type();

a2 = ny_type();

/1 a3 still views the array

} // The View destructor is called on ’'a3" .
/1 As the last view, it deallocates the array.

typedef Vi ew<doubl ex*[8][ 3], Devi ce> ny_array_type;
ny_array_type a("a",N,M; // Alocate on Device

/'l ny_array_type::HostMrror defines an array

/1 in CPU nenory space with a layout mirroring

/1 ny_array_type. |If the device != Host then

/] create_mirror_view allocates a conpatible array,

/'l otherwise a view of the same array is returned.

ny_array_type::HostMrror host_a =
create_mrror_viewm a );

/1 Deep copy to a mirror does not require renmap.
/'l 1f a == a_host deep copy is skipped.

deep_copy( a , host_a ); // Copy device <- host
deep_copy( host_a , a ); // Copy host <- device

Figure 3: Shared ownership semantics are illustrated with
multiple views of the same allocated array being created and
cleared. The last cleared or destroyed view is responsible for
deallocating the array.

The Vi ew assignment operator is a shallow copy
operation — only the reference to allocated mem-
ory and layout metadata are copied. Kokkos pro-
vides deep copy functions to copy allocated values
between two arrays. A deep copy operation is most
often used to copy array values between memory
spaces, from CPU to device and vice versa.

Deep copies between arrays with different lay-
outs (or index spaces) have a performance penalty
of remapping data between the layouts, and an ad-
ditional performance penalty of allocating a tempo-
rary array when copying between different memory
spaces. Recall that Kokkos chooses a layout (by de-
fault) for the array’s device — thus a GPU and CPU
have different layouts. We address this performance
issue by defining Host M rr or view types as shown
in Figure 4. A Host M rr or defines a view that has
the device’s array layout but allocates memory in
the CPU memory space. Thus, deep copies between
a view and its host mirror never require remapping,
and they can be implemented by the most efficient
memory-to-memory copy capability of the device.

3.8. Performance Tuning Extension Points

In the previous sections we described fundamen-
tal capabilities for declaring, allocating, accessing,
and managing arrays in specified memory spaces
with device dependent layouts. Kokkos supports
array access performance tuning features through

Figure 4: Deep copy operations between memory spaces can
lead to remapping operations. This performance penalty is
avoided by using Host M rror , a view with the device layout
but values in the CPU memory space.

an optional advanced API. These features leverage
the extension points in Kokkos’ software design.

Owverriding the Layout. Kokkos chooses a default
layout for a given device. A user may override this
default layout through an optional template argu-
ment on the Vi ew class. In addition, an advanced
user may develop new layouts for their arrays.

Figure 5 presents an example of a Vi ew with a
tiled matrix layout that is (for example) used by
PLASMA [37]. With this layout, the parentheses
operator maps input indices to a tile and then to
a value within that tile. An application or library
that implements matrices with the Vi ew class can
change from a traditional column major layout to
a tiled layout simply by introducing a template pa-
rameter. Existing code that did not assume a par-
ticular layout will not have to be modified and will
produce the same results. At this point, new layout-
specific code can be introduced to further improve
performance of computation kernels.

Behavioral Traits. The Vi ew class has an optional
behavioral trait template parameter as a second ex-
tension point. A user can use behavior traits to
inform a Kokkos back-end to utilize device-specific
capabilities. For example, NVIDIA devices have
a texture cache which can be utilized to improve
performance for random accesses that frequently
read values. This portable interface for utilizing
NVIDIA texture cache is illustrated in Figure 6.
Other behavioral traits could include non-
temporal hints (e.g., Stream ngLoad and
St r eam ngSt or e) to avoid cache pollution when
data is not reused. This behavioral trait extension




/1 Od matrix type:
/'l typedef View<doubl ex*, Device> ny_matrix ;

/1 Change matrix type to an 8x8 tiled |ayout.
typedef View< doubl ex* ,

Layout Ti | eLef t <8, 8> ,

Device > ny_matrix ;

ny_matrix A("A",N,N); // Allocation is unchanged.
value = A(i,j); // Indexing unchanged.

/1 New | ayout - | everagi ng code can be introduced

/1 to optimze performance. Such code should be

/'l protected via tenplate partial specialization.

/1 tile_type is Viewdoubl e[8][8], Layout Left, Devi ce>
ny_matrix::tile_typet = Atile(iTile,jTile);

Figure 5: A default array layout may be overridden through
an optional Vi ew template arguments. In this example, a
view is specified to have an 8x8 tiles layout. Existing layout-
agnostic code is unchanged and specialized code leveraging
the tiled layout can be introduced.

type is defined at runtime (i.e., the degree of au-
tomatic differentiation), then an implementation of
that aggregate type may cause frequent small mem-
ory allocations and deallocations which are detri-
mental performance.

The Vi ew class incorporates aggregate data
types into the data layout. In the example shown
in Figure 7, the Aut oDer i v class contains a scalar
value and its derivatives. The Vi ew implementa-
tion includes this aggregate data type as an addi-
tional (mostly) hidden dimension in the index space
and polymorphic layout. In this example the paren-
theses operator returns a reference to the aggregate
data type as if the additional dimension did not ex-
ist.

/1l Allocate an array with an overridden |ayout.
typedef View< double **

Layout Ri ght ,

Device > x("x",NNM;

/1 Define a conpatible viewwth
/'l const value type and RandonRead trait.
typedef View< const doublexx

Layout Ri ght ,

Devi ce ,

RandonRead > read_x = x ;

/1 1f Device is CUDA then this operator
/1 uses NVIDIA texture cache capability.
value = read_x(i,j);

/'l Replace the 'scalar’ type with
/1 automatic differentiation type.
typedef Vi ew< AutoDeriv<doubl e>x*, Device> ny_type;

/1 Allocate an array with the runti nme-defined
/1 degree of differentiation di nension.
nmy_type x("x", N, M nDeg);

/'l Parentheses operator returns a viewthat is
/| conpatible with the AutoDeriv<doubl e> type.
Aut oDer i v<doubl e> val ue = x(i,j);

Figure 6: The parentheses operator of a View with const
value type, Cuda device, and RandonRead trait is imple-
mented with the NVIDIA texture cache capability. If any
of these three conditions are not satisfied then the standard
parentheses operator implementation is used.

point is expected to gain importance to portably
take advantage of future architectures’ increasingly
complex memory subsystems.

Aggregate Data Types. An advanced computational
software strategy is to embed sensitivity or un-
certainty quantification computations into compu-
tational kernels by replacing intrinsic scalar data
types (e.g., fl oat or doubl e) within the kernel
with aggregate data types [38, 39, 40]. For exam-
ple, replacing a variable’s scalar data type with an
automatic differentiation data type embeds deriva-
tive calculations for that variable without having
to modify the remainder of the kernel’s source code.
Replacing an intrinsic scalar type with an aggregate
type will alter the memory access pattern of a com-
putation, potentially resulting in a loss in perfor-
mance. Even worse, when the size of the aggregate

Figure 7: A View instantiated with an aggregate pseudo
scalar type of a dynamic size can incorporate that length as
an additional dimension that is hidden from the parentheses
operator but must be supplied to the constructor for correct
allocation.

The capability to embed aggregate data types
within a Vi ew is a design extension point to sup-
port advanced computational software strategies
such as embedding automatic differentiation or
stochastic bases data types.

4. Parallel Execution

Parallel execution patterns [41] are divided
into two categories: (1) data parallel or sin-
gle instruction multiple data (SIMD) and (2)
task parallel or multiple instruction multiple
data (MIMD). Kokkos currently implements
data parallel execution with parallel for,
paral | el _reduce, and paral | el _scan opera-
tions. The par al | el _scan operation was imple-
mented after initial submission of this paper and
is not described here. Research and development
is in progress for hierarchical task-data parallelism
where interdependent data parallel tasks are sched-
uled to execute on the device.

A data parallel operation maps NWor k units of
works onto threads that execute on the device.




Units of work are independent if they do not write,
or write-and-read, the same data. For example,
adding two vectors of length N can be performed
in parallel by independently adding its N mem-
bers. Units of work may be dependent by up-
dating the same data via global or local reduc-
tion operations. Kokkos supports deterministic
global reductions (e.g., an inner product) with the
par al | el _r educe operation and local reductions
(e.g., a map reduce) with atomic updates. Atomic
updates must be used cautiously as they will intro-
duce non-deterministic behavior, and may lead to
race conditions.

A data parallel computational kernel is currently
implemented as a functor. A functor is a C++
class that contains one or more callback functions,
shared parameters, and references to data upon
which the callback function operates. The C++11
standard introduced lambda language feature which
can significantly improve the syntax and usability
of the functor pattern. Extension of Kokkos to ac-
cept lambda-based computational kernels will be
straight-forward when vendor support for lambdas
is sufficient.

4.1. Parallel For

A parall el for functor is a C++ class that
contains a work callback function, shared input pa-
rameters, and views to arrays upon which the call-
back function operates. The functor’s work call-
back function is called to perform NWor k indepen-
dent units of work where each unit is identified by
a unique work indexr in the range [ 0. . NWrKk) .
Default array layouts are chosen assuming that the
left-most index of an array is the parallel work in-
dex.

The API of a paral |l el for functor has two
simple requirements illustrated in Figure 8: to (1)
identify the execution space and (2) provide a work
callback. We recommend that a functor’s class be
templated on the execution space for device porta-
bility. This allows a functor to be compiled for two
different devices in the same executable to enable
hybrid execution.

4.2. Parallel Reduce

A parall el _reduce functor has a work call-
back, a reduction callback, shared input parame-
ters, views to arrays upon which the work callback
operates, and reduction parameters. Each call to a
paral | el _r educe work callback generates a con-
tribution to the reduction parameters that must be

/'l Tenplate on the Device for portability.
tenpl ate< class Type , class Device >
class AXPY_Functor {
public:
/'l Requirenment: |dentify execution space.
typedef Device device_type ;

/1 Requirenent: Provide work callback as

/1 *void operator()( integer_type iw) const’
/1 where "iw is the work index.

/1 KOKKOS_I NLI NE_FUNCTION i s a #define nacro
/'l for conpiler directives such as

/1 "inline __device__' for Cuda.

KOKKOS_I NLI NE_FUNCTI ON

void operator()( int iw) const

{ y(iw =alpha = x(iw) +y(iw ; }

const Vi ew< Typex, Device> y ;
const Vi ew<const Typex*, Device> X ;
const Type al pha ;

i
/1 Call the functor NWork times on up to NWrk
/'l worker threads. Each call is passed a unique

/1 work index in the range [0..NWrk).
paral lel _for( Nwrk ,
AXPY_Funct or <doubl e, Cuda>( a , X, Y) );

Figure 8: Interface requirements for parallel_for functors are
illustrated with this example AXPY functor that performs
“Y = aX 4+ Y” on arrays. The trivial constructor for initial-
izing al pha, X, and y data members is omitted.

reduced by a commutative and mathematically as-
sociative reduction callback. The numerical imple-
mentation of a reduction callback could be non-
associative due to numerical round-off in floating
point operations.

The API requirements for a par al | el _r educe
functor are illustrated in Figure 9. These require-
ments are: (1) identify the execution space, (2)
identify a val ue_type for the reduction param-
eters (the result), (3) provide a work callback, and
(4) provide two reduction callback functions. The
reduction parameter val ue_t ype must satisfy the
plain old data type conditions; e.g., a plain memory-
copy of values will have the correct result. This
type is typically a simple intrinsic value such as
doubl e. The example val ue_t ype in Figure 9 is
a struct to illustrate the need for reductions of non-
intrinsic types. The reduction callback functions
have two responsibilities: initialize a temporary re-
duction value to the appropriate value (e.g. zero)
and join two reduction values into a single value.

The parall el reduce functor API require-
ments are defined so that Kokkos can provide scal-
able and deterministic global reductions. For large
thread counts the global reduction follows a tradi-
tional log,(NT) fan-in algorithm (N7 = number
of threads). The fan-in algorithm requires thread-
local copies of the reduction parameters which are




tenpl ate< class Scalar , class Device >

cl ass CentroidFunctor {

public:
/1 Required: ldentify execution space.
typedef Device device_type ;
/1 Required: Identify reduction paraneters
typedef struct { Scalar point[3], nass ; }

val ue_type ;

/'l Required: Work callback contributes to the
/1 reduction via the 'update’ argunent.
KOKKOS_I NLI NE_FUNCTI ON
void operator()( int iw,
val ue_type & update ) const
{ update. nmass += mass(iw;
update. point[0:2] += mass(iw)*point(iw 0:2); }

/'l Required: Reduction callback to join 'update’

/1 with "input’ froma different thread.

/1 These argunents are 'volatile to force

/1 communi cation of values anobng threads.

KOKKOS_ | NLI NE_FUNCTI ON

static void join( volatile value_type & update ,
const volatile value_type & input )

{ /* update += input */ }

/'l Required: Reduction callback to initialize
/1 tenporary reduction paraneters’ val ues.
KOKKGOS_| NLI NE_FUNCTI ON
static void init( value_type & update )

{ /* update = 0 =/ }

Vi ew<Scal ar *, Devi ce> mass ;
Vi ew<Scal ar *[ 3], Devi ce> point ;
e

/1 Reduction 'value_type' is output in 'result’.
paral |l el _reduce( Nwrk,

Cent r oi dFunct or <doubl e, Cuda>( nass, point), result);
/'l Final serial step for centroid conputation.
result.point[0:2] /= result.mss ;

Figure 9: Interface requirements for parall el _reduce
functors are illustrated with an example computation of the
mass weighted sum of points. Such a functor is the parallel
portion of a centroid computation. Portions of this example
have been abbreviated; e.g., a loop from 0 to 2 has been
abbreviated with 0:2.

reduced to a single global value through a defined
sequence of concurrent pair-wise reductions. This
sequence is derived from the number of threads,
NT, and number of work items, NWor k, and guar-
antees a deterministic result when given the same
NT and N\Vr k.

4.8. Local Parallel Reductions via Atomics

Local parallel reductions are supported through
atomic reduction operations; e.g., atomic addition.
An atomic operation serializes concurrent updates
to a datum but does not guarantee the ordering
of these updates among threads. Thus a non-
associative local reduction operation (e.g., floating
point addition) is likely to yield nondeterministic
results for local parallel reductions.

Atomic operations’ serialization will introduce
scalability bottlenecks when there are too many
concurrent atomic reductions; where “too many”
is dependent upon the number of threads and the
device’s capabilities. Typically atomic operations
should only be used when the number of atomic
updates to a particular datum is much smaller
than the number of work items. Otherwise func-
tors with reductions should be implemented with
atomic-free algorithms where feasible, such as us-
ing parallel_reduce.

4.4. Threaded Scalability and Performance

The composition of parallel work dispatch and
polymorphic array layout capabilities enables per-
formance portable implementations of parallel al-
gorithms. Atomic operations supports thread-safe
implementations of algorithms with local parallel
reductions, which could be performant given an ad-
equate ratio of computation to atomic operations
and a low frequency of collisions. However, Kokkos
cannot automatically make serial algorithms, or al-
gorithms with serial bottlenecks, scalable with re-
spect to the number of threads. Such a compu-
tation will require a redesign of its algorithm to
achieve threaded scalability.

One such kernel is the molecular dynamics force
computation evaluated in Section 5.2. The origi-
nal implementation of this algorithm was optimized
for a non-threaded environment and thread-safety
was not a concern. Migration of this kernel to a
threaded environment (described in Section 7.4) re-
quired a different thread-scalable algorithm that
performs 2x redundant computations but is now
fully scalable to thousands of concurrent threads.

Threaded scalability is necessary to effectively
utilize devices’ increasing core counts and decreas-
ing memory per thread. However, this may not
result in the best achievable performance for a par-
ticular computation on a given device with its par-
ticular capabilities and limitations. A computation
that is critical for an application’s performance may
require tailoring to work around limitations of a de-
vice or leverage device specific capabilities. This sit-
uation was encountered during the migration of the
molecular dynamic force computation described in
Section 7.4. Fortunately the required algorithmic
specialization for this particular computation had
no negative impact across architectures and was
applied to the portable version of the computation.
Based upon this experience we recommend that the
performance of threaded algorithms be evaluated



across diverse architectures (which Kokkos facili-
tates with its portable API) and with large thread
counts.

Kokkos supports device specific specializations of
functors through C++ template partial specializa-
tion — a functor that is templated with respect to
the device can have a device-specific implementa-
tion that is automatically and transparently picked
up by the C++ compiler. Such specializations are
most frequently used to replace portable implemen-
tations of commonly used functions with calls to
equivalent functions in device-optimized libraries,
typically provided by the device’s vendor. Such a
specialization is described in Section 7.5.

5. Performance Evaluation with Simple Ker-
nels

We evaluate Kokkos performance with simple
kernels and mini-applications (Section 6). Perfor-
mance testing is carried out on our Compton and
Shannon testbed clusters. Compton is used for In-
tel Xeon and Intel Xeon Phi tests, and Shannon
is used for NVIDIA Kepler (K20x) tests. Testbed
configuration details are given in Table 2. Note that
in these configurations device refers to a dual socket
Xeon node, a single Xeon Phi, and a single Kepler
GPU respectively.

Results presented in this paper are for pre-
production Intel Xeon Phi co-processors (code-
named Knights Corner) and pre-production ver-
sions of Intel’s Xeon Phi software stack. Perfor-
mance and configuration of the co-processors may
be different in final production releases.

5.1. Modified Gram-Schmidt Kernel

The modified Gram-Schmidt (MGS) algorithm
orthonormalizes a collection of vectors through a
sequence of inner products and scaled vector ad-
dition computations. These computations are per-
formed with a sequence of par al | el _reduce and
paral | el _for operations. The ratio of floating
point operations to memory access operations is
approximately 2/3. Thus, performance is limited
by memory bandwidth reading and writing vectors
and the overhead of dispatching and synchronizing
parallel operations. The collection of M vectors
of length N is stored in contiguous memory with
padding between vectors for appropriate memory
alignment.

For a given N x M problem size the MGS net
bandwidth, By,gs, is a function of the read / write
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Figure 10: Modified Gram-Schmidt algorithm’s net band-
width on NVIDIA Kepler (K20x), Intel Xeon, and Intel
Xeon Phi for M = 16 double precision vectors. For large
vectors performance is limited by bandwidth to main mem-
ory. For small vectors performance is limited by a dispatch-
synchronization time, or bandwidth to L3 cache memory for
the Xeon.

memory bandwidth (assumed to be equal), B, and
the parallel dispatch-synchronization time, S. The
MGS algorithm reads and writes vectors multiple
times. When the problem size is small enough for
some of the M vectors to reside in the Xeon’s L3
cache memory then reads and writes of those vec-
tors will occur at cache memory bandwidth, as op-
posed to main memory bandwidth. For the MGS
algorithm, memory bandwidth is a function of prob-
lem size, B(N, M), ranging from L3 cache memory
bandwidth for small problem size to main memory
bandwidth for large problem size. For the Kepler
and Xeon Phi we assume B is constant.

We derive the following simple performance
model for B, 45 (b = byte size of a vector element).

—1
Bings & (B(]\},]W) + E)QJVSb) , 1< M (1)

For small N, performance is limited by the parallel
dispatch-synchronization time. For large N, perfor-
mance approaches bandwidth to global memory as
vectors are no longer cache resident, and the global
memory read+write time dominates on all devices.
The MGS net bandwidth was measured with 16
double precisions vectors over a range of vector
lengths N, as presented in Figure 10. For large N
(limited by bandwidth to main memory) we achieve
174 GB/s or 78% of peak on the Kepler, 78 GB/s
or 71% of peak on the Xeon, and 92 GB/s or 46%
of peak on the Xeon Phi using 4 threads/core. On



Table 2: Configurations of testbed clusters.

Name Compton Shannon

Nodes 32 32

CPU 2x Intel E5-2670 HT-on 2x Intel E5-2670 HT-off
Co-Processor 2x Intel Xeon Phi 57c¢ 1.1GHz 2x K20x ECC on

Memory 64 GB 128 GB

Interconnect QDR IB QDR IB

0S RedHat 6.1 RedHat 6.2

Compiler ICC 13.1.2 GCC 4.4.6 + CUDA 5.5 RC
MPI IMPI 4.1.1.036 MVAPICH2 1.9

Other MPSS 2.1.3653-8 Driver: 319.23

Kepler and Xeon Phi small N performance is lim-
ited by the parallel dispatch-synchronization as ex-
pected. On Xeon, where the core-count is low and
the small N problem is fully cache resident, the in-
crease in bandwidth compensates for the dispatch-
synchronization time, resulting in higher net band-
width.

We fit Equation 1 to the data in Figure 10.
Resulting parameters for the bandwidth B(N, M)
are 54.9 GB/s, 96.9 GB/s, and 176.2 GB/s re-
spectively on Xeon Phi with 1 thread per core,
Xeon Phi with 4 threads per core and the K20x
Kepler GPU. The corresponding average dispatch-
synchronization times are 21.1 ps, 108.0 wus, and
20.0 ps per kernel, most of which is likely spend for
the reduction in the dot products.

We use the MGS test case as a tool to identify,
quantify, and improve performance with respect to
a devices’ dispatch-synchronization capabilities, or
Kokkos back-end’s use of those capabilities. As
demonstrated in Figure 10, when the Xeon Phi is
fully populated with threads (4 threads/core) the
dispatch-synchronization time is noticeably larger
for small N. However, reducing thread count re-
sults in significant performance loss for large N
problems. Thus improvement of Kokkos’ dispatch-
synchronization performance on Xeon Phi and Ke-
pler K20x is an active research focus.

5.2. Molecular Dynamics Force Kernel

The Lennard Jones molecular dynamics force ker-
nel (LJ-kernel), shown in Figure 11, loops over
atoms and calculates the forces between pairs of
atoms with a distance d;; smaller than a cutoff
reut- Performance of this algorithm is improved by
a search phase that, for each atom i, precomputes a
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list of neighbor atoms that will likely be within that
cutoff radius. In Figure 11 this list is implemented
by the two dimensional nei ghbor s array.

/1 Parallel iteration of all atons in the system
for(i=0;i<natons;i++) {

double x_i[3], f_i[3];
x_i[0:2] = x(i,0:2);
f_i[0:2] = 0;

/'l 1terate the preconputed |ist of neighbors
for(jj=0;jj<numneighbors(i);jj++) {

int j = neighbors(i,jj);

double d_ij[3] , d;

d_ij[0:2] =x_i[0:2] - x(j,0:2);
d = norm(d_ij);
if(d<r_cut) {

const double sr2 = 1.0/ (dxd);

const double sr6 = sr2*sr2xsr2;
const double force = 48.0xsr6+(sr6-0.5)*sr2;
f_i[0:2] += force » d_ij[0:2];

}

}
f(i,0:2) =f_i[0:2];

Figure 11: Pseudo code for the thread safe Lennard Jones
molecular dynamics kernel (LJ-kernel) using full neighbor
lists implemented in MiniMD. Note that the 0:2 abbreviates
replication of the statement with 0, 1, and 2 as the index.

The LJ-kernel test case parameters are presented
in Table 3. In this test case there are, on aver-
age, 77 neighbors of which 55 pass the distance
check. This results in an average of 1408 Flops and
311 memory accesses per atom ¢. In the LJ-kernel,
nei ghbors(i,jj) has a regular memory access
pattern and X(j, 0: 2) has a random memory ac-
cess pattern. However, when atoms are ordered ac-
cording to spatial locality it is possible to achieve
high cache reuse for random reads of x(j, 0:2).
This reuse, of up to 77 times on average, drasti-
cally reduces the actual number of loads from main
memory.




Table 3: LJ-Kernel and MiniMD test problem configuration.

Atoms (LJ-kernel test) 864,000
Atoms (miniMD test) 2,048,000
Units Lennard Jones
Density 0.8442 00_3
Initial Temperature 1.44

Initial Config FCC lattice
Force cutoff 2.5 0g
Neighbor cutoff 2.8 0g
Neighbor type full
Reneighboring every 20

Sorting every 20

Thermo calculation every 100
Threads on Xeon 32

Threads on Xeon Phi 224

The importance of polymorphic array layouts is
highlighted in reading the neighbor index array,
nei ghbors(i,jj). On a CPU or Xeon Phi this
array should have row major ordering so that a read
cache line contains values for the next iteration step
of the inner loop over jj. On a GPU this array
should have column major ordering so that the read
is coalesced for threads working on different atoms
i. In addition, on a GPU the random read per-
formance for X(j, 0: 2) is significantly improved
through the use of texture cache.

Figure 12 shows gigaflops/second performance of
this kernel applied to a 864,000 atom problem on a
single node of the Compton and Shannon testbeds
(Table 2). We run this performance test with the
appropriate layout and use of GPU texture cache,
and compare to results obtained from manually
forcing Kokkos to use the wrong layout and not
use GPU texture cache. Note that the wrong lay-
out on a CPU is the appropriate layout on a GPU,
and vice versa. Forcing the wrong layout causes
a performance drop of 1.9x, 3.4x, and 6.6x on the
CPU, Xeon Phi, and GPU testbed nodes respec-
tively. In addition, using the correct layout but not
using texture cache results in a 3.6x slowdown for
on the GPU node.

11

200

I Optimal settings
Texture fetch disabled (Kepler)
Wrong data layout

T

[
[on)
=

T

T T T

Performance in GFlop/s
g 8

T

o

Xeon  XeonPhi  Kepler

Figure 12: LJ-kernel performance in miniMD on Intel Xeon
CPU, Intel Xeon Phi, and an NVIDIA Kepler GPU for the
miniMD default test problem with 864,000 atoms. The solid
blue bars show performance with device-appropriate data
layout, the striped orange bars show performance with the
wrong data layout for the nei ghbors array, and the green
checkerboard bar shows performance on the GPU with the
correct layout but without using texture cache.

6. Performance Evaluation with Mini-
Applications
6.1. MiniFE

MiniFE is a hybrid parallel (MPI+X) finite ele-
ment mini-application that (1) constructs a linear
system of equations for a 3D heat diffusion prob-
lem and (2) performs 200 iterations of a conjugate
gradient (CG) solver on that linear system. This
mini-application is designed to capture important
performance characteristics of an implicit parallel
finite element code. MiniFE has been implemented
in numerous programming models, some of which
are available through the Mantevo suite of mini-
applications! available at mantevo.org.

We compare the performance of miniFE im-
plemented with Kokkos (miniFE-Kokkos) with
miniFE  implemented directly with OpenMP
(miniFE-OpenMP) and CUDA (miniFE-CUDA).
The miniFE-Kokkos back-end used on Xeon and
Xeon Phi nodes is OpenMP, and the back-end use
on Kepler GPUs is CUDA. The miniFE-CUDA
variant is based upon miniFE-Kokkos where all
linear algebra subprogram functions are replaced
with calls to NVIDIA’s cuBLAS and cuSparse func-
tions. Both miniFE-Kokkos and miniFE-OpenMP
are part of the 2.0 release of miniFE. The majority
of miniFE optimization efforts have concentrated

1Recipient of a 2013 R&D 100 Award,
www.rdmag.com/award-winners/2013/07/2013-r-d-100-
award-winners



on the CG-solver; therefore, we limit performance
testing to this phase of miniFE execution.

Our miniFE test case is a weak scaling problem
with 8M elements per device, consuming 3.3GB of
main memory per device. Tests are run with a
single MPI process per device, except for miniFE-
OpenMP tests on the dual socket Xeon nodes which
are run with only one MPI process per socket.
We make this exception because the execution
time more than doubles when miniFE-OpenMP is
run with one MPI process per node. This slow-
down is a result of the problem construction phase
performing an implicit nonuniform memory access
(NUMA) first touch on the linear system that is
incompatible with the subsequent access pattern
during the CG-solve phase. Consequently, dur-
ing the CG-solve phase threads access memory in
the wrong NUMA domain and incur the associated
cross-NUMA bandwidth penalty. Kokkos trans-
parently handles this NUMA issue by running a
paral | el for first touch initialization on each
new allocation, where this first touch is compatible
with subsequent data parallel kernels. For tests on
the Kepler GPU, we use the MVAPICH?2 1.9 [42, 43|
implementation of MPI so that MPI can directly ac-
cess GPU memory via CUDA GPU-Direct. Thus,
explicit data copies are not necessary between de-
vice and CPU during the CG-solve.

Weak scaling performance of the miniFE CG-
solve phase are shown in Figure 13. These tests
are run on the testbeds (Table 2). For each data
point, the best time out of twelve runs was used.

Overall, miniFE-Kokkos delivers similar perfor-
mance as the native implementations of miniFE.
It is faster than miniFE-CUDA in Kepler tests by
roughly 13%, it is marginally slower than miniFE-
OpenMP in Xeon tests, and it is about 10% slower
than miniFE-OpenMP on Xeon Phi. Excellent
weak scaling is observed on both on Xeon and
Kepler GPU test-beds, where miniFE-Kokkos has
about 95% parallel efficiency with 32 MPI ranks.
MiniFE-OpenMP shows slightly worse scaling effi-
ciency, which is likely due to using two MPI ranks
per CPU node. The scaling issue on Xeon Phi can
be attributed to the poor MPI performance on our
Xeon Phi testbed. Peak bandwidth between two
Xeon Phi co-processors is as low as 300 MB/s if
at least one of the co-processors sits in a socket
without an Infiniband adapter. In comparison, the
Xeon and Kepler GPU runs’ peak MPI bandwidth
is about 3.5 GB/s. This Xeon Phi MPI issue is ex-
pected to be solved with a new runtime software
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Figure 13: Time for CG-solve 200 iterations with miniFE
variants on different testbeds. The problem size is weak
scaled, with 8M elements per device. The solid lines repre-
sent runs using miniFE-Kokkos, while the dashed lines show
results with peer variants. For each data point the best time
out of 12 runs was used.

stack. At that point a Xeon Phi based systems
should see similar scaling behavior as the Kepler
GPU based system.

When repeatedly running the same performance
test on the Xeon Phi there are occasional outliers
in the runtimes. These outliers are almost twice as
long as the mean time, without the outliers. The
underlying cause of this performance anomaly is un-
der investigation.

As previously mentioned, GPU-Direct capabili-
ties were used for the GPU tests. In Figure 14
we compare performance running miniFE with and
without GPU-Direct. Without GPU-Direct the
CG-solve algorithm must deep copy vectors from
GPU to CPU memory, communicate vectors in
CPU memory via MPI, and then deep copy vectors
from CPU back to GPU memory. The addition of
these deep copy operations causes more than a 2x
slowdown in the CG-solve. This performance loss
could be mitigated, but would not be eliminated,
through a more complex operation that deep copies
only the portions of the vectors that are communi-
cated.

6.2. MiniMD

MiniMD serves as a proxy for classical molecular
dynamics (MD) codes. It closely resembles some of
the core functionalities of the MD code LAMMPS
[44], but is much more limited. In particular min-
iMD implemented only two types of models: (1) a
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Figure 14: Time for 200 iterations of miniFE-Kokkos CG-
solve on the Shannon GPU testbed The problem size is weak
scaled, with 8M elements per device. The solid line represent
runs using the GPU-Direct capabilities of MVAPICH2-1.9,
while the dashed line shows results with manual deep copies
during the communication phase. For each data point the
best time out of 12 runs was used.

simple Lennard Jones system using the microcanon-
ical ensemble and (2) a EAM simulation using the
microcanonical ensemble. The miniMD code has
four main components: (a) the force class calculates
atoms’ interactions, (b) the neighbor class creates
the list of neighbors j for each atom i, (¢) the comm
class handles communication, and (d) the integrate
class performs the time integration.

We compare miniMD-Kokkos, with OpenMP
back-end, to the miniMD-OpenMP variant. Since
there is no pure CUDA version of miniMD, no com-
parison is done on GPUs. For all tests the respec-
tive version 1.2 of miniMD has been used. The
miniMD performance test is for strong scaling with
2,048,000 atoms, in contrast to the miniFE weak
scaling test. This problem size falls into the range of
typical MD simulations between 10° and 107 atoms.
Details of the test problem configuration are given
in Table 3.

The code was run with a single MPI rank per de-
vice, with 32 and 224 threads on Xeon and Xeon Phi
respectively. MiniMD-OpenMP was compiled with
a chunk size of 64 for the static OpenMP schedul-
ing. Each test is run twelve times and the best eight
times are included in the results.

Total Time Consumed performance metric. Our
performance metric for strong scaling tests is the
total time consumed (or total time), which is the
wall-clock time of the test times the number of de-

13

vices used. This metric is similar to the commonly
used billing metric of CPU hours. The traditional
parallel efficiency measure is the inverse of this to-
tal time metric normalized to some reference time
(e.g., time to run on a single device). We present
results in the total time consumed metric to allow
a direct comparison of performance across devices,
and a break down of performance among compo-
nents of miniMD.

The total time consumed for 1,000 simulation
steps on 1 to 32 devices is given in Figure 15.
The first observation from these results is that
strong scaling is much worse on Xeon Phi and Ke-
pler GPUs than on the Xeon CPUs. The Xeon
Phi result can be explained by the poor MPI
performance previously noted in Section 6.1. A
comparison between miniMD-Kokkos and miniMD-
OpenMP shows that Kokkos introduces minimal
runtime overhead versus using OpenMP directly.
While miniMD-Kokkos is about 10% slower than
miniMD-OpenMP on the Xeon Phi system; how-
ever, the reverse is true for the CPU runs.
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Figure 15: Total time consumed for running 1,000 simu-
lation steps of a 2,048,000 atom Lennard-Jones simulation
with miniMD variants on different test-beds. Note that a
horizontal line indicates perfect strong scaling and an up-
ward trend indicates a loss in parallel efficiency. The solid
lines represent runs using miniMD-Kokkos, while the dashed
lines show results with peer variants. For each data point the
average of the best 8 runs out of 12 was used.

Timings from the four miniMD computations
(force calculation, neighborlist construction, com-
munication, and time integration), shown in Fig-
ure 16, are obtained to gain additional insight into
miniMD performance. First, the increase in to-
tal time correlated with increasing MPI ranks is
almost entirely caused by the communication rou-
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Figure 16: Breakdown of total time consumed for running 1,000 simulation steps of a 2,048,000 atoms Lennard-Jones simulations
with miniMD variants on different test-beds. Note that a horizontal line would indicate perfect strong scaling and an upward
trend indicates a loss in parallel efficiency. The solid lines represent runs using miniMD-Kokkos, while the dashed lines show
results with peer variants. For each data point the average of the best 8 runs out of 12 used. The subfigures show the time
for the force calculation (upper left), neighborlist construction (upper right), interprocess communication (lower left), and

integration (lower right).

tines. Second, on the Xeon Phi miniMD-Kokkos
is slower than miniMD-OpenMP due to the neigh-
borlist computation; even though this computation
is virtually identical in both variants. Third, on
the Xeon Phi miniMD-Kokkos is slightly faster than
miniMD-OpenMP in the integration computation;
even though this computation is virtually identical
in both variants. Analysis of these differences will
require comparison via performance analysis tools
or inspection of generated assembly code.

7. Legacy Code Migration Strategy

The legacy code migration strategy presented
here was developed based upon our experience
implementing Kokkos variants of miniMD and
miniFE. This strategy has five steps: (1) change
data structures, (2) develop functors, (3) enable
dispatch (offload model) for GPU execution, (4) op-
timize algorithms for threading, and (5) specialize
kernels for specific architectures. These steps can
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be carried out either for the whole legacy, or incre-
mentally within components of the legacy code. We
described these steps using MiniMD and MiniFE
examples.

7.1. Data Structures

The original MiniFE and miniMD data struc-
tures represent two typical situations found in a
wide range of legacy codes. MiniMD uses “raw”
allocated memory accessed via pointers for its ar-
rays. MiniFE uses storage containers (in particular
std::vector) for its arrays.

We created the Kokkos::vector as a thin
wrapper of a one dimensional Kokkos: : Vi ew to
allow simple replacement of st d: : vect or objects
with Kokkos: : vect or. This class does not have
the full functionality of st d: : vect or. Code exe-
cuting in device space has access to operator[],
begin(), and end() functions. Code execution in
CPU space has access to begin() and end() func-
tions, and also has access to common modify-



ing functions such as resize() and push_back().
Kokkos: : vect or also functions to manage deep
copy operations when compiling for a GPU device.

MiniMD uses one and two dimensional “raw” ar-
rays. The most significant miniMD arrays are the
positions, velocities and forces of particles (doubl e
**X, **V, *xf;) the number of neighbors for
each particle (i nt * nummei ghs; ), and the neigh-
borlist (i nt** nei ghbors; ). We introduce ap-
propriate t ypedef declarations as shorthands for
the various Vi ew types, as shown in Figure 17. We
declare separate types position, velocity and force
arrays to allow mixed precision computations. For
example, force calculations can be performed in sin-
gle precision and precision critical time integration
can still be performed in double precision. In ad-
dition, we declare Vi ew types with traits such as
const and random access.

typedef Kokkos:: Host Default Devi ce;
/1 Precision for position, and force
typedef doubl e X Float;
typedef doubl e V_Float;
typedef doubl e F_Float;

vel ocity,

/] Particle positions always use right |ayout
/1l to inmprove cache line usage with random access
typedef View< X Float*[3],
Layout Ri ght,
Def aul t Device> t_x_array ;
typedef View< const X Float=*[3],
Layout Ri ght,
Def aul t Devi ce,
ReadRandom > t _x_array_rnd;
typedef t_x_array::HostMrror t_x_array_host ;

/Il Particle velocities use default |ayout for

/| appropriate contiguous access pattern

typedef View<V_Fl oat*[3], Defaul t Device> t_v_array ;
typedfe t_v_array::HostMrror t_v_array_host ;

/'l Neighborlist uses default |ayout for
/| device-appropriate access pattern
typedef Vi ewintx* , DefaultDevice> t_neighs;
typedef View<const intx*

Def aul t Devi ce> t _nei ghs_const;

Figure 17: C++ type definitions for some MiniMD-Kokkos
array data structures.

After all required array type declarations are
introduced, the miniMD code is incrementally
changed. First, every array allocation statement is
changed to a Vi ewallocation as shown in Figure 18.
Incremental migration to the new data structures
is achieved by temporarily wrapping MiniMD’s old
array-of-pointers data structures around Vi ew allo-
cated data, as showin in Figure 18. This temporary
wrapping strategy introduces two restrictions: (1)
the wrapped array-of-pointers data structure can
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only be accessed on the CPU and (2) the Vi ew
layout is forced to match the original data struc-
ture’s layout. This phase is complete when miniMD
passes its test suite.

/1 Original
doubl e **x,

array vari abl es

xxy, xxf;

/'l Kokkos array vari abl es

t_x_array d_x; t_x_array_host
t_v_array d_v; t_v_array_host
t_f_array d_f; t_f_array_host

h_x;
h_v;
h f;

/1 Allocate on the device
t_x_array d_x = t_x_array("X", natons);

/1 View or allocate a CPU copy
t_x_array_host h_x = create_mrror_viewd_x);

/'l Tenporarily wap old data structure:
doubl e **x = new doubl ex[ nat ons] ;
for(int i = 0; i<natons; i++)

x[i] = & h_x(i,0);

Figure 18: Migration of miniMD “raw” arrays to correspond-
ing Vi ewtypes requires replacing array declarations and allo-
cations. Incremental migration can be accomplished by tem-
porarily wrapping the original array data structures around
Vi ew allocated data.

“Raw” array-of-pointer variables are now incre-
mentally replaced with Vi ew variables. This re-
quires replacing the array-of-pointer access syntax,
x[i1[j], to Vi ewsyntax, X(i,j). After these
replacements are completed the temporary wrap-
pers can be removed.

Some parts of the original MiniMD use flat array
access to enable vectorizing. This is possible since
the “raw” two-dimensional arrays are allocated as
two arrays: (1) a one dimensional array of data
and (2) an array-of-pointers into the array of data.
With Vi ew variables this manual optimization is
no longer necessary.

/1 Original access syntax
doubl ex* x = atom >X;
x[i][1];

const X Float ytnp =
/] Optimized original access syntax
doubl ex x = &atom >x[0][0];

const X Float ytnp = x[i * 3 + 1];
/'l Kokkos access syntax

t_x_array x = atom >X;

const X Float ytnmp = x(i,1);

7.2. Functors

Threaded execution with parallel for or
par al | el _r educe requires encapsulation of com-
putations in functors, until C++11 lambda capa-
bility is available. In miniMD, nearly all computa-
tions are performed by class member functions that




loop over arrays. We developed the following port-
ing strategy in order to minimize changes to the
original miniMD code.

Given a class member function containing a loop,
we modify the class and create a corresponding
functor, as shown in Figure 19. This modification
can be introduced in the following steps.

1. Modify the original function to copy all incom-
ing arguments into class member data.

2. Create a mnew class member function
(C:fidtenm(int i) in Figure 19) that
contains the original function’s loop body and
a loop index as its only argument.

3. Replace the loop body within the function with
a call to the new loop body function and test
the modified code.

4. Create a wrapper functor (f functor in Fig-
ure 19) that has an instance of the original class
as a member and a parentheses operator that
calls the new loop body function.

5. Change the original class member function to
create and dispatch the wrapper functor via
paral | el for or parall el reduce.

Note that when C++11 lambda functionality is suf-
ficiently supported this strategy can be superseded
by a syntactically simpler lambda strategy.

In miniFE functions are not members of a class.
The functor-wrapper migration strategy is similar,
as shown in Figure 20. The difference is that in-
coming arguments of the original function become
members of the functor and the original loop-body
is directly copied into the functor’s operator.

These porting steps are typically sufficient to use
Kokkos with a single thread. However, this strat-
egy does not guarantee that the loop body func-
tions are thread-safe — that thread parallel execu-
tion of the loop bodies does not have write conflicts
or other race conditions. A developer must still
identify all write conflicts or other race conditions
in the loop body function and appropriately miti-
gate those conditions. In many cases the simplest
way to mitigate write conflicts is to use atomic up-
date functions. Kokkos wraps a collection of com-
monly available and compiler dependent atomic up-
date functions under a portable interface.

An example where atomic updates could be used
is porting the original loop body of the Lennard
Jones kernel given in Figure 21. In its original non-
thread parallel form, the LJ-kernel takes advantage
of Newton’s third law: it computes the force be-
tween a pair of atoms once and then adds the op-

16

/'l Original class nmenber function

class C {
public:
void f(double k, int N {
for(int i =0; i<N i++) {
/1 1 oop body
}
}
¥
/1 Modified class with a functor-w apper
class C {
public:
doubl e k ;
void f(double ktnmp, int N) {
k = ktnp;
f _functor<Def aul t Devi ce> func(+*this);
paral l el _for(N, func);
}
void f_item(int i) const {
/1 1 oop body
}
I

tenpl at e<cl ass Devi ce>
struct f_functor {
typedef Device device_type
C c;
f_functor(C &_in): c(c_in) {};
operator()(int i) const {
c.f_iten(i);

bs

Figure 19: Illustration of our strategy to port miniMD to
Kokkos and minimize changes to miniMD class’ source code
by wrapping loop bodies within functors. Given C++11
lambda capability a syntactically cleaner strategy could be
used.

posite force to both atoms (compute f;; on atom %
due to atom j and then f;; = —f;;). In this algo-
rithm, the neighborlist of a particle only needs to
contain half of its actual neighbors, thus we refer
to it as the half-neighbor algorithm. Accumulation
of forces in the half-neighbor algorithm has several
write conflicts, as identified in Figure 21.

The original kernel can be made thread-safe
by replacing the force updates with calls to
atomic_fetch_add().

/1 old force update
f(j,0:2) -=d_ij[0:2] » force;

/1 new code

atom c_fetch_add(&f (j,0:2) , -d_ij[0:2] * force);

Atomic functions can be a straight forward and
expedient approach to make serial code thread-safe.
However, this approach may not result in the most
performant implementation. Atomic update func-
tions introduce a noticeable performance overhead,
even when executing on a single thread. Modify-
ing kernels to be thread-safe and performant often




/1 old code

void f(double k, int N) {
for(int i =0; i<N i++) {
/1 1 oop body
}

}

/1 new code

tenpl at e<cl ass Devi ce>

struct f_functor {
typedef Device device_type;
doubl e k;
f_functor(double ktnp): k(ktmp) {};
operator()(int i) const {

/1 1 oop body

}

e

void f(double k, int N) {
f _funct or <Def aul t Devi ce> func(k);
paral l el _for(N, func);

}

Figure 20: Our strategy for porting miniFE to Kokkos mini-
mized changes to miniFE functions’ source code by wrapping
loop bodies within functors.

involves redesigning their algorithms with strate-
gies such as coloring, redundant computation, or re-
dundant storage with subsequent reductions. Such
algorithmic redesign should be delayed until it is
known that a kernel’s performance has a significant
negative impact on the overall performance of the
application.

7.3. Enable GPU execution

The migration strategy presented so far is typ-
ically sufficient to enable threaded execution on
CPUs or Xeon Phi. For execution on GPUs, it is of-
ten necessary to add explicit management of the dif-
ferent memory spaces, especially when the code is
not fully migrated to Kokkos. For example, the cur-
rent setup phase of miniFE is not GPU ready due to
the use of std:map. Thus, all arrays are currently
maintained on the CPU in Vi ew. : Host M rror
variables. For the miniFE CG-Solve phase, all ar-
rays associated with the linear system are deep
copied to the GPU and CG-Solve computations are
performed on the GPU.

7.4. Optimizing algorithms for thread scalability

Once a code is running thread parallel on all
devices, it can be mnecessary to redesign some of
the original serial algorithms for thread scalabil-
ity. Kernels which show poor strong scaling per-
formance, with respect to the number of threads,
are candidates for redesign. In miniMD, the origi-
nal LJ force kernel is one such candidate since using
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int numei ghs = numei gh[i];
double x_i[0:2] = x(i, 0:2);
double f_i[0:2] = 0;

for(int k = 0; k < numei ghs; k++) {
int j = neighbors(i, k);
double d_ij[0:2] = x_i[0:2] - t_x(j, 0:2);

double rsq = d_ij[0]*d_ij[O] + ... ;

if(rsq < cutforcesq) {
double sr2 = 1.0 / rsq;
double sr6 = sr2 = sr2 * sr2;
doubl e force = 48.0 * sr6 * (sr6 - 0.5) * sr2;

/1 Wite conflict is not thread safe !!!
f_i[0:2] +=d_ij[0:2] * force;

if(j <nlocal) {
/1 Wite conflict is not thread safe !!!

f(j,0:2) -=d_ij[0:2] *= force;
}
}
/1l Wite conflict is not thread safe !!!
f(i,0:2) +=f_i[0:2];

Figure 21: The original Lennard Jones kernel in miniMD
is not thread-safe due to multiple statements with potential
write conflicts.

atomic updates in the inner-most loop is very ex-
pensive.

When running the standard miniMD prob-
lem with 864k atoms, this kernel requires about
22.4 seconds using 32 MPI ranks (single thread)
on our Compton test-bed’s Xeon CPUs. Running
the same problem with 1 MPI rank, 32 threads,
and using atomic updates results in the kernel’s
time increasing to 71.4 seconds. After modifying
the kernel to eliminate all possible write conflicts,
at the cost of doing twice as much calculations (us-
ing full neighbor lists), the same computation takes
27.7 seconds. For a 32 MPI ranks versus 32 threads
test case on a single compute node the threaded
version is still slower than the original MPI-only
kernel. However, it is not always possible or perfor-
mant to execute an MPI process on each core. For
example, running MPI-only on a GPU or on every
core in a cluster of Xeon Phi is not feasible due to
memory and network interface limitations.

Results from this miniMD migration process is
given in Figure 22. The total time for the min-
iMD 2,048,000 atom test problem is plotted for one
and 16 compute nodes using (a) MPI-only with half
neighborlists, (b) a single MPI rank per node with
threads and half neighborlist using atomic opera-
tions, and (c¢) a single MPI rank with threads and
full neighborlists. MPI-only is the most efficient
way to run the problem when using only CPUs on a




single node. In every other configuration, the write
conflict free full neighborlist approach has better
performance.

500 T T T 7
§ | [mmmmmm ThreadsFulineigh 'ST .
r MPI/Halfneigh © ]
400 | o ThreadsHalfneigh 7
8 ]
C3OO* a
£ 1 ]
GJ L 4
£ 200 ]
[ - ]
=116 1 16 1 16
Xeon Xeon Phi Kepler

Figure 22: Total time consumed for running 1,000 simu-
lation steps of a 2,048,000 atom Lennard-Jones simulation
with miniMD variants on different test-beds. A comparison
is shown of running miniMD on 1 and 16 nodes or devices
with MPI-only using half neighborlists, threads with half
neighborlists, and threads with full neighborlists. On Xeon
and Xeon Phi testbeds 32 and 224 MPI ranks or threads have
been used per node or device. An exception is the Xeon Phi
run with 16 devices, where 224 MPI ranks per device did
not run and 56 (one per core) had to be used instead. On
the Kepler GPU testbed running in MPI only mode is not
possible.

Performance limitations of MPI-only on a Xeon
Phi are apparent using a single device. Threaded
execution of the half neighborlist and atomic up-
date kernel is competitive with the MPI-only ap-
proach, and the full neighborlist kernel is 40%
faster. When trying to run more than one Xeon
Phi in MPI-only mode, limitations of the current
software stack prevented us from using more than
56 ranks per Xeon Phi (1 rank per core). Con-
sequently, MPI-only performance becomes almost
80% worse than the full neighborlist kernel.

Three common strategies for redesigning algo-
rithms for improved thread scalability are: redun-
dant computations, redundant storage followed by
thread-safe reductions, and coloring. Redundant
computations were used for the LJ-Kernel because
it has only a 2x redundancy, is more scalable and
memory efficient than redundant storage, and is
much simpler to implement than strategy coloring.
Redundant storage can work well on CPUs with
ample main memory and cache; however, it can
be inherently unscalable on devices with a small
amount of memory per thread.
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Figure 23: MiniMD performance is significantly improved
on Xeon Phi by sorting atom arrays to improve locality of
neighbor atoms.

As mentioned in Section 4.4, threaded scalabil-
ity may not be sufficient for an algorithm to ob-
tain the best performance on a given architecture.
This was the situation with miniMD where the ar-
ray of atoms is sorted to improve data locality for
neighbor atoms. Figure 23 shows the total time
with and without sorting activated for the previ-
ously described miniMD tests using 16 nodes or
devices. For the CPU and GPU the performance
difference is less than 10%; however, without sort-
ing performance on the Xeon Phi decreases by more
than 30%. In this situation, an algorithmic modifi-
cation was critical for Xeon Phi performance (30%),
and was also slightly beneficial for CPU and GPU
performance.

7.5. Specialize kernels for specific architectures

In some cases, it is not possible to design a single
algorithm which is nearly optimal on all architec-
tures. For example, a device specific feature can be
leveraged for a more performant implementation of
an algorithm on that device. In other situations,
optimal algorithms might be different due to the
large difference in the number of concurrent threads
(e.g., O(10°) for GPU, O(10?) for Xeon Phi, and
O(10') for CPU). In these situations, it can be nec-
essary to introduce a device-specialized version of a
computation.

This situation occurred in miniFE for the sparse
matrix-vector multiplication shown in Figure 24.
On a CPU or Xeon Phi each row of the matrix is
handled by a single thread; however, on a GPU it is
beneficial to use multiple threads per row [45]. Fur-
thermore, on NVIDIA’s Kepler generation of GPUs



the shuffle operations can be used to optimize intra-
row reductions. By using the number of threads
per row as a template argument to this function we
are able to differentiate the code for GPUs without
having a negative impact on CPU execution.

tenpl ate<int TPRow> // threads per row
voi d operator()(const int threadld) const {
/| For OpenMP or pthreads back-end i Row=t hr eadl d;
// and | ane=0;
const int iRow = threadl d/ TPRow;
const int lane = threadl d%PRow,
scal ar _type sum = 0;

i f(doalpha !'=-1) {
const Spar seRowi ew<CrsMatri x> row=m A.row(i Row) ;

#pragma | oop count (15)
#pragma unrol |

for(int i=lane; i<rowlength; i+=TPRow) {
sum += row. value(i) * mx(row colidx(i));
} else {

const Spar seRowVi ew<Cr sMatri x> row=m A. row i Row) ;

#pragma | oop count (15)
#pragma unrol |
for(int i=lane; i<row length; i+=TPRow) {
sum-= row. value(i) * mx(row colidx(i));
}

/1 Performreducti on on GPUs

/| For OpenMP or pthreads back-end, conpiler will

//optimze reducti on away since TPRow=1

i f(TPRow > 1) sum += shfl_down(sum 1, TPRow);
i f(TPRow > 2) sum += shfl_down(sum 2, TPRow);
i f(TPRow > 4) sum += shfl_down(sum 4, TPRow);
i f(TPRow > 8) sum += shfl_down(sum 8, TPRow);
i f(TPRow > 16) sum += shfl _down(sum 16, TPRow) ;

//On GPUs only one thread wites result back
i f(lane==0) {
i f (doal pha * doal pha !=

if( dobeta == 0) my(i Row) = sum;
el se if(dobeta == 1) my(i Row) += sum;
el se if(dobeta -1)my(i Row) = -m.y(i Row)+sum
el se my(i Row = beta(0) * my(i Row) + sum
}

1) sum *= al pha(0);

}

Figure 24: Sparse matrix-vector multiplication specialized
according to the number of threads used per row. This num-
ber always equal to one on CPU and Xeon Phi, and is greater
than one on a GPU. The GPU implementation utilizes the
inter-thread shuffle operation to optimize inter-row reduc-
tions.

A similar situation occurs in miniMD’s neigh-
borlist construction. The first part of this construc-
tion algorithm assigns atoms to bins in space and is
the same across all devices. The second part of the
algorithm builds the neighborlist from these bins
and must have a specialized version for a GPU.
On CPUs or Xeon Phi, each thread works inde-
pendently on a single atom at a time. It deter-
mines the bin of its atom, and then loops over all
bins within the neighbor cutoff to find all neigh-
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bor atoms. On a GPU shared memory can be used
to make this process more efficient. Instead of as-
signing single atoms to threads, bins are assigned to
team of threads with access to GPU shared memory
(i.e., a CUDA thread block is assigned to each bin).
Threads in a team load the coordinates of atoms in
neighboring bins into shared memory and then work
from this shared memory. In that way the coordi-
nates are used multiple times for each original load
from the slower main memory.

8. Conclusion

The Kokkos C++ library implements our strat-
egy for manycore performance portable HPC ap-
plications and libraries. Two foundational ab-
stractions are implemented: (1) dispatching par-
allel functors to a manycore device and (2) man-
aging the layout of multidimensional arrays so that
those functors have device-appropriate memory ac-
cess patterns. We defined Kokkos’ manycore paral-
lel abstractions and summarized the C++ API.

We demonstrated performance portability unit
test kernels and mini-applications that achieve at
least 90% of the performance of architecture spe-
cific, optimized variants of those test cases. Finally
we described a strategy by which legacy C++ ap-
plications and libraries can use Kokkos to migrate
to manycore parallelism. Migration of our mini-
applications to Kokkos demonstrated that some-
times legacy computational kernels are inherently
not thread scalable and must be redesigned.

Kokkos will update existing, or adopt new, back-
end implementations as manycore architectures and
their programming models evolve. In this way,
HPC applications and libraries using Kokkos can
immediately benefit from new manycore capabili-
ties. Furthermore, our ongoing analysis of many-
core architectures’ performance drives continued
optimization of back-end implementations.

Kokkos is under active research and develop-
ment focusing on improving performance, sup-
porting new layouts and aggregate “scalar” value
types (Section 3.3), and enabling hierarchical task-
data parallel dispatch. Development has begun on
higher level libraries such as sparse linear algebra
and array-based containers (e.g., hash-maps).

Kokkos is publicly available through the Trilinos
repository at www.trilinos.org, and is being used
to migrate the Trilinos suite of libraries to many-
core architectures. An effort has begun to refactor



LAMMPS [44] to use Kokkos for thread level paral-
lelism. MiniMD and miniFE are available through
the Mantevo repository at www.mantevo.org.
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