SAND2011- 5805C
- : A Quantum-Pol Self =
Cl-Sentaurus: uanium-roisson oeéir- _EENEREN
Consistent Solution of a Quantum Dot —
: : : ,
Erik Nielsen, Ralph Young, Malcolm Carroll, and Richard P. Muller Quantum Information ScT
Hamiltonian (Eq. 2) is diagonalized in this basis using sparse matrix routines when Top Metal Gate Vag = 3.9V Q(ox/si) = -3.8x10"" cm~?
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Semiconductor devices having regions with few electrons, which need to be 0.8 J  in2x10" em? increments
modeled quantum mechanically, and regions of high electron density, which should The loop between Sentaurus and the Cl module is structured as follows: ] from2x10™ to 2x10™ em®
be treated semi-classically, are typical in the area of quantum computing. The MOS o Vio= /3
double quantum dots fabricated at Sandia exemplify this type of device. Simulation 1. Sentaurus is used to optimize the gate control voltages so \gy:
of such devices proves challenging because quantumand semi-classical solutions thatthere are N electrons in a pre-defined “quantum region” 0.6 1 0.9 electrons
mustbe integrated in a way not anticipated by existing semiconductordesign tools. of space. 1 Qup=9.0x10" cm™
As a result, we have worked to couple a commercially available semi-classical tool, : gdn - ;g::c?;::rg;?
sentaurus Device, with a quantum-mechanical configuration interaction (Cl) 2 Sentaurus exports the electrostatic potential and electron 04 ] ¢:= 22 aF
module. By carefully iterating between Sentaurus Device and the Cl module, we density (as a function of space) within the quantum region 1 c,=02aF
are able to simulate advancedthree dimensional device geometries which have a and sends to Cl preprocessor. ] »=02af
“‘quantum” sub-region containing a few electrons. The solution accounts for the - E“:?'S :EI:
redistribution of charge in the non-quantum region due to the quantum mechanical 3 Cl preprocessor subtracts from the supplied electrostatic 0.2 -4
charge distribution in the quantum region. potential the potential due to the supplied electron charge 1 Spo3oe |
density. The result is the electrostatic potential in the ] "raTtIR
quantum region due only to charges outside the region. 0 ;
4. Cl preprocessor finds the minimum (or minima) in the 0 0.2 0.4 06 0.8

electrostatic potential resulting from the last step. Along the
z-direction at each minimum, a linear fit potential gives a 1D
triangular well approximation. The ground state of a
triangularwellis given by an Airy function. A1D Gaussian is
centered at the peak of this Airy function and its width is
determined by optimizing its overlap with the Airy function.
The width and location of this 1D Gaussian are used as the
z-dependent parts of all of the Gaussian basis functions in
the next step. At the z-value where the Airy function peaks,
parabolic fits to the potential along the x and y directions
determine the x and y widths of the Gaussian basis

Figure 3. Electron Density of Quantum Dot after Cl| Solution,

The electron density afterincorporating the Cl solution in the quantum dot region is
shown in Figure 3. Note that the lateral extent of the quantum dot charge Is
reduced compared to the classical result shown in Figure 1.

The electron density afterincorporating the Cl solution in the quantum dot region is
shown in Figure 3. Note that the lateral extent of the quantum dot charge Is
reduced compared to the classical result shown in Figure 1.

Figure 1. Left Side of Double Quantum Dot Structure showing Polysilicon Gates functions.
(left) covered by Al;O5 (right). A top metal accumulation gate (not shown) covers 5 Cl obtains the energies and eigenstates of electrons within 12 : | . .
the AlL,O5 . ) glagnsiales ol . classical
the quantumregion using a Gaussian basis determined by
METHOD the Cl preprocessoras described in the previous step. The . -
electron density of the ground state N-electron wave- “?E
Qur method consists of a loop between a commercial finite volume package function is sent to Sentaurus. o ]
(Sentaurus Device) and a configuration interaction code. Sentaurus solves the 3 A script calls Sentaurus Device in a loop and adjusts a o
nonlinear Poisson equation — -
_ _ fictitious band gap narrowing parameter ﬂ‘bgﬁ at each grid 2
~ rl—A_\r)—E - |
vl.;j(r) — N F 4;3’3( ) bg”( ) d (1) point in the quantum region so that, the solved electron E
- kT density in the quantum region will match that predicted by o
’ the CI. :
where ¢ is the electrostatic potential (a constant shift from the conductionband (} e N T
7. Sentaurus outputs a new electrostatic potential (with the
. . . . 10
edge E_ ), E_ is the Fermi energy, T is the temperature, and kS Is the fictitious A, removed) and electron density. These
Boltzmann constant. A is a band gap narrowing term used to account for quantities are compared with the previous iteration’s Figure 4. Electru_n Density alpng a Vertical Slice Showing the Classical and
bgr potentialand density. If convergence has beenreached, the Quantum Mechanical (Cl) Solutions.
dopant-dependentchanges in a material’s band gap. In addition to the electrostatic process ends, otherwise we return to 3 above with the new o | o
. _ _ _ _ electrostatic potential and electron density. A more dramatic difference between the classical and quantum solutions is seen
potential ¢ ,solvingEq. 1 also gives the electron density as a function of space. along a vertical slice through the quantum dot. See Figure 4. This points out the
n ; . In this usage Sentaurus Device invokes no quantum mechanical effects. significant adjustment needed using A, in step 6.
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. _ _ _ _ _ _ _ Viop metal = 3.9 V, Qg = -4.3x10" emr? Ny, = 0.9 electrons
The full configuration interaction technique diagonalizes a many-pariicle

Hamiltonian in a specified basis, giving the_ene_rgies and e!genfunctinns of the S eDensity [em*3] The table below shows Cl calculations of the ground state energy of dot
quantum system. The general form the Hamiltonian we consider is Dt occupations from 1 to 4 electrons for the structure shown in Figures 1-3. A basis

(4 4)1 :;:z set of 5 Gaussians is compared to a basis set of 9 Gaussians.

"\ p, —ed — - = e - -?E+1$

H = L+ p(r )+ gu,S.-B+ Y —=——=r (2) - : :

= 2m (7o) e o | B 5-Gaussians |9-Gaussians
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where r: and p. are the position and momentum, respectively, of the 1

Classical 1 electron 17.2 17.0
2 electrons 47.6 44.4

3 electrons 86.5 81.3
4 electrons 134.0 127.5

electron, ¢ is the electrostatic potential, and m s the effective mass (generally

a tensor). A vector potential A4 determines the magnetic field 5=V x 4

Fat

which we restrict to be constantand along the z-direction: B =5z ,and x isan

effective dielectric constant. The specific implementation we have developed uses 0 02 04 0.8 0.8 !

a basis of non-orthogonal s-type Gaussian functions, centered at different spatial X [um]

locations, to construct a set of orthogonal single-particle functions. Multi-particle Figure 2. Classical Electron Density for Quantum Dot

slater determinant functions are formed from this orthogonal set, and the

Hamiltonian (Eq. 2) is diagonalized in this basis using sparse matrix routines when Figure 2 shows the electron density of the left side of a double quantum dot
necessary. structure. The polysilicon depletion gate outlines are shown. The accumulation

gate is a blanketaluminum layerabove the depletion gates separated fromthem by
two dielectric layers. The gate biases are optimized to produce close to one
electron, in this case 0.94 electrons.
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