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Mo+va+on	
  

“Taking	
  concepts	
  from	
  SoYware	
  Engineering	
  and	
  
Service-­‐oriented	
  architecture	
  (SOA)	
  design,	
  automa3on	
  
should	
  be	
  approached	
  as	
  distributed	
  soYware	
  systems	
  
-­‐	
  “a	
  suite	
  of	
  interoperable	
  services”	
  -­‐	
  loosely	
  coupled	
  
modules	
  that	
  are	
  able	
  to	
  collaborate	
  by	
  subscrip3on	
  to	
  
a	
  shared	
  informa3on	
  model.”	
  

Seman,	
  A.	
  (2011)	
  A	
  Vision	
  for	
  Next	
  Genera0on	
  Naval	
  Machinery	
  Monitoring	
  
and	
  Control	
  Guiding	
  Principles	
  for	
  Navy	
  A=er	
  Next	
  Machinery	
  Automa0on	
  
Research	
  
	
  



Objec+ves	
  

•  To	
  develop	
  a	
  SOA	
  for	
  physics-­‐based	
  models	
  
–  Comprising	
  a	
  suite	
  of	
  loosely	
  coupled,	
  interoperable	
  modules	
  
–  Sharing	
  a	
  common,	
  distributed	
  informa3on	
  model	
  
–  Collabora3ng	
  to	
  accomplish	
  mul3physics	
  simula3ons	
  

•  To	
  develop	
  analy3cal	
  approaches	
  to	
  quan3fying	
  the	
  desirable	
  
proper3es	
  of	
  the	
  SOA.	
  

•  To	
  promulgate	
  the	
  resul3ng	
  soYware	
  design	
  paQerns	
  in	
  
publica3ons	
  and	
  open-­‐source	
  soYware.	
  

•  To	
  demonstrate	
  the	
  SOA	
  on	
  problems	
  relevant	
  to	
  the	
  Navy.	
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Origin of Design Patterns 

6 

Positive Outdoor Space 
Julian Street Inn 
Shelter for the Homeless 
San Jose, CA 

Vol. III 
(1975) Vol. II 

(1977) 

Building architecture: Alexander et al. (1975-’79) 

Vol. I (1979) 



OOD Patterns 
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1995 

2007 

Software architecture: Gamma et al. “Gang of Four” (1995) 
Scientific software architecture: Gardner & Manduchi (2007) 



Patterns in Fortran/C++  

Multiphysics software architecture [J5]	
  :  
http://www.cambridge.org/Rouson 

“Prefer aggregation over inheritance.” 
Gamma et al.  

Fluid 
Dynamics 

Chemistry Boundary 

Flame 

aggregates 

Puppeteer: 



Morfeus Predecessors 

Time Integrator 

Grid 

Fluid 

Cloud 

Field 

Liquid Metal 

Magnetofluid 

Time Integrator 

Grid 

Classical 
Fluid 

Quantum 
Fluid 

Field 

Superfluid 

Quantum turbulence 
[J8] 

Magnetohydrodynamics 
[J2,J8] 

Time Integrator 

Grid 

Fluid Scalar 

Field 

Atmosphere 

Cloud 

Atmospheric Boundary 
Layer [J4] 

Lattice Boltzmann bio-fluid dynamics: 
Xu & Lee (2008) “Application of the lattice Boltzmann method to flow in 
aneurysm with ring-shaped stent obstacles,” Int. J. Numerical Methods in 
Fluids.  



Quantum vortices (red) & classical vortices 
(blue) in superfluid helium (Morris, Koplik & 
Rouson, Phys. Rev. Lett. 2008). 

Navy application: Optical turbulence in the 
atmospheric boundary layer. (Morris, Handler 
& Rouson, J. Turbulence, 2010). 

Particles in liquid metal MHD              
(red=fastest, blue=slowest) 
Rouson et al., Phys. Fluids 2008. 

Morfeus Predecessors 

Flow in an aneurism with a ring-shaped stent. 
(Xu & Lee, Intl. J. Num. Meth. Fluids, 2010). 



Navy	
  Applica+on	
  

•  Collaborator:	
  Naval	
  Research	
  Laboratory	
  
•  Op3cal	
  turbulence	
  in	
  the	
  atmospheric	
  	
  layer	
  

–  The	
  pseudo-­‐dissipa3on	
  exhibits	
  lognormal	
  behavior,	
  
–  Spa3ally	
  localized	
  regions	
  of	
  high	
  and	
  low	
  pseudo-­‐
dissipa3on	
  are	
  found,	
  with	
  a	
  magnitude	
  ra3o	
  of	
  about	
  104	
  
between	
  low	
  and	
  high	
  regions,	
  	
  

–  The	
  atmospheric	
  boundary	
  layer	
  is	
  found	
  to	
  be	
  composed	
  
of	
  a	
  series	
  of	
  quasi-­‐periodic	
  plume-­‐like	
  structures,	
  and	
  	
  

–  The	
  pseudo-­‐dissipa3on	
  is	
  found	
  to	
  be	
  large	
  at	
  the	
  outer	
  
edge	
  of	
  a	
  typical	
  plume,	
  with	
  much	
  lower	
  levels	
  in	
  the	
  
plume	
  interior.	
  	
  

•  Morris	
  et	
  al.	
  (2010)	
  offer	
  conjectures	
  on	
  the	
  relevance	
  to	
  
known	
  observa3ons	
  of	
  clear-­‐air	
  radar	
  scaQering.	
  



Blackboard abstraction 

! 

ut = "uxx # uux

Software abstraction 

type(field) :: u,du_dt 
 
 

! 

un+1 = un +ut
n"t

! 

u= u x, t( )

! 

u x = 0, t( )= u0

! 

ut "
#u
#t

call u%boundary(x,0,u0) 

u%t()  

u = u + u%t()*dt 

u_t = nu*u%xx() – u*u%x() 

Abstract Data Type Calculus 



Abstract Calculus Pattern  

class(field), pointer :: u,u_t!
! Factory patterns (not shown)!
u_t =  nu*u%xx() - u*u%x()!

“Design	
  to	
  an	
  interface,	
  not	
  an	
  implementa3on.”	
  
Gamma	
  et	
  al.	
  (1995)	
  
	
  



Analyses & Results 
•  Amdahl's Law 

–  Result: focusing on runtime scalability to the exclusion of 
development-time scalability greatly limits speedup. [B1]  

•  Pareto Principle 
–  Result: required runtime scalability determines % of code 

that can be dedicated to development-time scalability. [B1] 
•  Design metrics: 

–  Morfeus patterns lead to high cohesion, low coupling, and 
low package instability [J5,J6]. 

•  Complexity theory 
–  Morfeus patterns render bug-search times roughly scale-

invariant [J6]. 
•  Information theory 

–  Morfeus patterns limit the growth in developer 
communications as measured by interface information 
entropy [J6]. 



Conventional Development 

Total solution time 

Mathematical 
Modeling 

Code 
writing 

Production 
Run 

Debugging 

Barrier 



Amdahl’s Law 
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Run-time speedup: 
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Representative case study for a published run [J8,J9]: 

optimized run time 

initialt finalt

The speedup achievable by focusing solely on decreasing 
run time is very limited. 



Case Study: Isotropic Turbulence 

•  5% procedures occupy nearly 80% of run time. 

•  Structure 95% of procedures to reduce development time. 

Procedure  Inclusive Run-Time Share  
(%) 

main 100.0 
operator(.x.) 79.5 
RK3_Integrate() 47.8 
Nonlinear_Fluid() 44.0 
Statistics_ 43.8 
transform_to_fourier 38.7 
transform_to_physical 23.6 

Calls 



Total Solution Time Speedup 
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Pareto Principle 
When participants (lines) share resources (run time), there  
always exists a number                         such that (1-k)% of 
the participants occupy k% of the resources: 

Limiting cases: 

•  k=50%, equal distribution 

•  kà100%, monopoly 

Rule of thumb: 20% of the lines occupy 80% of the run time 

Scalability requirements determine the percentage of the 
code that can be focused strictly on programmability: 

)100,50[!k
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Software Design Metrics 

•  Defini3on:	
  A	
  measure	
  of	
  some	
  property	
  of	
  a	
  soYware	
  package	
  
or	
  of	
  some	
  process	
  associated	
  with	
  its	
  development.	
  

•  Examples	
  
–  Source	
  Lines	
  of	
  Code	
  (SLOC)	
  	
  
–  Cycloma3c	
  complexity	
  
–  Efferent	
  couplings	
  (Ce):	
  #	
  packages	
  a	
  given	
  package	
  
depends	
  on.	
  

–  Afferent	
  couplings	
  (Ca):	
  #	
  packages	
  that	
  depend	
  on	
  a	
  given	
  
one.	
  

–  Instability:	
  	
  

! 

I " Ce
Ce + Ca



Package Instability 

Fluid 
Dynamics 

Chemistry Boundary 

Flame 

aggregates 

Puppeteer: 

Integrand 

implements 

u = u + u%t()*dt I = 0
1
= 0

I = 4
4+ 0

=1

I = 0
1
= 0



SoHware	
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Scientific Code Faults 

036.0006.0 !"# r

Source: Hatton, L. (1997) “The `T’ Experiments – Errors in Scientific 
Software,” Comp. Sci. Eng. 

Observed	
  faults	
  in	
  commercially	
  released	
  code:	
  
•  8	
  sta3cally	
  detectable	
  faults/1000	
  lines	
  of	
  C	
  code.	
  
•  12	
  sta3cally	
  detectable	
  faults/1000	
  lines	
  of	
  Fortran	
  77	
  code.	
  
•  More	
  recent	
  data	
  finds	
  2-­‐3	
  3mes	
  as	
  many	
  faults	
  in	
  C++	
  code.	
  



Fault Localization Time 

! 

"n =
"
2n

Search location error: 

Convergence criterion: 

! 

"
2m

=1

m = log2 "
Search time metric: 

! 

"searched = r" log2 "



Procedural Density 

! 

" # "class = $p

Integrand 

operator(+)(integrand,integrand) : integrand  

operator(*)(real,integrand) : integrand 

t(integrand) : integrand 

! 

p = 3 = const.
" # const.

$ 
% 
& 
' (searched # const.



Developer Communications 

Shannon (1948) “A mathematical theory of communication,” 
Bell System Tech. J. "
The class interfaces embody inter-developer communications.  
Consider the set of all (N) possible messages that can be transmitted 
between two developers:"
"

"“If the number of messages in the set is finite, then this number or 
"any monotonic function of this number can be regarded as a 
"measure of the "information produced when one message is 
"chosen from the set, all "choices being equally likely.”"

"
Shannon chose the logarithm because it satisfies several constraints 
that match our intuitive understanding of information:"

! 

H = " pi log2 pi
i=1

N

# = "
1
N
log2

1
N

= log2 N
i=1

N

#



Minimum Information Growth  

 
subroutine integrate(integrand) 
  class(integrable_model) :: integrand  
  integrand = integrand + dt*integrand%t() 
end subroutine  

! 

"H = log2(N +1) # log2 N

If only one class extends integrable_model, the 
executable line only has one possible interpretation, so 
N=0.  Each subsquent subclass increases the information 
content by"

which is obviously the minimum information growth."
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Morfeus Alpha 

Blackboard abstractions (Burgers equation): 
           : velocity field 

            
  : diffusion coefficient 

 
 
 

! 

ut ="uxx # uux

! 

u = u(x, t)

! 

"

type(field) :: u=field(), u_t!
u_t =  nu*u%xx() - u*u%x()!

Synchronization Asynchronous, purely functional 
operators and methods. 

Software abstractions: 
 
 



Alpha Architecture 

Morfeus 

ForTrilinos 

Field 

Epetra_Vector 

<<operator>> 
+ add(Field,Field) : Field 
+ multiply(Field,real) : Field 
+ subtract(Field,Field) : Field 

<<assignment>> 
+ assign(Field,Field) 

<<compute>> 
+ x(Field) : Field 
+ xx(Field) : Field 

Epetra_CrsMatrix 

aggregates uses 

Common 
distributed 
information 
model 

{ 



Alpha Implementation 
program main!
!-------------- Dependencies ----------------------------!
#include "ForTrilinos_config.h”!
#ifdef HAVE_MPI!
  use mpi!
  use FEpetra_MpiComm,           only : Epetra_MpiComm!
#else!
  use FEpetra_SerialComm,        only : Epetra_SerialComm!
#endif!
  use ForTrilinos_utils,         only : valid_kind_parameters!
  use iso_c_binding,             only : c_int,c_double!
  use field_module,              only : field,initial_field!
  use initializer,               only : u_initial!
  implicit none!



   Alpha Implementation 

!---------------- Declarations ----------------------------!
#ifdef HAVE_MPI!
  type(Epetra_MpiComm)    :: comm!
#else  !
  type(Epetra_SerialComm) :: comm!
#endif !
  type(field)             :: u,u_t!
  procedure(initial_field), pointer :: initial!
!---------------- MPI Start-up ----------------------------!
#ifdef HAVE_MPI!
  call MPI_INIT(ierr)!
  comm = Epetra_MpiComm(MPI_COMM_WORLD)!
#else!
  comm = Epetra_SerialComm()!
#endif!
!



   Alpha Implementation 

!---------------- Object initialization ---------------------- !
  initial => u_initial!
  u = field(initial,grid_resolution,comm)!
!------------- Forward Euler time integration ----------------- !
  do tstep=1,1000!
   dt = u%euler_step(nu ,grid_resolution)!
   u_t = u%xx()*nu – u*u%x()!
   u  = u + u_t*dt!
   t = t + dt !
  end do!
!



   Alpha Implementation 

!
!------------------- Memory clean-up -------------------- !
  call u%force_finalize!
  call u_t%force_finalize!
  call comm%force_finalize!
!------------------- MPI shutdown ----------------------- !
#ifdef HAVE_MPI!
  call MPI_FINALIZE(rc)!
#endif!
end program!



Alpha	
  Solver	
  Performance	
  



Morfeus	
  Beta	
  Architecture	
  

Field 

Scalar_Field 

Epetra_Vector 

Epetra_CrsMatrix 

Pade_6th_order 

Finite_difference_strategy 

Boundary_conditions Epetra_Map 

Epetra_Comm 



3D	
  Navier-­‐Stokes	
  Solver	
  

We	
  solve	
  a	
  form	
  of	
  the	
  3D	
  Navier-­‐Stokes	
  equa3ons	
  due	
  to	
  Kim,	
  Moin	
  
&	
  Moser	
  (1987),	
  that	
  evolves	
  one	
  component	
  of	
  velocity	
  (uy)	
  and	
  a	
  
parallel	
  component	
  of	
  vor3city	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  so	
  that	
  each	
  3me	
  step	
  
involves	
  backing	
  out	
  the	
  other	
  two	
  velocity	
  components	
  via	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
where	
  the	
  first	
  equa3on	
  comes	
  from	
  the	
  defini3on	
  of	
  vor3city	
  and	
  the	
  
second	
  equa3on	
  	
  imposes	
  the	
  incompressibility	
  constraint.	
  
	
  
! 

"
#
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We	
  approximate	
  all	
  deriva3ves	
  via	
  a	
  compact	
  finite	
  difference	
  scheme	
  
due	
  to	
  Lele	
  (1992)	
  that	
  involves	
  inversion	
  of	
  sparse	
  linear	
  systems	
  of	
  
the	
  form	
  
	
  
	
  
so	
  the	
  aforemen3oned	
  linear	
  system	
  becomes	
  
	
  
	
  
	
  
	
  
where	
  subscripts	
  on	
  the	
  submatrices	
  indicate	
  the	
  differen3a3on	
  
direc3on	
  and	
  where	
  

! 

A " f =
1
h

Bf

1
h

!Cz Cx

Cx Cz

"

#

$
$

%

&

'
'

ux
uz

(
)
*

+
,
-
=
!y

!Cyuy / h

(
)
.

*.

+
,
.

-.

Compact	
  Finite	
  Difference	
  Scheme	
  

Cx =Ax
!1Bx Cz =Az

!1Bz



To	
  inves3gate	
  the	
  structure	
  of	
  the	
  submatrices	
  Cx	
  and	
  Cz,	
  we	
  rewrite	
  
the	
  RHS	
  of	
  a	
  representa3ve	
  submatrix	
  solu3on	
  system	
  using	
  the	
  iden3ty	
  
matrix	
  	
  	
  	
  :	
  
	
  
Column	
  i	
  of	
  	
  Cx	
  is	
  thus	
  the	
  finite	
  difference	
  approxima3on	
  to	
  the	
  
deriva3ve	
  of	
  unit	
  vector	
  ei:	
  	
  
	
  
	
  
where	
  each	
  	
  ei	
  	
  has	
  only	
  one	
  non-­‐zero	
  value.	
  	
  Hence,	
  its	
  deriva3ve,	
  	
  	
  	
  ,	
  
must	
  vanish	
  everywhere	
  outside	
  of	
  a	
  small	
  neighborhood	
  of	
  the	
  one	
  
non-­‐zero	
  value.	
  	
  Cx	
  is	
  therefore	
  sparse	
  (!)	
  but	
  in	
  a	
  way	
  that	
  must	
  be	
  
discovered	
  on	
  the	
  fly,	
  i.e.	
  at	
  run3me.	
  
We	
  know	
  of	
  no	
  other	
  aQempts	
  to	
  exploit	
  the	
  sparsity	
  of	
  this	
  matrix	
  and	
  
we	
  believe	
  our	
  ability	
  to	
  do	
  so	
  is	
  the	
  most	
  significant	
  demonstra3on	
  of	
  
the	
  flexibility	
  of	
  the	
  Morfeus	
  abstrac3ons.	
  
	
  
	
  
	
  
	
  
	
  

! 

A xCx =
1
h
BxI

  

! 

A x " f 1 ! " f N[ ] =
1
h

Bx e1 ! eN[ ]

Dynamically	
  Derived	
  Stencil	
  



Navy	
  Applica+on	
  

•  Our	
  next	
  step	
  involves	
  applying	
  this	
  scheme	
  to	
  the	
  
problem	
  of	
  flame	
  spread	
  on	
  vessel	
  compartment	
  walls.	
  

•  Collabora3on	
  with	
  L.	
  Bravo	
  &	
  A.	
  Trouve’,	
  Fire	
  Protec3on	
  
Engineering	
  Dept.	
  at	
  University	
  of	
  Maryland,	
  College	
  Park:	
  
–  Geometrical	
  and	
  physical	
  similarity	
  to	
  scalar	
  transport	
  
in	
  the	
  atmospheric	
  	
  boundary	
  layer.	
  

–  U	
  Md.	
  offers	
  physics	
  exper3se.	
  
–  Morfeus	
  project	
  offers	
  scalable	
  algorithms.	
  



Impact	
  on	
  the	
  Scien+fic	
  	
  
Programming	
  Community	
  

•  Two	
  open-­‐source	
  projects	
  are	
  adop3ng	
  Morfeus	
  paQerns:	
  
–  ForTrilinos:	
  hQp://trilinos.sandia.gov/packages/fortrilinos	
  
–  PSBLAS:	
  hQp://hQp://www.ce.uniroma2.it/psblas	
  

•  Nearly	
  every	
  Fortran	
  compiler	
  team	
  on	
  the	
  planet	
  has	
  code	
  from	
  
our	
  project	
  in	
  their	
  test	
  suite:	
  
–  IBM	
  
–  Numerical	
  Algorithms	
  Group	
  (NAG)	
  
–  Intel	
  
–  Cray	
  
–  Portland	
  Group	
  
–  Gnu	
  Compiler	
  Collec3on	
  (GCC)	
  

•  Short	
  courses	
  at	
  domes3c	
  &	
  interna3onal	
  supercomputer	
  centers:	
  	
  
–  HECToR	
  (U.K.):	
  hQp://www.hector.ac.uk/cse/training/oopinf2003/	
  	
  	
  
–  NERSC	
  (U.S.),	
  March	
  2012	
  



Conclusions	
  

•  Morfeus	
  design	
  paQerns	
  produce	
  	
  
–  Interoperable	
  
–  Loosely	
  coupled	
  
–  Services	
  based	
  on	
  a	
  distributed	
  informa3on	
  model	
  

•  Morfeus	
  code	
  scales	
  well	
  in	
  terms	
  of	
  
–  Package	
  instability	
  (as	
  measured	
  by	
  design	
  metrics)	
  
–  Bug	
  search	
  3me	
  (as	
  measured	
  by	
  fault	
  localiza3on	
  complexity)	
  
–  Developer	
  communica3on	
  (as	
  measured	
  by	
  informa3on	
  entropy)	
  

•  	
  Morfeus	
  code	
  also	
  	
  
–  Scales	
  up	
  to	
  dozens	
  of	
  cores	
  at	
  minimal	
  development	
  cost.	
  
–  Advances	
  the	
  state	
  of	
  the	
  art	
  in	
  modern	
  Fortran	
  OOP/OOD	
  
–  Provides	
  for	
  impac3ng	
  Navy	
  opera3ons	
  in	
  terms	
  of	
  understanding	
  

op3cal	
  turbulence	
  and	
  flame	
  spread.	
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