
Morfeus:	
 	

Mul+physics	
 Object-­‐oriented	
 Reconfigurable	
 Fluid	

Environment	
 for	
 Unified	
 Simula+ons	

Damian	
 Rouson,	
 Karla	
 Morris	

Sandia	
 Na3onal	
 Laboratories	

Xioafeng	
 Xu,	
 Joel	
 Koplik	

City	
 University	
 of	
 New	
 York	

Sponsor:	
 ONR	

	

Review	
 of	
 FY08-­‐FY11	

SAND2011-7149C

Outline	

•  Introduc3on	

–  Mo3va3on	

–  Objec3ves	

•  Methodology:	

–  Design	
 paQerns	

–  Analyses	

•  Results	

–  Alpha/Beta	
 Solvers	

–  Navy	
 applica3ons	

–  Scien3fic	
 impact	

•  Conclusions	

•  Future	
 Work	

Mo+va+on	

“Taking	
 concepts	
 from	
 SoYware	
 Engineering	
 and	

Service-­‐oriented	
 architecture	
 (SOA)	
 design,	
 automa3on	

should	
 be	
 approached	
 as	
 distributed	
 soYware	
 systems	

-­‐	
 “a	
 suite	
 of	
 interoperable	
 services”	
 -­‐	
 loosely	
 coupled	

modules	
 that	
 are	
 able	
 to	
 collaborate	
 by	
 subscrip3on	
 to	

a	
 shared	
 informa3on	
 model.”	

Seman,	
 A.	
 (2011)	
 A	
 Vision	
 for	
 Next	
 Genera0on	
 Naval	
 Machinery	
 Monitoring	

and	
 Control	
 Guiding	
 Principles	
 for	
 Navy	
 A=er	
 Next	
 Machinery	
 Automa0on	

Research	

	

Objec+ves	

•  To	
 develop	
 a	
 SOA	
 for	
 physics-­‐based	
 models	

–  Comprising	
 a	
 suite	
 of	
 loosely	
 coupled,	
 interoperable	
 modules	

–  Sharing	
 a	
 common,	
 distributed	
 informa3on	
 model	

–  Collabora3ng	
 to	
 accomplish	
 mul3physics	
 simula3ons	

•  To	
 develop	
 analy3cal	
 approaches	
 to	
 quan3fying	
 the	
 desirable	

proper3es	
 of	
 the	
 SOA.	

•  To	
 promulgate	
 the	
 resul3ng	
 soYware	
 design	
 paQerns	
 in	

publica3ons	
 and	
 open-­‐source	
 soYware.	

•  To	
 demonstrate	
 the	
 SOA	
 on	
 problems	
 relevant	
 to	
 the	
 Navy.	

Outline	

•  Introduc3on	

–  Mo3va3on	

–  Objec3ves	

•  Methodology:	

–  Design	
 paQerns	

–  Analyses	

•  Results	

–  Alpha/Beta	
 solvers	

–  Navy	
 applica3ons	

–  Scien3fic	
 Impact	

•  Conclusions	

•  Future	
 Work	

Origin of Design Patterns

6

Positive Outdoor Space
Julian Street Inn
Shelter for the Homeless
San Jose, CA

Vol. III
(1975) Vol. II

(1977)

Building architecture: Alexander et al. (1975-’79)

Vol. I (1979)

OOD Patterns

7

1995

2007

Software architecture: Gamma et al. “Gang of Four” (1995)
Scientific software architecture: Gardner & Manduchi (2007)

Patterns in Fortran/C++

Multiphysics software architecture [J5]	
 :
http://www.cambridge.org/Rouson

“Prefer aggregation over inheritance.”
Gamma et al.

Fluid
Dynamics

Chemistry Boundary

Flame

aggregates

Puppeteer:

Morfeus Predecessors

Time Integrator

Grid

Fluid

Cloud

Field

Liquid Metal

Magnetofluid

Time Integrator

Grid

Classical
Fluid

Quantum
Fluid

Field

Superfluid

Quantum turbulence
[J8]

Magnetohydrodynamics
[J2,J8]

Time Integrator

Grid

Fluid Scalar

Field

Atmosphere

Cloud

Atmospheric Boundary
Layer [J4]

Lattice Boltzmann bio-fluid dynamics:
Xu & Lee (2008) “Application of the lattice Boltzmann method to flow in
aneurysm with ring-shaped stent obstacles,” Int. J. Numerical Methods in
Fluids.

Quantum vortices (red) & classical vortices
(blue) in superfluid helium (Morris, Koplik &
Rouson, Phys. Rev. Lett. 2008).

Navy application: Optical turbulence in the
atmospheric boundary layer. (Morris, Handler
& Rouson, J. Turbulence, 2010).

Particles in liquid metal MHD
(red=fastest, blue=slowest)
Rouson et al., Phys. Fluids 2008.

Morfeus Predecessors

Flow in an aneurism with a ring-shaped stent.
(Xu & Lee, Intl. J. Num. Meth. Fluids, 2010).

Navy	
 Applica+on	

•  Collaborator:	
 Naval	
 Research	
 Laboratory	

•  Op3cal	
 turbulence	
 in	
 the	
 atmospheric	
 	
 layer	

–  The	
 pseudo-­‐dissipa3on	
 exhibits	
 lognormal	
 behavior,	

–  Spa3ally	
 localized	
 regions	
 of	
 high	
 and	
 low	
 pseudo-­‐
dissipa3on	
 are	
 found,	
 with	
 a	
 magnitude	
 ra3o	
 of	
 about	
 104	

between	
 low	
 and	
 high	
 regions,	
 	

–  The	
 atmospheric	
 boundary	
 layer	
 is	
 found	
 to	
 be	
 composed	

of	
 a	
 series	
 of	
 quasi-­‐periodic	
 plume-­‐like	
 structures,	
 and	
 	

–  The	
 pseudo-­‐dissipa3on	
 is	
 found	
 to	
 be	
 large	
 at	
 the	
 outer	

edge	
 of	
 a	
 typical	
 plume,	
 with	
 much	
 lower	
 levels	
 in	
 the	

plume	
 interior.	
 	

•  Morris	
 et	
 al.	
 (2010)	
 offer	
 conjectures	
 on	
 the	
 relevance	
 to	

known	
 observa3ons	
 of	
 clear-­‐air	
 radar	
 scaQering.	

Blackboard abstraction

!

ut = "uxx # uux

Software abstraction

type(field) :: u,du_dt

!

un+1 = un +ut
n"t

!

u= u x, t()

!

u x = 0, t()= u0

!

ut "
#u
#t

call u%boundary(x,0,u0)

u%t()

u = u + u%t()*dt

u_t = nu*u%xx() – u*u%x()

Abstract Data Type Calculus

Abstract Calculus Pattern

class(field), pointer :: u,u_t!
! Factory patterns (not shown)!
u_t = nu*u%xx() - u*u%x()!

“Design	
 to	
 an	
 interface,	
 not	
 an	
 implementa3on.”	

Gamma	
 et	
 al.	
 (1995)	

	

Analyses & Results
•  Amdahl's Law

–  Result: focusing on runtime scalability to the exclusion of
development-time scalability greatly limits speedup. [B1]

•  Pareto Principle
–  Result: required runtime scalability determines % of code

that can be dedicated to development-time scalability. [B1]
•  Design metrics:

–  Morfeus patterns lead to high cohesion, low coupling, and
low package instability [J5,J6].

•  Complexity theory
–  Morfeus patterns render bug-search times roughly scale-

invariant [J6].
•  Information theory

–  Morfeus patterns limit the growth in developer
communications as measured by interface information
entropy [J6].

Conventional Development

Total solution time

Mathematical
Modeling

Code
writing

Production
Run

Debugging

Barrier

Amdahl’s Law

5.1lim1
3
1

3
2

1
=!

+
=

"#
totS

run

tot S

S

S
run

Code Writing Time Debugging Time Run Time

original run time
!runS

Total speedup:

Run-time speedup:

3/1 3/1 3/1

Representative case study for a published run [J8,J9]:

optimized run time

initialt finalt

The speedup achievable by focusing solely on decreasing
run time is very limited.

Case Study: Isotropic Turbulence

•  5% procedures occupy nearly 80% of run time.

•  Structure 95% of procedures to reduce development time.

Procedure Inclusive Run-Time Share
(%)

main 100.0
operator(.x.) 79.5
RK3_Integrate() 47.8
Nonlinear_Fluid() 44.0
Statistics_ 43.8
transform_to_fourier 38.7
transform_to_physical 23.6

Calls

Total Solution Time Speedup

1 2 3 4 5 6 7 8
1

1.25

1.5

1.75

Nummber of Processors

To
ta

l S
ol

ut
io

n
Ti

m
e

Sp
ee

du
p

SGI Math Library

Number of Threads

Intel Math Kernel Library (MKL)

Theoretical Limit

Pareto Principle
When participants (lines) share resources (run time), there
always exists a number such that (1-k)% of
the participants occupy k% of the resources:

Limiting cases:

•  k=50%, equal distribution

•  kà100%, monopoly

Rule of thumb: 20% of the lines occupy 80% of the run time

Scalability requirements determine the percentage of the
code that can be focused strictly on programmability:

)100,50[!k

5
/8.02.0

1
lim

%
max

%

=
+

=
!"

k
S S

S
k

Software Design Metrics

•  Defini3on:	
 A	
 measure	
 of	
 some	
 property	
 of	
 a	
 soYware	
 package	

or	
 of	
 some	
 process	
 associated	
 with	
 its	
 development.	

•  Examples	

–  Source	
 Lines	
 of	
 Code	
 (SLOC)	
 	

–  Cycloma3c	
 complexity	

–  Efferent	
 couplings	
 (Ce):	
 #	
 packages	
 a	
 given	
 package	

depends	
 on.	

–  Afferent	
 couplings	
 (Ca):	
 #	
 packages	
 that	
 depend	
 on	
 a	
 given	

one.	

–  Instability:	
 	

!

I " Ce
Ce + Ca

Package Instability

Fluid
Dynamics

Chemistry Boundary

Flame

aggregates

Puppeteer:

Integrand

implements

u = u + u%t()*dt I = 0
1
= 0

I = 4
4+ 0

=1

I = 0
1
= 0

SoHware	
 Fault	
 Rate	

500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

Release n
Release n+1

Module Size

F
a
u
l
t
s

R
a
t
e

Source: Fenton & Ohlssen (2000) “Quantitative analysis of faults and
failures in a complex software system,” IEEE Trans. Soft. Eng.

>3500

1000/6!" r

Faults/
line

(x1000)

Module size
(lines)

faults = r!

Scientific Code Faults

036.0006.0 !"# r

Source: Hatton, L. (1997) “The `T’ Experiments – Errors in Scientific
Software,” Comp. Sci. Eng.

Observed	
 faults	
 in	
 commercially	
 released	
 code:	

•  8	
 sta3cally	
 detectable	
 faults/1000	
 lines	
 of	
 C	
 code.	

•  12	
 sta3cally	
 detectable	
 faults/1000	
 lines	
 of	
 Fortran	
 77	
 code.	

•  More	
 recent	
 data	
 finds	
 2-­‐3	
 3mes	
 as	
 many	
 faults	
 in	
 C++	
 code.	

Fault Localization Time

!

"n =
"
2n

Search location error:

Convergence criterion:

!

"
2m

=1

m = log2 "
Search time metric:

!

"searched = r" log2 "

Procedural Density

!

" # "class = $p

Integrand

operator(+)(integrand,integrand) : integrand

operator(*)(real,integrand) : integrand

t(integrand) : integrand

!

p = 3 = const.
" # const.

$
%
&
' (searched # const.

Developer Communications

Shannon (1948) “A mathematical theory of communication,”
Bell System Tech. J. "
The class interfaces embody inter-developer communications.
Consider the set of all (N) possible messages that can be transmitted
between two developers:"
"

"“If the number of messages in the set is finite, then this number or
"any monotonic function of this number can be regarded as a
"measure of the "information produced when one message is
"chosen from the set, all "choices being equally likely.”"

"
Shannon chose the logarithm because it satisfies several constraints
that match our intuitive understanding of information:"

!

H = " pi log2 pi
i=1

N

= "
1
N
log2

1
N

= log2 N
i=1

N

#

Minimum Information Growth

subroutine integrate(integrand)
 class(integrable_model) :: integrand
 integrand = integrand + dt*integrand%t()
end subroutine

!

"H = log2(N +1) # log2 N

If only one class extends integrable_model, the
executable line only has one possible interpretation, so
N=0. Each subsquent subclass increases the information
content by"

which is obviously the minimum information growth."

Outline

•  Introduc3on	

–  Mo3va3on	

–  Objec3ves	

•  Methodology:	

–  Design	
 paQerns	

–  Analyses	

•  Results	

–  Alpha/Beta	
 solvers	

–  Navy	
 applica3ons	

–  Scien3fic	
 impact	

•  Conclusions	

•  Future	
 Work	

Morfeus Alpha

Blackboard abstractions (Burgers equation):
 : velocity field

 : diffusion coefficient

!

ut ="uxx # uux

!

u = u(x, t)

!

"

type(field) :: u=field(), u_t!
u_t = nu*u%xx() - u*u%x()!

Synchronization Asynchronous, purely functional
operators and methods.

Software abstractions:

Alpha Architecture

Morfeus

ForTrilinos

Field

Epetra_Vector

<<operator>>
+ add(Field,Field) : Field
+ multiply(Field,real) : Field
+ subtract(Field,Field) : Field

<<assignment>>
+ assign(Field,Field)

<<compute>>
+ x(Field) : Field
+ xx(Field) : Field

Epetra_CrsMatrix

aggregates uses

Common
distributed
information
model

{

Alpha Implementation
program main!
!-------------- Dependencies ----------------------------!
#include "ForTrilinos_config.h”!
#ifdef HAVE_MPI!
 use mpi!
 use FEpetra_MpiComm, only : Epetra_MpiComm!
#else!
 use FEpetra_SerialComm, only : Epetra_SerialComm!
#endif!
 use ForTrilinos_utils, only : valid_kind_parameters!
 use iso_c_binding, only : c_int,c_double!
 use field_module, only : field,initial_field!
 use initializer, only : u_initial!
 implicit none!

 Alpha Implementation

!---------------- Declarations ----------------------------!
#ifdef HAVE_MPI!
 type(Epetra_MpiComm) :: comm!
#else !
 type(Epetra_SerialComm) :: comm!
#endif !
 type(field) :: u,u_t!
 procedure(initial_field), pointer :: initial!
!---------------- MPI Start-up ----------------------------!
#ifdef HAVE_MPI!
 call MPI_INIT(ierr)!
 comm = Epetra_MpiComm(MPI_COMM_WORLD)!
#else!
 comm = Epetra_SerialComm()!
#endif!
!

 Alpha Implementation

!---------------- Object initialization ---------------------- !
 initial => u_initial!
 u = field(initial,grid_resolution,comm)!
!------------- Forward Euler time integration ----------------- !
 do tstep=1,1000!
 dt = u%euler_step(nu ,grid_resolution)!
 u_t = u%xx()*nu – u*u%x()!
 u = u + u_t*dt!
 t = t + dt !
 end do!
!

 Alpha Implementation

!
!------------------- Memory clean-up -------------------- !
 call u%force_finalize!
 call u_t%force_finalize!
 call comm%force_finalize!
!------------------- MPI shutdown ----------------------- !
#ifdef HAVE_MPI!
 call MPI_FINALIZE(rc)!
#endif!
end program!

Alpha	
 Solver	
 Performance	

Morfeus	
 Beta	
 Architecture	

Field

Scalar_Field

Epetra_Vector

Epetra_CrsMatrix

Pade_6th_order

Finite_difference_strategy

Boundary_conditions Epetra_Map

Epetra_Comm

3D	
 Navier-­‐Stokes	
 Solver	

We	
 solve	
 a	
 form	
 of	
 the	
 3D	
 Navier-­‐Stokes	
 equa3ons	
 due	
 to	
 Kim,	
 Moin	

&	
 Moser	
 (1987),	
 that	
 evolves	
 one	
 component	
 of	
 velocity	
 (uy)	
 and	
 a	

parallel	
 component	
 of	
 vor3city	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 so	
 that	
 each	
 3me	
 step	

involves	
 backing	
 out	
 the	
 other	
 two	
 velocity	
 components	
 via	
 	

	

	

	

	

	

	

where	
 the	
 first	
 equa3on	
 comes	
 from	
 the	
 defini3on	
 of	
 vor3city	
 and	
 the	

second	
 equa3on	
 	
 imposes	
 the	
 incompressibility	
 constraint.	

	

!

"
#
#z

#
#x

#
#x

#
#z

$

%

&
&
&

'

(

)
)
)

ux

uz

*

+
,

-
,

.

/
,

0
,

=

1 y

"#uy /#y

*

+
,

-
,

.

/
,

0
,

!y ! ("#
!u)y

We	
 approximate	
 all	
 deriva3ves	
 via	
 a	
 compact	
 finite	
 difference	
 scheme	

due	
 to	
 Lele	
 (1992)	
 that	
 involves	
 inversion	
 of	
 sparse	
 linear	
 systems	
 of	

the	
 form	

	

	

so	
 the	
 aforemen3oned	
 linear	
 system	
 becomes	

	

	

	

	

where	
 subscripts	
 on	
 the	
 submatrices	
 indicate	
 the	
 differen3a3on	

direc3on	
 and	
 where	

!

A " f =
1
h

Bf

1
h

!Cz Cx

Cx Cz

"

#

$
$

%

&

'
'

ux
uz

(
)
*

+
,
-
=
!y

!Cyuy / h

(
)
.

*.

+
,
.

-.

Compact	
 Finite	
 Difference	
 Scheme	

Cx =Ax
!1Bx Cz =Az

!1Bz

To	
 inves3gate	
 the	
 structure	
 of	
 the	
 submatrices	
 Cx	
 and	
 Cz,	
 we	
 rewrite	

the	
 RHS	
 of	
 a	
 representa3ve	
 submatrix	
 solu3on	
 system	
 using	
 the	
 iden3ty	

matrix	
 	
 	
 	
 :	

	

Column	
 i	
 of	
 	
 Cx	
 is	
 thus	
 the	
 finite	
 difference	
 approxima3on	
 to	
 the	

deriva3ve	
 of	
 unit	
 vector	
 ei:	
 	

	

	

where	
 each	
 	
 ei	
 	
 has	
 only	
 one	
 non-­‐zero	
 value.	
 	
 Hence,	
 its	
 deriva3ve,	
 	
 	
 	
 ,	

must	
 vanish	
 everywhere	
 outside	
 of	
 a	
 small	
 neighborhood	
 of	
 the	
 one	

non-­‐zero	
 value.	
 	
 Cx	
 is	
 therefore	
 sparse	
 (!)	
 but	
 in	
 a	
 way	
 that	
 must	
 be	

discovered	
 on	
 the	
 fly,	
 i.e.	
 at	
 run3me.	

We	
 know	
 of	
 no	
 other	
 aQempts	
 to	
 exploit	
 the	
 sparsity	
 of	
 this	
 matrix	
 and	

we	
 believe	
 our	
 ability	
 to	
 do	
 so	
 is	
 the	
 most	
 significant	
 demonstra3on	
 of	

the	
 flexibility	
 of	
 the	
 Morfeus	
 abstrac3ons.	

	

	

	

	

	

!

A xCx =
1
h
BxI

!

A x " f 1 ! " f N[] =
1
h

Bx e1 ! eN[]

Dynamically	
 Derived	
 Stencil	

Navy	
 Applica+on	

•  Our	
 next	
 step	
 involves	
 applying	
 this	
 scheme	
 to	
 the	

problem	
 of	
 flame	
 spread	
 on	
 vessel	
 compartment	
 walls.	

•  Collabora3on	
 with	
 L.	
 Bravo	
 &	
 A.	
 Trouve’,	
 Fire	
 Protec3on	

Engineering	
 Dept.	
 at	
 University	
 of	
 Maryland,	
 College	
 Park:	

–  Geometrical	
 and	
 physical	
 similarity	
 to	
 scalar	
 transport	

in	
 the	
 atmospheric	
 	
 boundary	
 layer.	

–  U	
 Md.	
 offers	
 physics	
 exper3se.	

–  Morfeus	
 project	
 offers	
 scalable	
 algorithms.	

Impact	
 on	
 the	
 Scien+fic	
 	

Programming	
 Community	

•  Two	
 open-­‐source	
 projects	
 are	
 adop3ng	
 Morfeus	
 paQerns:	

–  ForTrilinos:	
 hQp://trilinos.sandia.gov/packages/fortrilinos	

–  PSBLAS:	
 hQp://hQp://www.ce.uniroma2.it/psblas	

•  Nearly	
 every	
 Fortran	
 compiler	
 team	
 on	
 the	
 planet	
 has	
 code	
 from	

our	
 project	
 in	
 their	
 test	
 suite:	

–  IBM	

–  Numerical	
 Algorithms	
 Group	
 (NAG)	

–  Intel	

–  Cray	

–  Portland	
 Group	

–  Gnu	
 Compiler	
 Collec3on	
 (GCC)	

•  Short	
 courses	
 at	
 domes3c	
 &	
 interna3onal	
 supercomputer	
 centers:	
 	

–  HECToR	
 (U.K.):	
 hQp://www.hector.ac.uk/cse/training/oopinf2003/	
 	
 	

–  NERSC	
 (U.S.),	
 March	
 2012	

Conclusions	

•  Morfeus	
 design	
 paQerns	
 produce	
 	

–  Interoperable	

–  Loosely	
 coupled	

–  Services	
 based	
 on	
 a	
 distributed	
 informa3on	
 model	

•  Morfeus	
 code	
 scales	
 well	
 in	
 terms	
 of	

–  Package	
 instability	
 (as	
 measured	
 by	
 design	
 metrics)	

–  Bug	
 search	
 3me	
 (as	
 measured	
 by	
 fault	
 localiza3on	
 complexity)	

–  Developer	
 communica3on	
 (as	
 measured	
 by	
 informa3on	
 entropy)	

•  	
 Morfeus	
 code	
 also	
 	

–  Scales	
 up	
 to	
 dozens	
 of	
 cores	
 at	
 minimal	
 development	
 cost.	

–  Advances	
 the	
 state	
 of	
 the	
 art	
 in	
 modern	
 Fortran	
 OOP/OOD	

–  Provides	
 for	
 impac3ng	
 Navy	
 opera3ons	
 in	
 terms	
 of	
 understanding	

op3cal	
 turbulence	
 and	
 flame	
 spread.	

Publica+ons	
 &	
 Patents	

Book:	

[B1]	
 Rouson,	
 D.W.I.,	
 	
 J.	
 Xia,	
 J.	
 and	
 X.	
 Xu	
 (2011)	
 Scien0fic	
 So=ware	
 Design:	
 The	
 Object-­‐
Oriented	
 Way,	
 Cambridge	
 University	
 Press.	

Refereed	
 Journal	
 ar+cles:	
 	
 	

[J1]	
 Rouson,	
 D.	
 W.	
 I.,	
 K.	
 Morris.	
 and	
 J.	
 Xia	
 “Managing	
 C++	
 objects	
 with	
 Fortran	
 in	
 the	

driver’s	
 seat:	
 This	
 is	
 not	
 your	
 father’s	
 Fortran,”	
 Compu0ng	
 in	
 Science	
 and	
 Engineering,	

in	
 press.	

[J2]	
 Xu,	
 X.,	
 Rouson,	
 D.	
 W.	
 I.,	
 Kassinos,	
 S.	
 C.	
 and	
 Radhakrishnan,	
 H.	
 “Dispersed-­‐phase	

structure	
 in	
 sheared	
 MHD	
 turbulence,”	
 Journal	
 of	
 Turbulence,	
 in	
 review.	

[J3]	
 Morris,	
 K..	
 Rouson,	
 D.	
 W.	
 I.	
 and	
 Lemaster,	
 M.	
 N.	
 “On	
 the	
 scalable	
 development	
 of	

portable	
 object-­‐oriented	
 Fortran	
 interfaces	
 to	
 C++:	
 A	
 PDE	
 solver	
 prototype,”	
 ACM	

Transac0ons	
 on	
 Mathema0cal	
 So=ware,	
 in	
 review.	

[J4]	
 Morris,	
 K.,	
 Handler,	
 R.	
 and	
 Rouson,	
 D.	
 W.	
 I.	
 	
 (2010)	
 “IntermiQency	
 in	
 the	
 turbulent	

Ekman	
 layer,”	
 Journal	
 of	
 Turbulence,	
 12:12,	
 1-­‐25.	

[J5]	
 Rouson,	
 D.	
 W.	
 I.,	
 Xia,	
 J.	
 and	
 Adalsteinssohn,	
 H.	
 (2010)	
 “Design	
 paQerns	
 for	

mul3physics	
 modeling	
 in	
 Fortran	
 2003	
 and	
 C++,”ACM	
 Transac0ons	
 on	
 Mathema0cal	

So=ware	
 37:1.	

[J6]	
 Rouson,	
 D.W.I.	
 (2008)	
 “Towards	
 analysis-­‐driven	
 scien3fic	
 soYware	
 architecture:	

The	
 case	
 for	
 abstract	
 data	
 type	
 calculus”,	
 Scien0fic	
 Programming	
 16:4.	
 	

Publica+ons	
 &	
 Patents	

Refereed	
 Journal	
 ar+cles	
 (cont.):	
 	
 	

[J7]	
 Morris.,	
 K.,	
 J.	
 Koplik	
 and	
 D.	
 W.	
 I.	
 Rouson	
 (2008)	
 “Vortex	
 locking	
 in	
 direct	
 numerical	

simula3ons	
 of	
 quantum	
 turbulence,”	
 Physical	
 Review	
 LeNers	
 101,	
 015301.	

[J8]	
 Rouson,	
 D.W.I.,	
 S.	
 C.	
 Kassinos,	
 I.	
 Moulitsas,	
 I.	
 Sarris	
 and	
 X.	
 Xu	
 (2008)	
 “Dispersed-­‐
phase	
 structural	
 anisotropy	
 in	
 homogeneous	
 magnetohydrodynamic	
 turbulence	
 at	

low	
 magne3c	
 Reynolds	
 number,”	
 Physics	
 of	
 Fluids	
 20,	
 025101.	

[J9]	
 Rouson,	
 D.W.I.,	
 Rosenberg,	
 R.,	
 Xu,	
 X.,	
 Moulitsa,	
 I.	
 and	
 Kassinos,	
 S.C.	
 (2008)	
 “A	
 grid-­‐
free	
 abstrac3on	
 of	
 the	
 Navier-­‐Stokes	
 equa3ons	
 in	
 Fortran	
 95/2003,”	
 ACM	

Transac0ons	
 on	
 Mathema0cal	
 So=ware,	
 34:1.	

	

Open-­‐Source	
 SoHware:	

[S1]	
 ForTrilinos,	
 hQp://trilinos.sandia.gov/packages/ForTrilinos,	
 ©	
 2010,	
 Sandia	

Na3onal	
 Laboratories.	
 	

	

Patents:	

[P1]	
 System	
 and	
 method	
 for	
 reference	
 coun3ng	
 with	
 user-­‐defined	
 structure	

constructors,	
 U.S.	
 patent	
 applica3on	
 13/197,118	
 (pending),	
 filed	
 3	
 August	
 2011.	

	

Publica+ons	
 &	
 Patents	

Refereed	
 Conference	
 Papers:	
 	
 	

[C1]	
 Barbieri,	
 D.,	
 Cardellini,	
 V.,	
 Filippone,	
 S.,	
 and	
 Rouson,	
 D.	
 (2011)	
 “Design	
 PaQerns	

for	
 Scien3fic	
 Computa3ons	
 on	
 Sparse	
 Matrices,”	
 Euro-­‐Par	
 2011	
 Parallel	
 Processing:	

17th	
 Interna0onal	
 Euro-­‐Par	
 Conference,	
 Bordaeux,	
 France,	
 Aug.	
 29	
 –	
 Sep.	
 2.	

[C2]	
 Morris,	
 K.,	
 D.	
 W.	
 I.	
 Rouson,	
 and	
 J.	
 Xia	
 (2011)	
 “On	
 the	
 object-­‐oriented	
 design	
 of	

reference-­‐counted	
 shadow	
 objects	
 in	
 Fortran	
 2003,”	
 4th	
 Intl.	
 Workshop	
 on	
 So=ware	

Engineering	
 for	
 Computa0onal	
 Science	
 &	
 Engineering,	
 Honolulu,	
 Hawaii,	
 May	
 28.	
 	
 	

[C3]	
 Rouson,	
 D.	
 W.	
 I.,	
 J.	
 Xia	
 and	
 X.	
 Xu,	
 (2010)	
 “Object	
 construc3on	
 and	
 destruc3on	

design	
 paQerns	
 in	
 Fortran	
 2003,”	
 Interna0onal	
 Conference	
 on	
 Computa0onal	
 Science	

2010,	
 Amsterdam,	
 Netherlands,	
 May	
 31–June	
 2.	
 	
 	

[C4]	
 Akylas,	
 E.E.,	
 S.	
 C.	
 Kassinos,	
 D.	
 W.	
 I.	
 Rouson,	
 and	
 X.	
 Xu,	
 (2009)	
 "Accelera3ng	

sta3onarity	
 in	
 linearly	
 forced	
 isotropic	
 turbulence,"	
 The	
 Sixth	
 Interna0onal	
 Symposium	

on	
 Turbulence	
 and	
 Shear	
 Flow	
 Phenomena,	
 Seoul,	
 Korea,	
 June	
 22-­‐24.	

	

	

Collaborators	

•  R.	
 Handler,	
 Texas	
 A&M	
 University	
 (formerly	
 NRL)	

•  S.	
 Kassinos	
 et	
 al.,	
 University	
 of	
 Cyprus	

•  S.	
 Filippone,	
 Universitas	
 di	
 Roma	
 Tor	
 Vergata	

•  J.	
 Xia,	
 IBM	
 Canada	

•  X.	
 Xu,	
 General	
 Motors	

•  M.	
 Haveraaen,	
 University	
 of	
 Bergen,	
 Norway	

•  J.	
 Flores,	
 University	
 of	
 Puerto	
 Rico,	
 Mayaguez	
 	

•  L.	
 Bravo	
 and	
 A.	
 Trouve’,	
 University	
 of	
 Maryland,	
 College	
 Park	

•  S.	
 Garrick,	
 University	
 of	
 Minnesota	

