

χ Opt – Complex Hierarchical OPTimization Algorithms for the Design of Nanoporous Materials

SAND2011-4897C

Paul T. Boggs

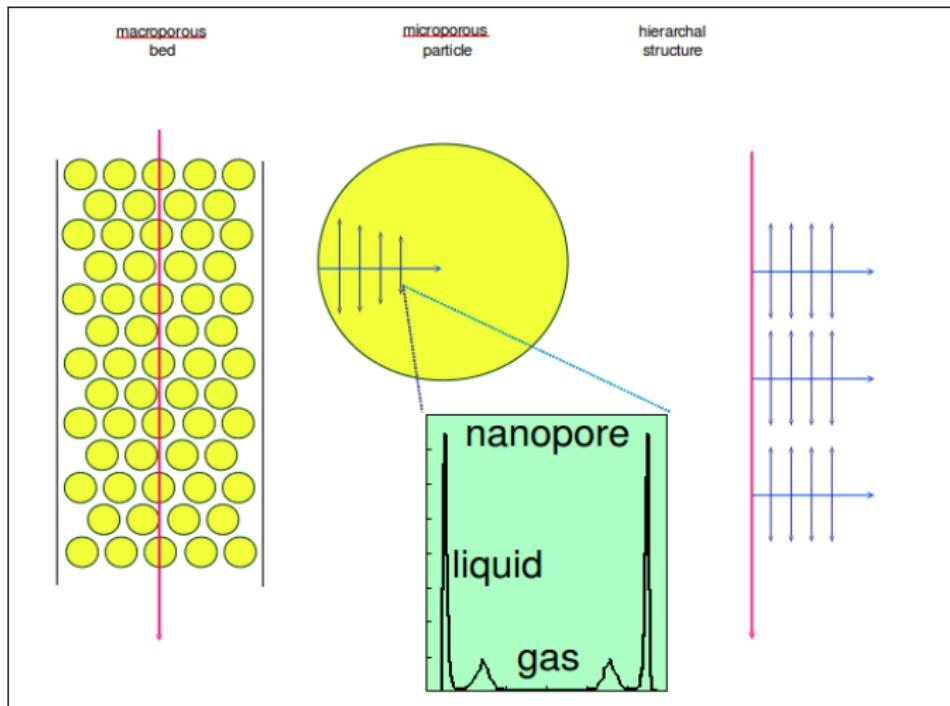
Sandia National Laboratories
Livermore, CA 94551, USA

ICIAM 2011

July 18 – July 22, 2011

Outline

- 1 The Nanoporous Materials Problem
- 2 The Multi-Level (Hierarchical) Optimization Problem
- 3 The Multi-Grid Optimization Algorithm
- 4 Progress and Results
- 5 Future Work


Collaborators

- David Gay (AMPL Corp.)
- Stewart Griffiths (Sandia National Labs)
- R. Michael Lewis (College of William and Mary)
- Kevin Long (Texas Tech University)
- Stephen Nash (George Mason University)
- Robert Nilson (Sandia National Labs)

Outline

- 1 The Nanoporous Materials Problem
- 2 The Multi-Level (Hierarchical) Optimization Problem
- 3 The Multi-Grid Optimization Algorithm
- 4 Progress and Results
- 5 Future Work

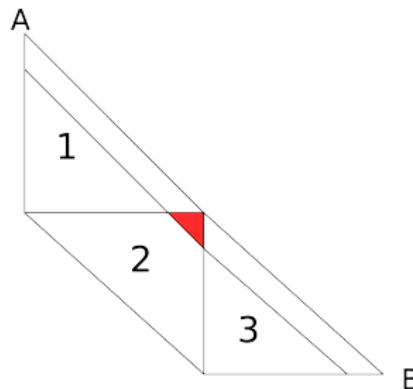
Nanoporous Materials

Summary of Problem Set-Up

- Want to design channels to facilitate charge/discharge of the material
 - Trade-off: get gas in and out quickly vs. maximize storage
- Hierarchical optimization: nano- to macro-scale
- As channels are added at finer scales, coarse level parameters change

Nanoporous Materials Design: A Multi-Scale Physics Problem

- Hierarchical optimization model with multi-physics
- Can't solve problem on fine level directly (too big)
- Can we exploit the structure to create efficient algorithms?
- Issues:
 - How many levels to use
 - How to model the channels
 - How to communicate between levels
 - What algorithmic framework to use
 - How to construct initial guess


Outline

- 1 The Nanoporous Materials Problem
- 2 The Multi-Level (Hierarchical) Optimization Problem
- 3 The Multi-Grid Optimization Algorithm
- 4 Progress and Results
- 5 Future Work

The Multi-Level (Hierarchical) Optimization Problem

- The flow is described by a nonlinear, time-dependent, PDE on the coarse levels, but the parameters change as the problem is being solved
- It is a molecular dynamics problem on the fine level
- Important point: The physicists have shown that good steady-state approximations can be constructed

Modeling the Channels

- Allow flow along the edges of the finite element mesh
- Let w_i be the width on edge with unit tangential vector e_i
- Derive an effective mobility tensor $B = \gamma w_i^2 e_i e_i^T$ for constant γ
- Total flow is flow in channel combined with flow in the bulk

First Problem: Steady State

- Let $\chi(x)$ be 0 in the bulk and 1 in the channels
- The net mass transfer is

$$j = -\chi(x)\rho_1 B \nabla p - (1 - \chi(x)\rho_2 \nabla p$$

where p is the pressure and ρ_1 and ρ_2 are constants

- The transport equation is

$$c + \nabla \cdot j = 0$$

where c is a constant

Finite Element Equation

- Create the weak form of the PDE with nondimensional constants Q , D , and V and test function \bar{u}

$$\int_{\Omega} [Q\bar{u} + D\nabla\bar{u} \cdot \nabla p] \xi \, dV \\ + \sum_{i=1}^N \int_e a_i \left[Vp \frac{\partial \bar{u}}{\partial I} \frac{\partial p}{\partial I} \right] \, dl \\ + \int_{\partial\Omega} \bar{u} \mathbf{j} \cdot \mathbf{n} \, dS = 0$$

- A difficulty arises because typical values for the constants are:

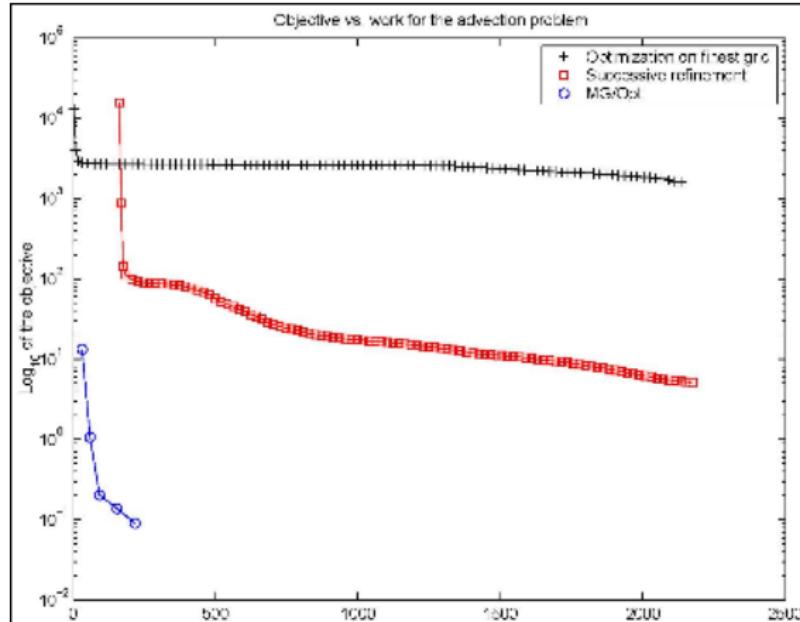
$$Q = 1$$

$$D = 2$$

$$V = 10^{12}$$

The Optimization Problem

- The objective function depends on the application
- An example is to minimize mean pressure


$$f(w) = \int_{\Omega} p(w)$$

- Subject to the PDE
- Subject to other constraints, e.g., a max allowable porosity

Outline

- 1 The Nanoporous Materials Problem
- 2 The Multi-Level (Hierarchical) Optimization Problem
- 3 The Multi-Grid Optimization Algorithm
- 4 Progress and Results
- 5 Future Work

Why Multi-Grid Optimization Methods

Three different ways to apply the *same* optimization algorithm:

- straightforward
- **successive refinement**
- **multilevel**

The Multi-Grid Optimization Algorithm

- Notation (Consider only two levels and unconstrained optimization)
 - Let x_h be the variables on fine level h
 - Let x_H be the variables on coarse level H
 - Let I_h^H be the “downdate” operator and I_H^h be the “update” operator to transform between levels
 - Let x_h^0 be the initial guess on the fine level
 - Let f_h and f_H denote the function to be minimized at each level

The Multi-Grid Optimization Algorithm: MgOpt

- Pre-smooth

- If on the coarsest grid, solve completely and return
- If not, perform $k_1 > 0$ iterations to obtain x_h

- Recursion

- Compute $\bar{x}_H = I_h^H \bar{x}_h$ and
 $\bar{v}_H = \nabla f_H(\bar{x}_H) - I_h^H \nabla f_h(\bar{x}_h)$
- Call MgOpt on the "surrogate" model

$$f_s \equiv f_H(x_H) - \bar{v}_H^T x_H$$

to obtain x_H^+

- Compute the search directions $e_H = x_H^+ - \bar{x}_H$ and $e_h = I_H^h e_H$
- Do linesearch to obtain α such that $f_h(\bar{x}_h + \alpha e_h) \leq f(\bar{x}_h)$

- Post-smooth

- Apply k_2 iterations to obtain x_h^{j+1}

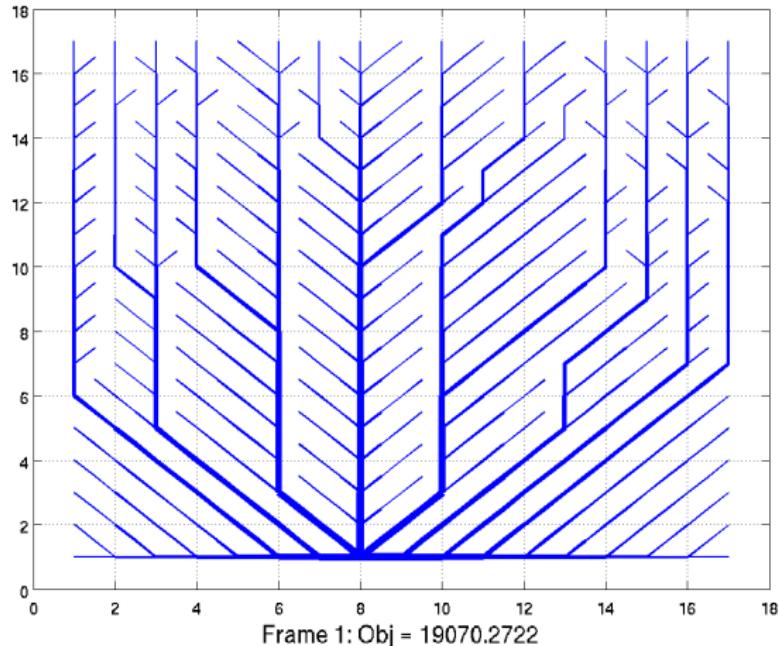
Algorithm (Software) Design

- We want a general form of the MgOpt algorithm
 - Algorithm should be independent of the specifics, i.e., it shouldn't care about constraints, optimization strategies on each level, etc.
- Thus we created a “Level” object that knows
 - Objective function
 - Constraints (if any)
 - Merit function
 - Update and downdate operators
 - Computation of the search direction
 - Optimizer, including linesearch and convergence criteria
- We construct a set of these to describe all the levels
- We allow various forms of the algorithm:
 - Can start at fine level or coarse level, use “full multi-grid” etc.
 - We want to use Sundance to handle the PDEs, meshes, etc.

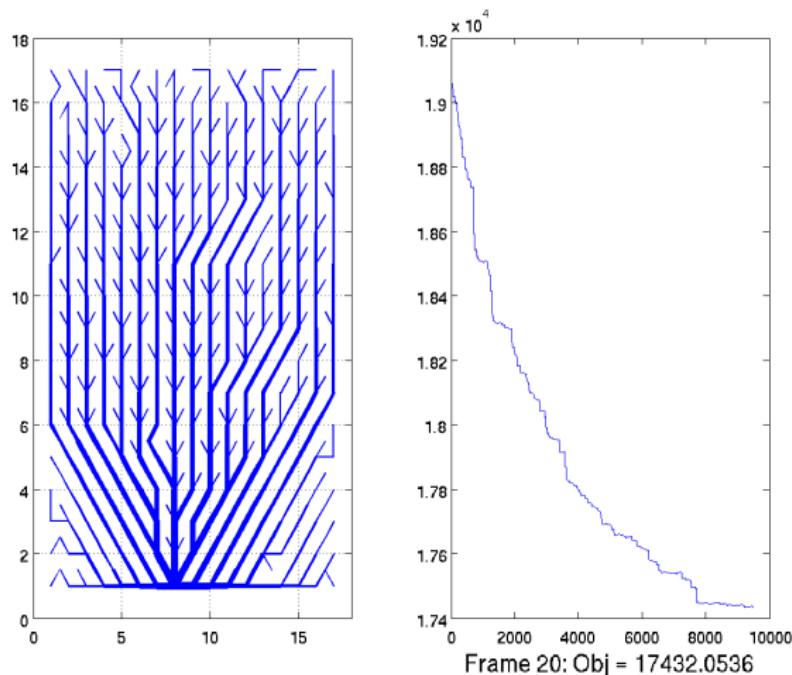
Outline

- 1 The Nanoporous Materials Problem
- 2 The Multi-Level (Hierarchical) Optimization Problem
- 3 The Multi-Grid Optimization Algorithm
- 4 Progress and Results
- 5 Future Work

Communication Between Levels

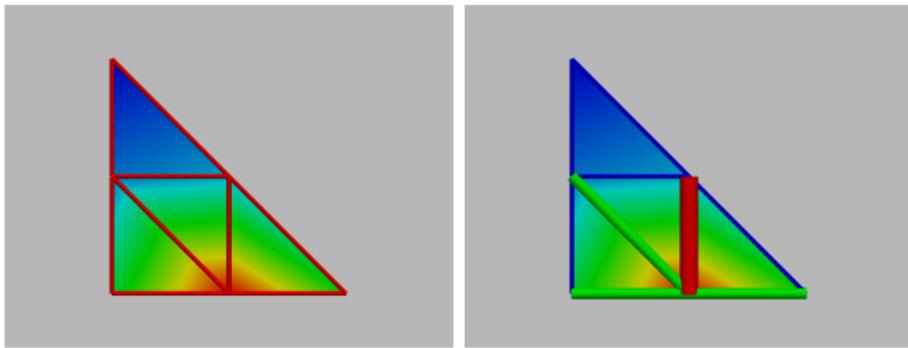

Exploit/Preserve the Physics

- Harmonic averaging to downdate w_i
- “Reverse” process to maintain same ratio
- Modify the constraint on porosity to reflect channels not visible at coarse level
- Modify diffusivity on coarse channel to reflect channels on fine scale

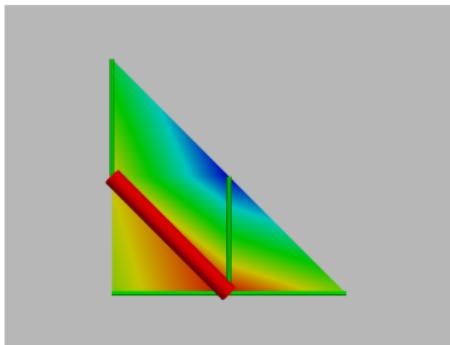

Progress and Results: Initial Guess

- We used a network approximation based on the finite element grid
 - Source of 1 at each vertex
 - Each edge is an allowable channel
 - Used a greedy algorithm to get initial set of edges with non-zero flow
 - Used a Metropolis-Hastings algorithm to improve flow

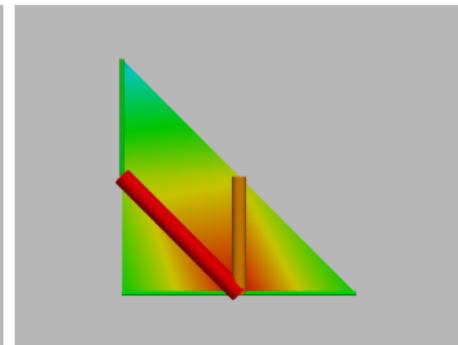
Progress and Results: Initial Guess with Greedy Algorithm



Progress and Results: Initial Guess Improved by MH

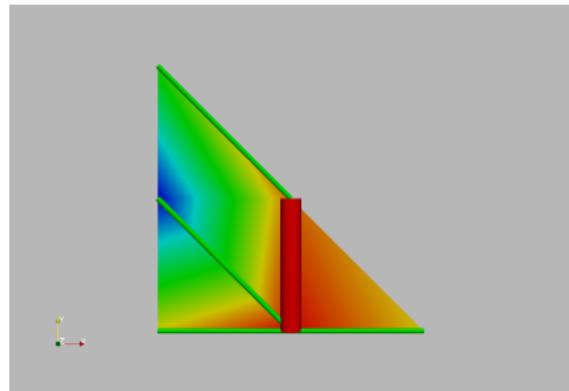

Numerical Results

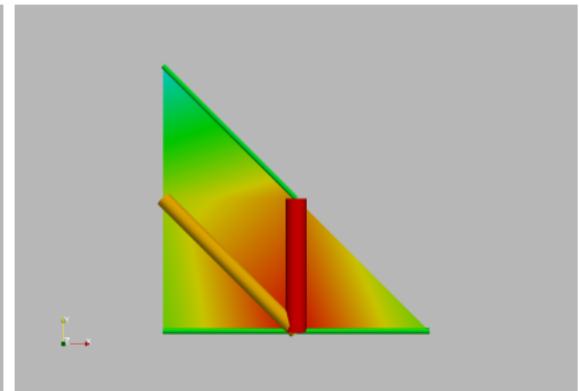
Simplest Problem - Uniform Start



Numerical Results

Simplest Problem - Tree Start 1

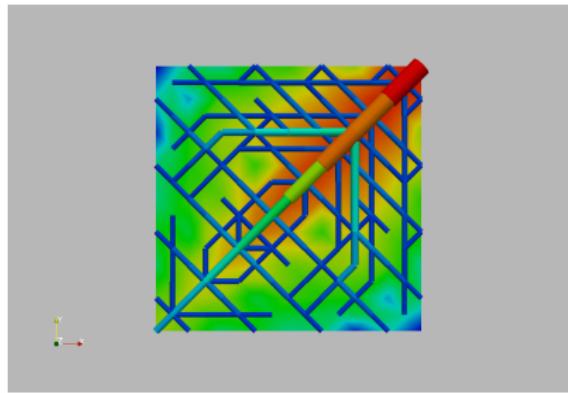

(c) Initial Guess


(d) Final Solution

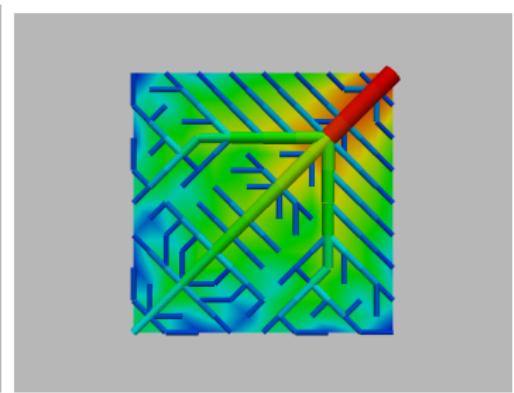
Numerical Results

Simplest Problem - Tree Start 2

(e) Initial Guess


(f) Final Solution

Discussion


- Differences in pressure, etc.

Numerical Results

4-Level Problem

(g) No Cut-Off

(h) With Cut-Off $1.0e-04$

Discussion

- Advantage of cut-off

Numerical Results

Larger Problem

Discussion

- Can do larger problem

Progress and Results: Algorithm and Software

- We have derived a basic convergence analysis of χOpt with constraints (Nash)
- We have a reasonable implementation of the software running
 - Uses Sundance to handle the PDEs
 - Have run a variety of tests
 - Have designed and implemented an automatic mesh refinement algorithm
 - Have coded the special update and downdate procedures making use of automatic refinement
 - Have added strategies to handle the “integer” nature of the problem

Outline

- 1 The Nanoporous Materials Problem
- 2 The Multi-Level (Hierarchical) Optimization Problem
- 3 The Multi-Grid Optimization Algorithm
- 4 Progress and Results
- 5 Future Work

Future Work

- Add post-processing to maintain tree structure
- Develop convergence analysis for situation where problem changes dynamically as algorithm proceeds
- Improve aspects of the code
- Continue creating test problems with added features
- Investigate strategies for handling constraints, especially inequality constraints
- Develop aggregation strategies for very fine level grids based on domain decomposition

Thanks!

Research supported by grant from Office of Advanced Scientific Computing Research, Department of Energy