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Stacked 2D-crystals: a new class of materials

» Various two-dimensional (2D) crystals

Monolayer h-BN

Graphene
Titanium Niobate http://en.wikipedia.org/wiki/Graphene
Boron nitride Osada et al., Adv. Funct. Mater. 21, 3482 (2011)
Molybdenum dichalcogenide Kim et al., Nano Lett., 12, 161 (2012)
Lee et al., Advanced Materials, 24, 2320 (2012)
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* Hybrid 2D-solids can be realized
- Combining materials
- Emerging properties
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' Intensity SRS
Si0, Graphene/BN superlattice
Graphene on B Haigh et al., Nature Materials 11, 764 (2012)

2D-based heterostructure|  pean et al., Nature Physics 7, 693 (2011)
Novoselov et al., Nature 490, 192 (2012)

How would 2D-crystals interact electronically with each other?
- We examine Twisted Bilayer Graphene (TBG)assembled via transfer process




How does misorientation manifest itself in

bilayer graphene?

» Bernal stacked graphene: strong interlayer interaction

Freitag, Nature Physics 7 596 (2011)



How does azimuthal misorientation manifest

itself in bilayer graphene?
* What about twisted graphene? Moiré

STS indicates van Hove
singularities (vHs)
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We s’rudy

* Microscopic and atomic view of Twisted Bilayer Graphene (TBG)

* Interacting Dirac cones through moiré periodic potential
 Tunable optical absorption band and emergent « color domains
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Kim et al., PRL 108, 246103 (2012) ’
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Li et al., Nature Physics 6, 109 ( 2010)
Righi et al., PRB 84, 241409(R) (2011)




LEEM/PEEM and ARPES

223:22 Imaging Electron LEEM .
Detector energy  (LOW Energy Electron Microscopy)
Filter — Surface-sensitive “reflection” electron
microscopy
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We make TBG by transfer

* Transferring CVD graphene onto epi-graphene (on SiC) yields large

TBG domains with various twist angles
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CVD grown Spin coat photoresist  Etch off Cu foil Place photoresist /CVD-graphene on Dissolve photoresist
graphene on Cu foil  on CVD-graphene/Cu epi-graphene grown on SiC and clean the surface
with H2

- Monolithic epi-graphene
- Large-domain CVD graphene (>100um-size domain)

Epi-graphene on SiC(0001) CVD graphene
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Bostwick et al., Nature Phys. 3, 36 (2007) Figure courtesy: Jeremy Robinson




TBG shows electron reflectivity characteristic

of bilayer graphene

» Two dips in electron reflectivity spectra: bilayer graphene on SiC
- Low energy electron microscopy (LEEM) measurement

TBG on H-
terminated SiC
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Ohta et al., PRB, 85, 075415 (2012)



TBG has long-range atomic order

» Diffraction patterns from TBG with a small and a large twist angles
- Diffraction spots due to moiré

Real-space moiré vectors

© Underlayer diffraction spots

o QOverlayer diffraction spots

- Minimum damage of graphene was confirmed using Raman spectroscopy
* Please see PRB, 85, 075415 (2012) for detail



TBG has two sets of Dirac cones

* Electronic dispersion is measured using PEEM (photoemission electron
microscopy) and ARPES (angle-resolved photoemission spectroscopy)

- Upper (blue hexagon) and lower (red hexagon)
graphene sheets create two sets of Dirac cones

Li et al., Nature Physics 6, 109 ( 2010)
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Two Dirac cones display anti-crossing

» Departure from the simple Dirac cone picture
- Twist angle, 6 = 11.6°

P

* Two cones' interaction leads to mini-gap
and van Hove singularities
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Additional Dirac cone emerges

* Anti-crossing is found b/w the original and the additional Dirac cone
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Moiré periodic potential produces Dirac cones

* Umklapp scattering by moiré periodic potential
- Similar to moiré-induced Raman band and LEED spots
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Superlattice changes electronic dispersion

- Substrate or neighboring material provides periodic potentials

Surface superlattice Graphene superlattice
Mini-bands & gaps formed in|  Surface state on Au(322) :
inversion layer of vicinal Si vicinal surface
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Moiré is ubiquitous in hybrid 2D-crystal stacks!




How does the band renormalization affect the
properties of TBG?

* Patches of "colored grain” observed in
optical microscope

- TBG on Si0,/Si substrate

Robinson et al., ACS Nano, 7, 637 (2013) & Science 152, 374 (2013)



Emerging absorption band is responsible for

"Colored grain”
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Optical absorption depends on the twist angle
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Map of LEED pattern orientations Optical micrograph of the sam«

across the sample surface

* LEED correlates the color to the twist angle
- LEED sensitive to the top layer only
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Moon & Koshino, arXiv:1302.5218 (2013)

- Supported theoretically



Interlayer overlap and characteristic energy

v.-Ak dictate band renormalization

* Interlayer overlap integral (y,*) and the characteristic energy (v, Ak)
crossover at twist angle, 6 = 5°
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Moiré influences the electronic structure of TBG and 2D-solids
Twisted Bilayer Graphene (TBG) can be produced using transfer approach
Electronic dispersion is altered by moiré (long-range periodicity)

Optical properties can be tuned by the twist angle
Moiré is ubiquitous feature in 2D-solids: handle to tailor electronic properties
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For details of our work, please see the following publications:

* T. Ohta, T. E. Beechem, J. Robinson, G. L. Kellogg, Long-range atomic ordering and variable interlayer interactions
in two overlapping graphene lattices with stacking misorientations, Phys. Rev. B, 85, 075415, 2012.

- T.Ohta, J. T. Robinson, P. J. Feibelman, A. Bostwick, E. Rotenberg, T. E. Beechem, Evidence for interlayer
coupling and moiré periodic potentials in twisted bilayer graphene, Phys. Rev. Lett. 109, 186807, 2012.

- J. T. Robinson, S. W. Schmucker, C. B. Diaconescu, J.P. Long, J. C. Culbertson, T. Ohta, A. L. Friedman, T.
Beechem, Electronic Hybridization of Large-Area Stacked Graphene Films, ACS Nano, 7, 637, 2013.

* Graphene in Color, Science 152, 374, 2013 "editor's choice."



We study MoS, using LEEM

» Identifying the crystallographic orientation and single domain size
of MoS, monolayer

Optical micro

scope

- Dark-field images of MoS, film

Mann, Bartels, et al., European Phys. J. B 86, 226 (2013)
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LEEM-PEEM research opportunities

* Postdoc in LEEM research group at Sandia Nat. Labs, Albuguerque
- Defects and 2D-electron gas in nitride semiconductor heterostructures
- Electronic properties of 2D-crystals and their stacked structures

Job posting:
Coming soon, www.sandia.gov

* New research capabilities: energy-filtered LEEM-PEEM
- Real-time surface imaging and diffraction
- Electronic structure study using EELS and ARPES (UV-light sources)

Please contact
Taisuke Ohta (tohta@sandia.gov)
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Following include supplemental slides



Two graphene lattices form moiré

* Two layers of graphene stacked with an azimuthal (in-plane)

misorientation
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TBG shows characteristic electron reflectivity

of bilayer graphene

» Two dips in electron reflectivity spectra: bilayer graphene on SiC

- Low energy electron microscopy (LEEM) measurement

BG on C-layer
g < | Graphene
Epi-bilayer on C-
ayer terminated SiC C—Iayer
termination

TBG on H-

Electron reflectivity (a.u.)
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Epi-bilayer on H-

terminated SiC H-termination

LEEM image of TBG o 4 8
Electron energy (eV)

- Diffraction experiments and dark-field
imaging show large domain each with an
unique twist angle

Ohta et al., PRB, 85, 075415 (2012)



Umklapp scattering due to moiré periodic

potential produces additional Dirac cones
» Similar to moiré-induced LEED spots
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We confirmed the twist angle using LEED

* Twist angle was determined by comparing LEEM pattern orientation
and the information of thickness using optical image

- LEED is sensitive to only the top layer

- |E - '-E:H
VI s 4 bilayer
L1} n

Typical LEED pattern of TBG Map of LEED pattern orientations Opticl micrograph of the same area |

across the sample surface
Monolayer
Bilayer

- Graphene thickness confirmed
using LEEM-IV

trilayer

Electron reflectivity [a.u.]

| | | | | |
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TBG gains color by electronic hybridization

» Optical microscope images of TBG on SiO,/Si substrate
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- Optical absorption depends on the twist angle
- Confirmed using Raman spectroscopy and LEED

Robinson et al., ACS Nano, 7, 637, 2013 & Science 152, 374, 2013






