

Behavior of Water in Supercritical CO₂:

Adsorption and Capillary Condensation in Porous Media

Jason Heath, Charles R. Bryan, Thomas Dewers, Yifeng Wang

Sandia National Laboratories, Albuquerque, New Mexico; jehealth@sandia.gov

Abstract

The chemical potential of water in supercritical CO₂ (scCO₂) may play an important role in water adsorption, capillary condensation, and evaporation under partially saturated conditions at geologic CO₂ storage sites, especially if initially anhydrous CO₂ is injected. Such processes may affect residual water saturations, relative permeability, shrink/swell of clays, and colloidal transport. We have developed a thermodynamic model of water or brine film thickness as a function of water relative humidity in scCO₂. The model is based on investigations of liquid water configuration in the vadose zone and uses the augmented Young-Laplace equation, which incorporates both adsorptive and capillary components. The adsorptive component is based on the concept of disjoining pressure, which reflects force per area normal to the solid and water/brine-scCO₂ interfaces. The disjoining pressure includes van der Waals, electrostatic, and structural interactions. The van der Waals term includes the effects of mutual dissolution of CO₂ and water in the two fluid phases on partial molar volumes, dielectric coefficients, and refractive indices. Our approach treats the two interfaces as asymmetric surfaces in terms of charge densities and electrostatic potentials. We use the disjoining pressure isotherm to evaluate the type of wetting (e.g., total wetting or partial wetting) for common reservoir and caprock minerals and kerogen. The capillary component incorporates water activity and is applied to simple pore geometries with slits and corners.

II. Disjoining Pressure and Water Film Thickness in CO₂

Calculations for two pressures and temperatures, corresponding to depths of ~500 and ~1500 m

Molecular or Van der Waals Component

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(mica)-\text{water}} = -50 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$

$$\Psi_{\text{solid}(quartz)-\text{water}} = -3 \text{ mV}$$

$$\Psi_{\text{water}-\text{CO}_2} = 0 \text{ mV}$$